You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8016 lines
310KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. #ifdef ARCH_X86
  36. #include "i386/h264_i386.h"
  37. #endif
  38. //#undef NDEBUG
  39. #include <assert.h>
  40. /**
  41. * Value of Picture.reference when Picture is not a reference picture, but
  42. * is held for delayed output.
  43. */
  44. #define DELAYED_PIC_REF 4
  45. static VLC coeff_token_vlc[4];
  46. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  47. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  48. static VLC chroma_dc_coeff_token_vlc;
  49. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  50. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  51. static VLC total_zeros_vlc[15];
  52. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  53. static const int total_zeros_vlc_tables_size = 512;
  54. static VLC chroma_dc_total_zeros_vlc[3];
  55. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  56. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  57. static VLC run_vlc[6];
  58. static VLC_TYPE run_vlc_tables[6][8][2];
  59. static const int run_vlc_tables_size = 8;
  60. static VLC run7_vlc;
  61. static VLC_TYPE run7_vlc_table[96][2];
  62. static const int run7_vlc_table_size = 96;
  63. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  64. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  65. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  66. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  67. static Picture * remove_long(H264Context *h, int i, int ref_mask);
  68. static av_always_inline uint32_t pack16to32(int a, int b){
  69. #ifdef WORDS_BIGENDIAN
  70. return (b&0xFFFF) + (a<<16);
  71. #else
  72. return (a&0xFFFF) + (b<<16);
  73. #endif
  74. }
  75. static const uint8_t rem6[52]={
  76. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  77. };
  78. static const uint8_t div6[52]={
  79. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  80. };
  81. static const int left_block_options[4][8]={
  82. {0,1,2,3,7,10,8,11},
  83. {2,2,3,3,8,11,8,11},
  84. {0,0,1,1,7,10,7,10},
  85. {0,2,0,2,7,10,7,10}
  86. };
  87. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  88. MpegEncContext * const s = &h->s;
  89. const int mb_xy= h->mb_xy;
  90. int topleft_xy, top_xy, topright_xy, left_xy[2];
  91. int topleft_type, top_type, topright_type, left_type[2];
  92. const int * left_block;
  93. int topleft_partition= -1;
  94. int i;
  95. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  96. //FIXME deblocking could skip the intra and nnz parts.
  97. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  98. return;
  99. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  100. * stuff, I can't imagine that these complex rules are worth it. */
  101. topleft_xy = top_xy - 1;
  102. topright_xy= top_xy + 1;
  103. left_xy[1] = left_xy[0] = mb_xy-1;
  104. left_block = left_block_options[0];
  105. if(FRAME_MBAFF){
  106. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  107. const int top_pair_xy = pair_xy - s->mb_stride;
  108. const int topleft_pair_xy = top_pair_xy - 1;
  109. const int topright_pair_xy = top_pair_xy + 1;
  110. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  111. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  112. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  113. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  114. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  115. const int bottom = (s->mb_y & 1);
  116. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  117. if (bottom
  118. ? !curr_mb_frame_flag // bottom macroblock
  119. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  120. ) {
  121. top_xy -= s->mb_stride;
  122. }
  123. if (bottom
  124. ? !curr_mb_frame_flag // bottom macroblock
  125. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  126. ) {
  127. topleft_xy -= s->mb_stride;
  128. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  129. topleft_xy += s->mb_stride;
  130. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  131. topleft_partition = 0;
  132. }
  133. if (bottom
  134. ? !curr_mb_frame_flag // bottom macroblock
  135. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  136. ) {
  137. topright_xy -= s->mb_stride;
  138. }
  139. if (left_mb_frame_flag != curr_mb_frame_flag) {
  140. left_xy[1] = left_xy[0] = pair_xy - 1;
  141. if (curr_mb_frame_flag) {
  142. if (bottom) {
  143. left_block = left_block_options[1];
  144. } else {
  145. left_block= left_block_options[2];
  146. }
  147. } else {
  148. left_xy[1] += s->mb_stride;
  149. left_block = left_block_options[3];
  150. }
  151. }
  152. }
  153. h->top_mb_xy = top_xy;
  154. h->left_mb_xy[0] = left_xy[0];
  155. h->left_mb_xy[1] = left_xy[1];
  156. if(for_deblock){
  157. topleft_type = 0;
  158. topright_type = 0;
  159. top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  160. left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  161. left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  162. if(MB_MBAFF && !IS_INTRA(mb_type)){
  163. int list;
  164. for(list=0; list<h->list_count; list++){
  165. //These values where changed for ease of performing MC, we need to change them back
  166. //FIXME maybe we can make MC and loop filter use the same values or prevent
  167. //the MC code from changing ref_cache and rather use a temporary array.
