You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1210 lines
39KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file cook.c
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include <math.h>
  44. #include <stddef.h>
  45. #include <stdio.h>
  46. #include "avcodec.h"
  47. #include "bitstream.h"
  48. #include "dsputil.h"
  49. #include "bytestream.h"
  50. #include "random.h"
  51. #include "cookdata.h"
  52. /* the different Cook versions */
  53. #define MONO 0x1000001
  54. #define STEREO 0x1000002
  55. #define JOINT_STEREO 0x1000003
  56. #define MC_COOK 0x2000000 //multichannel Cook, not supported
  57. #define SUBBAND_SIZE 20
  58. //#define COOKDEBUG
  59. typedef struct {
  60. int *now;
  61. int *previous;
  62. } cook_gains;
  63. typedef struct cook {
  64. /*
  65. * The following 5 functions provide the lowlevel arithmetic on
  66. * the internal audio buffers.
  67. */
  68. void (* scalar_dequant)(struct cook *q, int index, int quant_index,
  69. int* subband_coef_index, int* subband_coef_sign,
  70. float* mlt_p);
  71. void (* decouple) (struct cook *q,
  72. int subband,
  73. float f1, float f2,
  74. float *decode_buffer,
  75. float *mlt_buffer1, float *mlt_buffer2);
  76. void (* imlt_window) (struct cook *q, float *buffer1,
  77. cook_gains *gains_ptr, float *previous_buffer);
  78. void (* interpolate) (struct cook *q, float* buffer,
  79. int gain_index, int gain_index_next);
  80. void (* saturate_output) (struct cook *q, int chan, int16_t *out);
  81. GetBitContext gb;
  82. /* stream data */
  83. int nb_channels;
  84. int joint_stereo;
  85. int bit_rate;
  86. int sample_rate;
  87. int samples_per_channel;
  88. int samples_per_frame;
  89. int subbands;
  90. int log2_numvector_size;
  91. int numvector_size; //1 << log2_numvector_size;
  92. int js_subband_start;
  93. int total_subbands;
  94. int num_vectors;
  95. int bits_per_subpacket;
  96. int cookversion;
  97. /* states */
  98. AVRandomState random_state;
  99. /* transform data */
  100. MDCTContext mdct_ctx;
  101. DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
  102. float* mlt_window;
  103. /* gain buffers */
  104. cook_gains gains1;
  105. cook_gains gains2;
  106. int gain_1[9];
  107. int gain_2[9];
  108. int gain_3[9];
  109. int gain_4[9];
  110. /* VLC data */
  111. int js_vlc_bits;
  112. VLC envelope_quant_index[13];
  113. VLC sqvh[7]; //scalar quantization
  114. VLC ccpl; //channel coupling
  115. /* generatable tables and related variables */
  116. int gain_size_factor;
  117. float gain_table[23];
  118. float pow2tab[127];
  119. float rootpow2tab[127];
  120. /* data buffers */
  121. uint8_t* decoded_bytes_buffer;
  122. DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
  123. float mono_previous_buffer1[1024];
  124. float mono_previous_buffer2[1024];
  125. float decode_buffer_1[1024];
  126. float decode_buffer_2[1024];
  127. float decode_buffer_0[1060]; /* static allocation for joint decode */
  128. float *cplscales[5];
  129. } COOKContext;
  130. /* debug functions */
  131. #ifdef COOKDEBUG
  132. static void dump_float_table(float* table, int size, int delimiter) {
  133. int i=0;
  134. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  135. for (i=0 ; i<size ; i++) {
  136. av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
  137. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  138. }
  139. }
  140. static void dump_int_table(int* table, int size, int delimiter) {
  141. int i=0;
  142. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  143. for (i=0 ; i<size ; i++) {
  144. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  145. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  146. }
  147. }
  148. static void dump_short_table(short* table, int size, int delimiter) {
  149. int i=0;
  150. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  151. for (i=0 ; i<size ; i++) {
  152. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  153. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  154. }
  155. }
  156. #endif
  157. /*************** init functions ***************/
  158. /* table generator */
  159. static void init_pow2table(COOKContext *q){
  160. int i;
  161. q->pow2tab[63] = 1.0;
  162. for (i=1 ; i<64 ; i++){
  163. q->pow2tab[63+i]=(float)((uint64_t)1<<i);
  164. q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
  165. }
  166. }
  167. /* table generator */
  168. static void init_rootpow2table(COOKContext *q){
  169. int i;
  170. q->rootpow2tab[63] = 1.0;
  171. for (i=1 ; i<64 ; i++){
  172. q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
  173. q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
  174. }
  175. }