  168. if(USES_LIST(mb_type,list)){
  169. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  170. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  171. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  172. ref += h->b8_stride;
  173. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  174. *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  175. }
  176. }
  177. }
  178. }else{
  179. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  180. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  181. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  182. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  183. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  184. if(IS_INTRA(mb_type)){
  185. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  186. h->topleft_samples_available=
  187. h->top_samples_available=
  188. h->left_samples_available= 0xFFFF;
  189. h->topright_samples_available= 0xEEEA;
  190. if(!(top_type & type_mask)){
  191. h->topleft_samples_available= 0xB3FF;
  192. h->top_samples_available= 0x33FF;
  193. h->topright_samples_available= 0x26EA;
  194. }
  195. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  196. if(IS_INTERLACED(mb_type)){
  197. if(!(left_type[0] & type_mask)){
  198. h->topleft_samples_available&= 0xDFFF;
  199. h->left_samples_available&= 0x5FFF;
  200. }
  201. if(!(left_type[1] & type_mask)){
  202. h->topleft_samples_available&= 0xFF5F;
  203. h->left_samples_available&= 0xFF5F;
  204. }
  205. }else{
  206. int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
  207. ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
  208. assert(left_xy[0] == left_xy[1]);
  209. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  210. h->topleft_samples_available&= 0xDF5F;
  211. h->left_samples_available&= 0x5F5F;
  212. }
  213. }
  214. }else{
  215. if(!(left_type[0] & type_mask)){
  216. h->topleft_samples_available&= 0xDF5F;
  217. h->left_samples_available&= 0x5F5F;
  218. }
  219. }
  220. if(!(topleft_type & type_mask))
  221. h->topleft_samples_available&= 0x7FFF;
  222. if(!(topright_type & type_mask))
  223. h->topright_samples_available&= 0xFBFF;
  224. if(IS_INTRA4x4(mb_type)){
  225. if(IS_INTRA4x4(top_type)){
  226. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  227. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  228. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  229. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  230. }else{
  231. int pred;
  232. if(!(top_type & type_mask))
  233. pred= -1;
  234. else{
  235. pred= 2;
  236. }
  237. h->intra4x4_pred_mode_cache[4+8*0]=
  238. h->intra4x4_pred_mode_cache[5+8*0]=
  239. h->intra4x4_pred_mode_cache[6+8*0]=
  240. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  241. }
  242. for(i=0; i<2; i++){
  243. if(IS_INTRA4x4(left_type[i])){
  244. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  245. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  246. }else{
  247. int pred;
  248. if(!(left_type[i] & type_mask))
  249. pred= -1;
  250. else{
  251. pred= 2;
  252. }
  253. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  254. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  255. }
  256. }
  257. }
  258. }
  259. }
  260. /*
  261. 0 . T T. T T T T
  262. 1 L . .L . . . .
  263. 2 L . .L . . . .
  264. 3 . T TL . . . .
  265. 4 L . .L . . . .
  266. 5 L . .. . . . .