  176. /* table generator */
  177. static void init_gain_table(COOKContext *q) {
  178. int i;
  179. q->gain_size_factor = q->samples_per_channel/8;
  180. for (i=0 ; i<23 ; i++) {
  181. q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
  182. (1.0/(double)q->gain_size_factor));
  183. }
  184. }
  185. static int init_cook_vlc_tables(COOKContext *q) {
  186. int i, result;
  187. result = 0;
  188. for (i=0 ; i<13 ; i++) {
  189. result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
  190. envelope_quant_index_huffbits[i], 1, 1,
  191. envelope_quant_index_huffcodes[i], 2, 2, 0);
  192. }
  193. av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
  194. for (i=0 ; i<7 ; i++) {
  195. result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  196. cvh_huffbits[i], 1, 1,
  197. cvh_huffcodes[i], 2, 2, 0);
  198. }
  199. if (q->nb_channels==2 && q->joint_stereo==1){
  200. result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
  201. ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
  202. ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
  203. av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
  204. }
  205. av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
  206. return result;
  207. }
  208. static int init_cook_mlt(COOKContext *q) {
  209. int j;
  210. float alpha;
  211. int mlt_size = q->samples_per_channel;
  212. if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
  213. return -1;
  214. /* Initialize the MLT window: simple sine window. */
  215. alpha = M_PI / (2.0 * (float)mlt_size);
  216. for(j=0 ; j<mlt_size ; j++)
  217. q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
  218. /* Initialize the MDCT. */
  219. if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
  220. av_free(q->mlt_window);
  221. return -1;
  222. }
  223. av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
  224. av_log2(mlt_size)+1);
  225. return 0;
  226. }
  227. static float *maybe_reformat_buffer32 (COOKContext *q, float *ptr, int n)
  228. {
  229. if (1)
  230. return ptr;
  231. }
  232. static void init_cplscales_table (COOKContext *q) {
  233. int i;
  234. for (i=0;i<5;i++)
  235. q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
  236. }
  237. /*************** init functions end ***********/
  238. /**
  239. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  240. * Why? No idea, some checksum/error detection method maybe.
  241. *
  242. * Out buffer size: extra bytes are needed to cope with
  243. * padding/misalignment.
  244. * Subpackets passed to the decoder can contain two, consecutive
  245. * half-subpackets, of identical but arbitrary size.
  246. * 1234 1234 1234 1234 extraA extraB
  247. * Case 1: AAAA BBBB 0 0
  248. * Case 2: AAAA ABBB BB-- 3 3
  249. * Case 3: AAAA AABB BBBB 2 2
  250. * Case 4: AAAA AAAB BBBB BB-- 1 5
  251. *
  252. * Nice way to waste CPU cycles.
  253. *
  254. * @param inbuffer pointer to byte array of indata
  255. * @param out pointer to byte array of outdata
  256. * @param bytes number of bytes
  257. */
  258. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
  259. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  260. static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
  261. int i, off;
  262. uint32_t c;
  263. uint32_t* buf;
  264. uint32_t* obuf = (uint32_t*) out;
  265. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  266. * I'm too lazy though, should be something like
  267. * for(i=0 ; i<bitamount/64 ; i++)
  268. * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
  269. * Buffer alignment needs to be checked. */
  270. off = (int)((long)inbuffer & 3);
  271. buf = (uint32_t*) (inbuffer - off);
  272. c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
  273. bytes += 3 + off;
  274. for (i = 0; i < bytes/4; i++)
  275. obuf[i] = c ^ buf[i];
  276. return off;
  277. }
  278. /**
  279. * Cook uninit
  280. */
  281. static int cook_decode_close(AVCodecContext *avctx)
  282. {
  283. int i;
  284. COOKContext *q = avctx->priv_data;
  285. av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
  286. /* Free allocated memory buffers. */
  287. av_free(q->mlt_window);
  288. av_free(q->decoded_bytes_buffer);
  289. /* Free the transform. */
  290. ff_mdct_end(&q->mdct_ctx);
  291. /* Free the VLC tables. */
  292. for (i=0 ; i<13 ; i++) {
  293. free_vlc(&q->envelope_quant_index[i]);
  294. }
  295. for (i=0 ; i<7 ; i++) {
  296. free_vlc(&q->sqvh[i]);
  297. }
  298. if(q->nb_channels==2 && q->joint_stereo==1 ){
  299. free_vlc(&q->ccpl);
  300. }
  301. av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
  302. return 0;
  303. }
  304. /**
  305. * Fill the gain array for the timedomain quantization.