  267. */
  268. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  269. if(top_type){
  270. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  271. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  272. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  273. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  274. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  275. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  276. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  277. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  278. }else{
  279. h->non_zero_count_cache[4+8*0]=
  280. h->non_zero_count_cache[5+8*0]=
  281. h->non_zero_count_cache[6+8*0]=
  282. h->non_zero_count_cache[7+8*0]=
  283. h->non_zero_count_cache[1+8*0]=
  284. h->non_zero_count_cache[2+8*0]=
  285. h->non_zero_count_cache[1+8*3]=
  286. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  287. }
  288. for (i=0; i<2; i++) {
  289. if(left_type[i]){
  290. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  291. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  292. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  293. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  294. }else{
  295. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  296. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  297. h->non_zero_count_cache[0+8*1 + 8*i]=
  298. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  299. }
  300. }
  301. if( h->pps.cabac ) {
  302. // top_cbp
  303. if(top_type) {
  304. h->top_cbp = h->cbp_table[top_xy];
  305. } else if(IS_INTRA(mb_type)) {
  306. h->top_cbp = 0x1C0;
  307. } else {
  308. h->top_cbp = 0;
  309. }
  310. // left_cbp
  311. if (left_type[0]) {
  312. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  313. } else if(IS_INTRA(mb_type)) {
  314. h->left_cbp = 0x1C0;
  315. } else {
  316. h->left_cbp = 0;
  317. }
  318. if (left_type[0]) {
  319. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  320. }
  321. if (left_type[1]) {
  322. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  323. }
  324. }
  325. #if 1
  326. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  327. int list;
  328. for(list=0; list<h->list_count; list++){
  329. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  330. /*if(!h->mv_cache_clean[list]){
  331. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  332. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  333. h->mv_cache_clean[list]= 1;
  334. }*/
  335. continue;
  336. }
  337. h->mv_cache_clean[list]= 0;
  338. if(USES_LIST(top_type, list)){
  339. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  340. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  341. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  342. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  343. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  344. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  345. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  346. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  347. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  348. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  349. }else{
  350. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  351. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  352. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  353. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  354. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  355. }
  356. for(i=0; i<2; i++){
  357. int cache_idx = scan8[0] - 1 + i*2*8;
  358. if(USES_LIST(left_type[i], list)){
  359. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  360. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  361. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  362. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  363. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  364. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  365. }else{
  366. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  367. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  368. h->ref_cache[list][cache_idx ]=
  369. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  370. }
  371. }
  372. if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
  373. continue;
  374. if(USES_LIST(topleft_type, list)){
  375. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  376. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  377. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  378. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  379. }else{
  380. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  381. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  382. }
  383. if(USES_LIST(topright_type, list)){
  384. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  385. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  386. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  387. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  388. }else{
  389. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  390. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  391. }
  392. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  393. continue;
  394. h->ref_cache[list][scan8[5 ]+1] =
  395. h->ref_cache[list][scan8[7 ]+1] =
  396. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  397. h->ref_cache[list][scan8[4 ]] =
  398. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  399. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  400. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  401. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  402. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  403. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  404. if( h->pps.cabac ) {
  405. /* XXX beurk, Load mvd */
  406. if(USES_LIST(top_type, list)){
  407. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  408. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  409. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  410. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  411. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  412. }else{
  413. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  414. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  415. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  416. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  417. }
  418. if(USES_LIST(left_type[0], list)){
  419. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  420. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  421. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  422. }else{
  423. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  424. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  425. }
  426. if(USES_LIST(left_type[1], list)){
  427. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  428. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  429. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  430. }else{
  431. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  432. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  433. }
  434. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  435. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  436. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  437. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  438. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  439. if(h->slice_type_nos == FF_B_TYPE){
  440. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  441. if(IS_DIRECT(top_type)){
  442. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  443. }else if(IS_8X8(top_type)){
  444. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  445. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  446. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  447. }else{
  448. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  449. }
  450. if(IS_DIRECT(left_type[0]))
  451. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  452. else if(IS_8X8(left_type[0]))
  453. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  454. else
  455. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  456. if(IS_DIRECT(left_type[1]))
  457. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  458. else if(IS_8X8(left_type[1]))
  459. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  460. else
  461. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  462. }
  463. }
  464. if(FRAME_MBAFF){
  465. #define MAP_MVS\
  466. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  467. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  468. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  469. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  470. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  471. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  472. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  473. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  474. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  475. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  476. if(MB_FIELD){
  477. #define MAP_F2F(idx, mb_type)\
  478. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  479. h->ref_cache[list][idx] <<= 1;\
  480. h->mv_cache[list][idx][1] /= 2;\
  481. h->mvd_cache[list][idx][1] /= 2;\
  482. }
  483. MAP_MVS
  484. #undef MAP_F2F
  485. }else{
  486. #define MAP_F2F(idx, mb_type)\
  487. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  488. h->ref_cache[list][idx] >>= 1;\
  489. h->mv_cache[list][idx][1] <<= 1;\
  490. h->mvd_cache[list][idx][1] <<= 1;\
  491. }
  492. MAP_MVS
  493. #undef MAP_F2F
  494. }
  495. }
  496. }
  497. }
  498. #endif
  499. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  500. }
  501. static inline void write_back_intra_pred_mode(H264Context *h){
  502. const int mb_xy= h->mb_xy;
  503. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  504. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  505. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  506. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  507. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  508. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  509. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  510. }
  511. /**
  512. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  513. */
  514. static inline int check_intra4x4_pred_mode(H264Context *h){
  515. MpegEncContext * const s = &h->s;
  516. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  517. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  518. int i;
  519. if(!(h->top_samples_available&0x8000)){
  520. for(i=0; i<4; i++){
  521. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  522. if(status<0){
  523. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  524. return -1;
  525. } else if(status){
  526. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  527. }
  528. }
  529. }
  530. if((h->left_samples_available&0x8888)!=0x8888){
  531. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  532. for(i=0; i<4; i++){
  533. if(!(h->left_samples_available&mask[i])){
  534. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  535. if(status<0){
  536. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  537. return -1;
  538. } else if(status){
  539. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  540. }
  541. }
  542. }
  543. }
  544. return 0;
  545. } //FIXME cleanup like next
  546. /**
  547. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  548. */
  549. static inline int check_intra_pred_mode(H264Context *h, int mode){
  550. MpegEncContext * const s = &h->s;
  551. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  552. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  553. if(mode > 6U) {
  554. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  555. return -1;
  556. }
  557. if(!(h->top_samples_available&0x8000)){
  558. mode= top[ mode ];
  559. if(mode<0){
  560. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  561. return -1;
  562. }
  563. }
  564. if((h->left_samples_available&0x8080) != 0x8080){
  565. mode= left[ mode ];
  566. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  567. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  568. }
  569. if(mode<0){
  570. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  571. return -1;
  572. }
  573. }
  574. return mode;
  575. }
  576. /**
  577. * gets the predicted intra4x4 prediction mode.
  578. */
  579. static inline int pred_intra_mode(H264Context *h, int n){
  580. const int index8= scan8[n];
  581. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  582. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  583. const int min= FFMIN(left, top);
  584. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  585. if(min<0) return DC_PRED;
  586. else return min;
  587. }
  588. static inline void write_back_non_zero_count(H264Context *h){
  589. const int mb_xy= h->mb_xy;
  590. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  591. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  592. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  593. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  594. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  595. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  596. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  597. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  598. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  599. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  600. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  601. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  602. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  603. }
  604. /**
  605. * gets the predicted number of non-zero coefficients.
  606. * @param n block index
  607. */
  608. static inline int pred_non_zero_count(H264Context *h, int n){
  609. const int index8= scan8[n];
  610. const int left= h->non_zero_count_cache[index8 - 1];
  611. const int top = h->non_zero_count_cache[index8 - 8];
  612. int i= left + top;
  613. if(i<64) i= (i+1)>>1;
  614. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  615. return i&31;
  616. }
  617. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  618. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  619. MpegEncContext *s = &h->s;
  620. /* there is no consistent mapping of mvs to neighboring locations that will
  621. * make mbaff happy, so we can't move all this logic to fill_caches */
  622. if(FRAME_MBAFF){
  623. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  624. const int16_t *mv;
  625. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  626. *C = h->mv_cache[list][scan8[0]-2];
  627. if(!MB_FIELD
  628. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  629. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  630. if(IS_INTERLACED(mb_types[topright_xy])){
  631. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  632. const int x4 = X4, y4 = Y4;\
  633. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  634. if(!USES_LIST(mb_type,list))\
  635. return LIST_NOT_USED;\
  636. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  637. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  638. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  639. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  640. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  641. }
  642. }
  643. if(topright_ref == PART_NOT_AVAILABLE
  644. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  645. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  646. if(!MB_FIELD
  647. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  648. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  649. }
  650. if(MB_FIELD
  651. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  652. && i >= scan8[0]+8){
  653. // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
  654. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  655. }
  656. }
  657. #undef SET_DIAG_MV
  658. }
  659. if(topright_ref != PART_NOT_AVAILABLE){
  660. *C= h->mv_cache[list][ i - 8 + part_width ];
  661. return topright_ref;
  662. }else{
  663. tprintf(s->avctx, "topright MV not available\n");
  664. *C= h->mv_cache[list][ i - 8 - 1 ];
  665. return h->ref_cache[list][ i - 8 - 1 ];
  666. }
  667. }
  668. /**
  669. * gets the predicted MV.