  306. *
  307. * @param q pointer to the COOKContext
  308. * @param gaininfo[9] array of gain indices
  309. */
  310. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  311. {
  312. int i, n;
  313. while (get_bits1(gb)) {}
  314. n = get_bits_count(gb) - 1; //amount of elements*2 to update
  315. i = 0;
  316. while (n--) {
  317. int index = get_bits(gb, 3);
  318. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  319. while (i <= index) gaininfo[i++] = gain;
  320. }
  321. while (i <= 8) gaininfo[i++] = 0;
  322. }
  323. /**
  324. * Create the quant index table needed for the envelope.
  325. *
  326. * @param q pointer to the COOKContext
  327. * @param quant_index_table pointer to the array
  328. */
  329. static void decode_envelope(COOKContext *q, int* quant_index_table) {
  330. int i,j, vlc_index;
  331. quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
  332. for (i=1 ; i < q->total_subbands ; i++){
  333. vlc_index=i;
  334. if (i >= q->js_subband_start * 2) {
  335. vlc_index-=q->js_subband_start;
  336. } else {
  337. vlc_index/=2;
  338. if(vlc_index < 1) vlc_index = 1;
  339. }
  340. if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
  341. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
  342. q->envelope_quant_index[vlc_index-1].bits,2);
  343. quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
  344. }
  345. }
  346. /**
  347. * Calculate the category and category_index vector.
  348. *
  349. * @param q pointer to the COOKContext
  350. * @param quant_index_table pointer to the array
  351. * @param category pointer to the category array
  352. * @param category_index pointer to the category_index array
  353. */
  354. static void categorize(COOKContext *q, int* quant_index_table,
  355. int* category, int* category_index){
  356. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  357. int exp_index2[102];
  358. int exp_index1[102];
  359. int tmp_categorize_array[128*2];
  360. int tmp_categorize_array1_idx=q->numvector_size;
  361. int tmp_categorize_array2_idx=q->numvector_size;
  362. bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
  363. if(bits_left > q->samples_per_channel) {
  364. bits_left = q->samples_per_channel +
  365. ((bits_left - q->samples_per_channel)*5)/8;
  366. //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  367. }
  368. memset(&exp_index1,0,102*sizeof(int));
  369. memset(&exp_index2,0,102*sizeof(int));
  370. memset(&tmp_categorize_array,0,128*2*sizeof(int));
  371. bias=-32;
  372. /* Estimate bias. */
  373. for (i=32 ; i>0 ; i=i/2){
  374. num_bits = 0;
  375. index = 0;
  376. for (j=q->total_subbands ; j>0 ; j--){
  377. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  378. index++;
  379. num_bits+=expbits_tab[exp_idx];
  380. }
  381. if(num_bits >= bits_left - 32){
  382. bias+=i;
  383. }
  384. }
  385. /* Calculate total number of bits. */
  386. num_bits=0;
  387. for (i=0 ; i<q->total_subbands ; i++) {
  388. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  389. num_bits += expbits_tab[exp_idx];
  390. exp_index1[i] = exp_idx;
  391. exp_index2[i] = exp_idx;
  392. }
  393. tmpbias1 = tmpbias2 = num_bits;
  394. for (j = 1 ; j < q->numvector_size ; j++) {
  395. if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
  396. int max = -999999;
  397. index=-1;
  398. for (i=0 ; i<q->total_subbands ; i++){
  399. if (exp_index1[i] < 7) {
  400. v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
  401. if ( v >= max) {
  402. max = v;
  403. index = i;
  404. }
  405. }
  406. }
  407. if(index==-1)break;
  408. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  409. tmpbias1 -= expbits_tab[exp_index1[index]] -
  410. expbits_tab[exp_index1[index]+1];
  411. ++exp_index1[index];
  412. } else { /* <--- */
  413. int min = 999999;
  414. index=-1;
  415. for (i=0 ; i<q->total_subbands ; i++){
  416. if(exp_index2[i] > 0){
  417. v = (-2*exp_index2[i])-quant_index_table[i]+bias;
  418. if ( v < min) {
  419. min = v;
  420. index = i;
  421. }
  422. }
  423. }
  424. if(index == -1)break;
  425. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  426. tmpbias2 -= expbits_tab[exp_index2[index]] -
  427. expbits_tab[exp_index2[index]-1];
  428. --exp_index2[index];
  429. }
  430. }
  431. for(i=0 ; i<q->total_subbands ; i++)
  432. category[i] = exp_index2[i];
  433. for(i=0 ; i<q->numvector_size-1 ; i++)
  434. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  435. }
  436. /**
  437. * Expand the category vector.
  438. *
  439. * @param q pointer to the COOKContext
  440. * @param category pointer to the category array
  441. * @param category_index pointer to the category_index array
  442. */
  443. static inline void expand_category(COOKContext *q, int* category,
  444. int* category_index){
  445. int i;
  446. for(i=0 ; i<q->num_vectors ; i++){
  447. ++category[category_index[i]];
  448. }
  449. }
  450. /**
  451. * The real requantization of the mltcoefs
  452. *
  453. * @param q pointer to the COOKContext
  454. * @param index index
  455. * @param quant_index quantisation index
  456. * @param subband_coef_index array of indexes to quant_centroid_tab
  457. * @param subband_coef_sign signs of coefficients
  458. * @param mlt_p pointer into the mlt buffer
  459. */
  460. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  461. int* subband_coef_index, int* subband_coef_sign,
  462. float* mlt_p){
  463. int i;
  464. float f1;
  465. for(i=0 ; i<SUBBAND_SIZE ; i++) {
  466. if (subband_coef_index[i]) {
  467. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  468. if (subband_coef_sign[i]) f1 = -f1;
  469. } else {
  470. /* noise coding if subband_coef_index[i] == 0 */
  471. f1 = dither_tab[index];
  472. if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
  473. }
  474. mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
  475. }
  476. }
  477. /**
  478. * Unpack the subband_coef_index and subband_coef_sign vectors.
  479. *
  480. * @param q pointer to the COOKContext
  481. * @param category pointer to the category array
  482. * @param subband_coef_index array of indexes to quant_centroid_tab
  483. * @param subband_coef_sign signs of coefficients
  484. */
  485. static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
  486. int* subband_coef_sign) {
  487. int i,j;
  488. int vlc, vd ,tmp, result;
  489. vd = vd_tab[category];
  490. result = 0;
  491. for(i=0 ; i<vpr_tab[category] ; i++){
  492. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  493. if (q->bits_per_subpacket < get_bits_count(&q->gb)){
  494. vlc = 0;
  495. result = 1;
  496. }
  497. for(j=vd-1 ; j>=0 ; j--){
  498. tmp = (vlc * invradix_tab[category])/0x100000;
  499. subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
  500. vlc = tmp;
  501. }
  502. for(j=0 ; j<vd ; j++){
  503. if (subband_coef_index[i*vd + j]) {
  504. if(get_bits_count(&q->gb) < q->bits_per_subpacket){
  505. subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
  506. } else {
  507. result=1;
  508. subband_coef_sign[i*vd+j]=0;
  509. }
  510. } else {
  511. subband_coef_sign[i*vd+j]=0;
  512. }
  513. }
  514. }
  515. return result;
  516. }
  517. /**
  518. * Fill the mlt_buffer with mlt coefficients.