  670. * @param n the block index
  671. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  672. * @param mx the x component of the predicted motion vector
  673. * @param my the y component of the predicted motion vector
  674. */
  675. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  676. const int index8= scan8[n];
  677. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  678. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  679. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  680. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  681. const int16_t * C;
  682. int diagonal_ref, match_count;
  683. assert(part_width==1 || part_width==2 || part_width==4);
  684. /* mv_cache
  685. B . . A T T T T
  686. U . . L . . , .
  687. U . . L . . . .
  688. U . . L . . , .
  689. . . . L . . . .
  690. */
  691. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  692. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  693. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  694. if(match_count > 1){ //most common
  695. *mx= mid_pred(A[0], B[0], C[0]);
  696. *my= mid_pred(A[1], B[1], C[1]);
  697. }else if(match_count==1){
  698. if(left_ref==ref){
  699. *mx= A[0];
  700. *my= A[1];
  701. }else if(top_ref==ref){
  702. *mx= B[0];
  703. *my= B[1];
  704. }else{
  705. *mx= C[0];
  706. *my= C[1];
  707. }
  708. }else{
  709. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  710. *mx= A[0];
  711. *my= A[1];
  712. }else{
  713. *mx= mid_pred(A[0], B[0], C[0]);
  714. *my= mid_pred(A[1], B[1], C[1]);
  715. }
  716. }
  717. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  718. }
  719. /**
  720. * gets the directionally predicted 16x8 MV.
  721. * @param n the block index
  722. * @param mx the x component of the predicted motion vector
  723. * @param my the y component of the predicted motion vector
  724. */
  725. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  726. if(n==0){
  727. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  728. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  729. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  730. if(top_ref == ref){
  731. *mx= B[0];
  732. *my= B[1];
  733. return;
  734. }
  735. }else{
  736. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  737. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  738. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  739. if(left_ref == ref){
  740. *mx= A[0];
  741. *my= A[1];
  742. return;
  743. }
  744. }
  745. //RARE
  746. pred_motion(h, n, 4, list, ref, mx, my);
  747. }
  748. /**
  749. * gets the directionally predicted 8x16 MV.