  519. *
  520. * @param q pointer to the COOKContext
  521. * @param category pointer to the category array
  522. * @param quant_index_table pointer to the array
  523. * @param mlt_buffer pointer to mlt coefficients
  524. */
  525. static void decode_vectors(COOKContext* q, int* category,
  526. int *quant_index_table, float* mlt_buffer){
  527. /* A zero in this table means that the subband coefficient is
  528. random noise coded. */
  529. int subband_coef_index[SUBBAND_SIZE];
  530. /* A zero in this table means that the subband coefficient is a
  531. positive multiplicator. */
  532. int subband_coef_sign[SUBBAND_SIZE];
  533. int band, j;
  534. int index=0;
  535. for(band=0 ; band<q->total_subbands ; band++){
  536. index = category[band];
  537. if(category[band] < 7){
  538. if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
  539. index=7;
  540. for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
  541. }
  542. }
  543. if(index==7) {
  544. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  545. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  546. }
  547. q->scalar_dequant(q, index, quant_index_table[band],
  548. subband_coef_index, subband_coef_sign,
  549. &mlt_buffer[band * SUBBAND_SIZE]);
  550. }
  551. if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
  552. return;
  553. } /* FIXME: should this be removed, or moved into loop above? */
  554. }
  555. /**
  556. * function for decoding mono data
  557. *
  558. * @param q pointer to the COOKContext
  559. * @param mlt_buffer pointer to mlt coefficients
  560. */
  561. static void mono_decode(COOKContext *q, float* mlt_buffer) {
  562. int category_index[128];
  563. int quant_index_table[102];
  564. int category[128];
  565. memset(&category, 0, 128*sizeof(int));
  566. memset(&category_index, 0, 128*sizeof(int));
  567. decode_envelope(q, quant_index_table);
  568. q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
  569. categorize(q, quant_index_table, category, category_index);
  570. expand_category(q, category, category_index);
  571. decode_vectors(q, category, quant_index_table, mlt_buffer);
  572. }
  573. /**
  574. * the actual requantization of the timedomain samples
  575. *
  576. * @param q pointer to the COOKContext
  577. * @param buffer pointer to the timedomain buffer
  578. * @param gain_index index for the block multiplier
  579. * @param gain_index_next index for the next block multiplier
  580. */
  581. static void interpolate_float(COOKContext *q, float* buffer,
  582. int gain_index, int gain_index_next){
  583. int i;
  584. float fc1, fc2;
  585. fc1 = q->pow2tab[gain_index+63];
  586. if(gain_index == gain_index_next){ //static gain
  587. for(i=0 ; i<q->gain_size_factor ; i++){
  588. buffer[i]*=fc1;
  589. }
  590. return;
  591. } else { //smooth gain
  592. fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
  593. for(i=0 ; i<q->gain_size_factor ; i++){
  594. buffer[i]*=fc1;
  595. fc1*=fc2;
  596. }
  597. return;
  598. }
  599. }
  600. /**
  601. * Apply transform window, overlap buffers.
  602. *
  603. * @param q pointer to the COOKContext
  604. * @param inbuffer pointer to the mltcoefficients
  605. * @param gains_ptr current and previous gains
  606. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  607. */
  608. static void imlt_window_float (COOKContext *q, float *buffer1,
  609. cook_gains *gains_ptr, float *previous_buffer)
  610. {
  611. const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
  612. int i;
  613. /* The weird thing here, is that the two halves of the time domain
  614. * buffer are swapped. Also, the newest data, that we save away for
  615. * next frame, has the wrong sign. Hence the subtraction below.
  616. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  617. */
  618. /* Apply window and overlap */
  619. for(i = 0; i < q->samples_per_channel; i++){
  620. buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
  621. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  622. }
  623. }
  624. /**
  625. * The modulated lapped transform, this takes transform coefficients
  626. * and transforms them into timedomain samples.
  627. * Apply transform window, overlap buffers, apply gain profile
  628. * and buffer management.
  629. *
  630. * @param q pointer to the COOKContext
  631. * @param inbuffer pointer to the mltcoefficients
  632. * @param gains_ptr current and previous gains
  633. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  634. */
  635. static void imlt_gain(COOKContext *q, float *inbuffer,
  636. cook_gains *gains_ptr, float* previous_buffer)
  637. {
  638. float *buffer0 = q->mono_mdct_output;
  639. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  640. int i;
  641. /* Inverse modified discrete cosine transform */
  642. q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
  643. inbuffer, q->mdct_tmp);
  644. q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
  645. /* Apply gain profile */
  646. for (i = 0; i < 8; i++) {
  647. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  648. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  649. gains_ptr->now[i], gains_ptr->now[i + 1]);
  650. }
  651. /* Save away the current to be previous block. */
  652. memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
  653. }
  654. /**
  655. * function for getting the jointstereo coupling information
  656. *
  657. * @param q pointer to the COOKContext
  658. * @param decouple_tab decoupling array
  659. *
  660. */
  661. static void decouple_info(COOKContext *q, int* decouple_tab){
  662. int length, i;
  663. if(get_bits1(&q->gb)) {
  664. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  665. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  666. for (i=0 ; i<length ; i++) {
  667. decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
  668. }
  669. return;
  670. }
  671. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  672. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  673. for (i=0 ; i<length ; i++) {
  674. decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
  675. }
  676. return;
  677. }
  678. /*
  679. * function decouples a pair of signals from a single signal via multiplication.