  750. * @param n the block index
  751. * @param mx the x component of the predicted motion vector
  752. * @param my the y component of the predicted motion vector
  753. */
  754. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  755. if(n==0){
  756. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  757. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  758. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  759. if(left_ref == ref){
  760. *mx= A[0];
  761. *my= A[1];
  762. return;
  763. }
  764. }else{
  765. const int16_t * C;
  766. int diagonal_ref;
  767. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  768. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  769. if(diagonal_ref == ref){
  770. *mx= C[0];
  771. *my= C[1];
  772. return;
  773. }
  774. }
  775. //RARE
  776. pred_motion(h, n, 2, list, ref, mx, my);
  777. }
  778. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  779. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  780. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  781. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  782. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  783. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  784. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  785. *mx = *my = 0;
  786. return;
  787. }
  788. pred_motion(h, 0, 4, 0, 0, mx, my);
  789. return;
  790. }
  791. static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
  792. int poc0 = h->ref_list[0][i].poc;
  793. int td = av_clip(poc1 - poc0, -128, 127);
  794. if(td == 0 || h->ref_list[0][i].long_ref){
  795. return 256;
  796. }else{
  797. int tb = av_clip(poc - poc0, -128, 127);
  798. int tx = (16384 + (FFABS(td) >> 1)) / td;
  799. return av_clip((tb*tx + 32) >> 6, -1024, 1023);
  800. }
  801. }
  802. static inline void direct_dist_scale_factor(H264Context * const h){
  803. MpegEncContext * const s = &h->s;
  804. const int poc = h->s.current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
  805. const int poc1 = h->ref_list[1][0].poc;
  806. int i, field;
  807. for(field=0; field<2; field++){
  808. const int poc = h->s.current_picture_ptr->field_poc[field];
  809. const int poc1 = h->ref_list[1][0].field_poc[field];
  810. for(i=0; i < 2*h->ref_count[0]; i++)
  811. h->dist_scale_factor_field[field][i^field] = get_scale_factor(h, poc, poc1, i+16);
  812. }
  813. for(i=0; i<h->ref_count[0]; i++){
  814. h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
  815. }
  816. }
  817. static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
  818. MpegEncContext * const s = &h->s;
  819. Picture * const ref1 = &h->ref_list[1][0];
  820. int j, old_ref, rfield;
  821. int start= mbafi ? 16 : 0;
  822. int end = mbafi ? 16+2*h->ref_count[list] : h->ref_count[list];
  823. int interl= mbafi || s->picture_structure != PICT_FRAME;
  824. /* bogus; fills in for missing frames */
  825. memset(map[list], 0, sizeof(map[list]));
  826. for(rfield=0; rfield<2; rfield++){
  827. for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
  828. int poc = ref1->ref_poc[colfield][list][old_ref];
  829. if (!interl)
  830. poc |= 3;
  831. else if( interl && (poc&3) == 3) //FIXME store all MBAFF references so this isnt needed
  832. poc= (poc&~3) + rfield + 1;
  833. for(j=start; j<end; j++){
  834. if(4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3) == poc){
  835. int cur_ref= mbafi ? (j-16)^field : j;
  836. map[list][2*old_ref + (rfield^field) + 16] = cur_ref;
  837. if(rfield == field)
  838. map[list][old_ref] = cur_ref;
  839. break;
  840. }
  841. }
  842. }
  843. }
  844. }
  845. static inline void direct_ref_list_init(H264Context * const h){
  846. MpegEncContext * const s = &h->s;
  847. Picture * const ref1 = &h->ref_list[1][0];
  848. Picture * const cur = s->current_picture_ptr;
  849. int list, j, field;
  850. int sidx= (s->picture_structure&1)^1;
  851. int ref1sidx= (ref1->reference&1)^1;
  852. for(list=0; list<2; list++){
  853. cur->ref_count[sidx][list] = h->ref_count[list];
  854. for(j=0; j<h->ref_count[list]; j++)
  855. cur->ref_poc[sidx][list][j] = 4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3);
  856. }
  857. if(s->picture_structure == PICT_FRAME){
  858. memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
  859. memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
  860. }
  861. cur->mbaff= FRAME_MBAFF;
  862. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  863. return;
  864. for(list=0; list<2; list++){
  865. fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
  866. for(field=0; field<2; field++)
  867. fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
  868. }
  869. }
  870. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  871. MpegEncContext * const s = &h->s;
  872. int b8_stride = h->b8_stride;
  873. int b4_stride = h->b_stride;
  874. int mb_xy = h->mb_xy;
  875. int mb_type_col[2];
  876. const int16_t (*l1mv0)[2], (*l1mv1)[2];
  877. const int8_t *l1ref0, *l1ref1;