  680. *
  681. * @param q pointer to the COOKContext
  682. * @param subband index of the current subband
  683. * @param f1 multiplier for channel 1 extraction
  684. * @param f2 multiplier for channel 2 extraction
  685. * @param decode_buffer input buffer
  686. * @param mlt_buffer1 pointer to left channel mlt coefficients
  687. * @param mlt_buffer2 pointer to right channel mlt coefficients
  688. */
  689. static void decouple_float (COOKContext *q,
  690. int subband,
  691. float f1, float f2,
  692. float *decode_buffer,
  693. float *mlt_buffer1, float *mlt_buffer2)
  694. {
  695. int j, tmp_idx;
  696. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  697. tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
  698. mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
  699. mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
  700. }
  701. }
  702. /**
  703. * function for decoding joint stereo data
  704. *
  705. * @param q pointer to the COOKContext
  706. * @param mlt_buffer1 pointer to left channel mlt coefficients
  707. * @param mlt_buffer2 pointer to right channel mlt coefficients
  708. */
  709. static void joint_decode(COOKContext *q, float* mlt_buffer1,
  710. float* mlt_buffer2) {
  711. int i,j;
  712. int decouple_tab[SUBBAND_SIZE];
  713. float *decode_buffer = q->decode_buffer_0;
  714. int idx, cpl_tmp;
  715. float f1,f2;
  716. float* cplscale;
  717. memset(decouple_tab, 0, sizeof(decouple_tab));
  718. memset(decode_buffer, 0, sizeof(decode_buffer));
  719. /* Make sure the buffers are zeroed out. */
  720. memset(mlt_buffer1,0, 1024*sizeof(float));
  721. memset(mlt_buffer2,0, 1024*sizeof(float));
  722. decouple_info(q, decouple_tab);
  723. mono_decode(q, decode_buffer);
  724. /* The two channels are stored interleaved in decode_buffer. */
  725. for (i=0 ; i<q->js_subband_start ; i++) {
  726. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  727. mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
  728. mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
  729. }
  730. }
  731. /* When we reach js_subband_start (the higher frequencies)
  732. the coefficients are stored in a coupling scheme. */
  733. idx = (1 << q->js_vlc_bits) - 1;
  734. for (i=q->js_subband_start ; i<q->subbands ; i++) {
  735. cpl_tmp = cplband[i];
  736. idx -=decouple_tab[cpl_tmp];
  737. cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
  738. f1 = cplscale[decouple_tab[cpl_tmp]];
  739. f2 = cplscale[idx-1];
  740. q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  741. idx = (1 << q->js_vlc_bits) - 1;
  742. }
  743. }
  744. /**
  745. * First part of subpacket decoding:
  746. * decode raw stream bytes and read gain info.
  747. *
  748. * @param q pointer to the COOKContext
  749. * @param inbuffer pointer to raw stream data
  750. * @param gain_ptr array of current/prev gain pointers
  751. */
  752. static inline void
  753. decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
  754. cook_gains *gains_ptr)
  755. {
  756. int offset;
  757. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  758. q->bits_per_subpacket/8);
  759. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  760. q->bits_per_subpacket);
  761. decode_gain_info(&q->gb, gains_ptr->now);
  762. /* Swap current and previous gains */
  763. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  764. }
  765. /**
  766. * Saturate the output signal to signed 16bit integers.
  767. *
  768. * @param q pointer to the COOKContext
  769. * @param chan channel to saturate
  770. * @param out pointer to the output vector
  771. */
  772. static void
  773. saturate_output_float (COOKContext *q, int chan, int16_t *out)
  774. {
  775. int j;
  776. float *output = q->mono_mdct_output + q->samples_per_channel;
  777. /* Clip and convert floats to 16 bits.
  778. */
  779. for (j = 0; j < q->samples_per_channel; j++) {
  780. out[chan + q->nb_channels * j] =
  781. av_clip_int16(lrintf(output[j]));
  782. }
  783. }
  784. /**
  785. * Final part of subpacket decoding:
  786. * Apply modulated lapped transform, gain compensation,
  787. * clip and convert to integer.
  788. *
  789. * @param q pointer to the COOKContext
  790. * @param decode_buffer pointer to the mlt coefficients
  791. * @param gain_ptr array of current/prev gain pointers
  792. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  793. * @param out pointer to the output buffer
  794. * @param chan 0: left or single channel, 1: right channel
  795. */
  796. static inline void
  797. mlt_compensate_output(COOKContext *q, float *decode_buffer,
  798. cook_gains *gains, float *previous_buffer,
  799. int16_t *out, int chan)
  800. {
  801. imlt_gain(q, decode_buffer, gains, previous_buffer);
  802. q->saturate_output (q, chan, out);
  803. }
  804. /**
  805. * Cook subpacket decoding. This function returns one decoded subpacket,
  806. * usually 1024 samples per channel.
  807. *
  808. * @param q pointer to the COOKContext
  809. * @param inbuffer pointer to the inbuffer
  810. * @param sub_packet_size subpacket size
  811. * @param outbuffer pointer to the outbuffer
  812. */
  813. static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
  814. int sub_packet_size, int16_t *outbuffer) {
  815. /* packet dump */
  816. // for (i=0 ; i<sub_packet_size ; i++) {
  817. // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
  818. // }
  819. // av_log(NULL, AV_LOG_ERROR, "\n");
  820. decode_bytes_and_gain(q, inbuffer, &q->gains1);
  821. if (q->joint_stereo) {
  822. joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
  823. } else {
  824. mono_decode(q, q->decode_buffer_1);
  825. if (q->nb_channels == 2) {
  826. decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
  827. mono_decode(q, q->decode_buffer_2);
  828. }
  829. }
  830. mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
  831. q->mono_previous_buffer1, outbuffer, 0);
  832. if (q->nb_channels == 2) {
  833. if (q->joint_stereo) {
  834. mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
  835. q->mono_previous_buffer2, outbuffer, 1);
  836. } else {
  837. mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
  838. q->mono_previous_buffer2, outbuffer, 1);
  839. }
  840. }
  841. return q->samples_per_frame * sizeof(int16_t);
  842. }
  843. /**
  844. * Cook frame decoding
  845. *
  846. * @param avctx pointer to the AVCodecContext
  847. */
  848. static int cook_decode_frame(AVCodecContext *avctx,
  849. void *data, int *data_size,
  850. uint8_t *buf, int buf_size) {
  851. COOKContext *q = avctx->priv_data;
  852. if (buf_size < avctx->block_align)
  853. return buf_size;
  854. *data_size = decode_subpacket(q, buf, avctx->block_align, data);
  855. /* Discard the first two frames: no valid audio. */
  856. if (avctx->frame_number < 2) *data_size = 0;
  857. return avctx->block_align;
  858. }
  859. #ifdef COOKDEBUG
  860. static void dump_cook_context(COOKContext *q)
  861. {
  862. //int i=0;
  863. #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
  864. av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
  865. av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
  866. if (q->cookversion > STEREO) {
  867. PRINT("js_subband_start",q->js_subband_start);
  868. PRINT("js_vlc_bits",q->js_vlc_bits);
  869. }
  870. av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
  871. PRINT("nb_channels",q->nb_channels);
  872. PRINT("bit_rate",q->bit_rate);
  873. PRINT("sample_rate",q->sample_rate);
  874. PRINT("samples_per_channel",q->samples_per_channel);
  875. PRINT("samples_per_frame",q->samples_per_frame);
  876. PRINT("subbands",q->subbands);
  877. PRINT("random_state",q->random_state);
  878. PRINT("js_subband_start",q->js_subband_start);
  879. PRINT("log2_numvector_size",q->log2_numvector_size);
  880. PRINT("numvector_size",q->numvector_size);
  881. PRINT("total_subbands",q->total_subbands);
  882. }
  883. #endif
  884. /**
  885. * Cook initialization
  886. *
  887. * @param avctx pointer to the AVCodecContext
  888. */
  889. static int cook_decode_init(AVCodecContext *avctx)
  890. {
  891. COOKContext *q = avctx->priv_data;
  892. uint8_t *edata_ptr = avctx->extradata;
  893. /* Take care of the codec specific extradata. */
  894. if (avctx->extradata_size <= 0) {
  895. av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
  896. return -1;
  897. } else {
  898. /* 8 for mono, 16 for stereo, ? for multichannel
  899. Swap to right endianness so we don't need to care later on. */
  900. av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
  901. if (avctx->extradata_size >= 8){
  902. q->cookversion = bytestream_get_be32(&edata_ptr);
  903. q->samples_per_frame = bytestream_get_be16(&edata_ptr);
  904. q->subbands = bytestream_get_be16(&edata_ptr);
  905. }
  906. if (avctx->extradata_size >= 16){
  907. bytestream_get_be32(&edata_ptr); //Unknown unused
  908. q->js_subband_start = bytestream_get_be16(&edata_ptr);
  909. q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
  910. }
  911. }
  912. /* Take data from the AVCodecContext (RM container). */
  913. q->sample_rate = avctx->sample_rate;
  914. q->nb_channels = avctx->channels;
  915. q->bit_rate = avctx->bit_rate;
  916. /* Initialize RNG. */
  917. av_init_random(1, &q->random_state);
  918. /* Initialize extradata related variables. */
  919. q->samples_per_channel = q->samples_per_frame / q->nb_channels;
  920. q->bits_per_subpacket = avctx->block_align * 8;
  921. /* Initialize default data states. */
  922. q->log2_numvector_size = 5;
  923. q->total_subbands = q->subbands;
  924. /* Initialize version-dependent variables */
  925. av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
  926. q->joint_stereo = 0;
  927. switch (q->cookversion) {
  928. case MONO:
  929. if (q->nb_channels != 1) {
  930. av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
  931. return -1;
  932. }
  933. av_log(avctx,AV_LOG_DEBUG,"MONO\n");
  934. break;
  935. case STEREO:
  936. if (q->nb_channels != 1) {
  937. q->bits_per_subpacket = q->bits_per_subpacket/2;
  938. }
  939. av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
  940. break;
  941. case JOINT_STEREO:
  942. if (q->nb_channels != 2) {
  943. av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
  944. return -1;
  945. }
  946. av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
  947. if (avctx->extradata_size >= 16){
  948. q->total_subbands = q->subbands + q->js_subband_start;
  949. q->joint_stereo = 1;
  950. }
  951. if (q->samples_per_channel > 256) {
  952. q->log2_numvector_size = 6;
  953. }
  954. if (q->samples_per_channel > 512) {
  955. q->log2_numvector_size = 7;
  956. }
  957. break;
  958. case MC_COOK:
  959. av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
  960. return -1;
  961. break;
  962. default:
  963. av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
  964. return -1;
  965. break;
  966. }
  967. /* Initialize variable relations */
  968. q->numvector_size = (1 << q->log2_numvector_size);
  969. /* Generate tables */
  970. init_rootpow2table(q);
  971. init_pow2table(q);
  972. init_gain_table(q);
  973. init_cplscales_table(q);
  974. if (init_cook_vlc_tables(q) != 0)
  975. return -1;
  976. if(avctx->block_align >= UINT_MAX/2)
  977. return -1;
  978. /* Pad the databuffer with:
  979. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  980. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  981. if (q->nb_channels==2 && q->joint_stereo==0) {
  982. q->decoded_bytes_buffer =
  983. av_mallocz(avctx->block_align/2
  984. + DECODE_BYTES_PAD2(avctx->block_align/2)
  985. + FF_INPUT_BUFFER_PADDING_SIZE);
  986. } else {
  987. q->decoded_bytes_buffer =
  988. av_mallocz(avctx->block_align
  989. + DECODE_BYTES_PAD1(avctx->block_align)
  990. + FF_INPUT_BUFFER_PADDING_SIZE);
  991. }
  992. if (q->decoded_bytes_buffer == NULL)
  993. return -1;
  994. q->gains1.now = q->gain_1;
  995. q->gains1.previous = q->gain_2;
  996. q->gains2.now = q->gain_3;
  997. q->gains2.previous = q->gain_4;
  998. /* Initialize transform. */
  999. if ( init_cook_mlt(q) != 0 )
  1000. return -1;
  1001. /* Initialize COOK signal arithmetic handling */
  1002. if (1) {
  1003. q->scalar_dequant = scalar_dequant_float;
  1004. q->decouple = decouple_float;
  1005. q->imlt_window = imlt_window_float;
  1006. q->interpolate = interpolate_float;
  1007. q->saturate_output = saturate_output_float;
  1008. }
  1009. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1010. if (q->total_subbands > 53) {
  1011. av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
  1012. return -1;
  1013. }
  1014. if (q->subbands > 50) {
  1015. av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
  1016. return -1;
  1017. }
  1018. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
  1019. } else {
  1020. av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
  1021. return -1;
  1022. }
  1023. if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
  1024. av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
  1025. return -1;
  1026. }
  1027. #ifdef COOKDEBUG
  1028. dump_cook_context(q);
  1029. #endif
  1030. return 0;
  1031. }
  1032. AVCodec cook_decoder =
  1033. {
  1034. .name = "cook",
  1035. .type = CODEC_TYPE_AUDIO,
  1036. .id = CODEC_ID_COOK,
  1037. .priv_data_size = sizeof(COOKContext),
  1038. .init = cook_decode_init,
  1039. .close = cook_decode_close,
  1040. .decode = cook_decode_frame,
  1041. };