  878. const int is_b8x8 = IS_8X8(*mb_type);
  879. unsigned int sub_mb_type;
  880. int i8, i4;
  881. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  882. if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
  883. if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL/FL
  884. int cur_poc = s->current_picture_ptr->poc;
  885. int *col_poc = h->ref_list[1]->field_poc;
  886. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  887. mb_xy= s->mb_x + ((s->mb_y&~1) + col_parity)*s->mb_stride;
  888. b8_stride = 0;
  889. }else if(!(s->picture_structure & h->ref_list[1][0].reference) && !h->ref_list[1][0].mbaff){// FL -> FL & differ parity
  890. int fieldoff= 2*(h->ref_list[1][0].reference)-3;
  891. mb_xy += s->mb_stride*fieldoff;
  892. }
  893. goto single_col;
  894. }else{ // AFL/AFR/FR/FL -> AFR/FR
  895. if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
  896. mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
  897. mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
  898. mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
  899. b8_stride *= 3;
  900. b4_stride *= 6;
  901. //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
  902. if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
  903. && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
  904. && !is_b8x8){
  905. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  906. *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
  907. }else{
  908. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  909. *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
  910. }
  911. }else{ // AFR/FR -> AFR/FR
  912. single_col:
  913. mb_type_col[0] =
  914. mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
  915. if(IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag){
  916. /* FIXME save sub mb types from previous frames (or derive from MVs)
  917. * so we know exactly what block size to use */
  918. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  919. *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
  920. }else if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
  921. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  922. *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  923. }else{
  924. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  925. *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
  926. }
  927. }
  928. }
  929. l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
  930. l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
  931. l1ref0 = &h->ref_list[1][0].ref_index [0][h->mb2b8_xy[mb_xy]];
  932. l1ref1 = &h->ref_list[1][0].ref_index [1][h->mb2b8_xy[mb_xy]];
  933. if(!b8_stride){
  934. if(s->mb_y&1){
  935. l1ref0 += h->b8_stride;
  936. l1ref1 += h->b8_stride;
  937. l1mv0 += 2*b4_stride;
  938. l1mv1 += 2*b4_stride;
  939. }
  940. }
  941. if(h->direct_spatial_mv_pred){
  942. int ref[2];
  943. int mv[2][2];
  944. int list;
  945. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  946. /* ref = min(neighbors) */
  947. for(list=0; list<2; list++){
  948. int refa = h->ref_cache[list][scan8[0] - 1];
  949. int refb = h->ref_cache[list][scan8[0] - 8];
  950. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  951. if(refc == PART_NOT_AVAILABLE)
  952. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  953. ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
  954. if(ref[list] < 0)
  955. ref[list] = -1;
  956. }
  957. if(ref[0] < 0 && ref[1] < 0){
  958. ref[0] = ref[1] = 0;
  959. mv[0][0] = mv[0][1] =
  960. mv[1][0] = mv[1][1] = 0;
  961. }else{
  962. for(list=0; list<2; list++){
  963. if(ref[list] >= 0)
  964. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  965. else
  966. mv[list][0] = mv[list][1] = 0;
  967. }
  968. }
  969. if(ref[1] < 0){
  970. if(!is_b8x8)
  971. *mb_type &= ~MB_TYPE_L1;
  972. sub_mb_type &= ~MB_TYPE_L1;
  973. }else if(ref[0] < 0){
  974. if(!is_b8x8)
  975. *mb_type &= ~MB_TYPE_L0;
  976. sub_mb_type &= ~MB_TYPE_L0;
  977. }
  978. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
  979. for(i8=0; i8<4; i8++){
  980. int x8 = i8&1;
  981. int y8 = i8>>1;
  982. int xy8 = x8+y8*b8_stride;
  983. int xy4 = 3*x8+y8*b4_stride;
  984. int a=0, b=0;
  985. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  986. continue;
  987. h->sub_mb_type[i8] = sub_mb_type;
  988. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  989. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  990. if(!IS_INTRA(mb_type_col[y8])
  991. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  992. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  993. if(ref[0] > 0)
  994. a= pack16to32(mv[0][0],mv[0][1]);
  995. if(ref[1] > 0)
  996. b= pack16to32(mv[1][0],mv[1][1]);
  997. }else{
  998. a= pack16to32(mv[0][0],mv[0][1]);
  999. b= pack16to32(mv[1][0],mv[1][1]);
  1000. }
  1001. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  1002. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  1003. }
  1004. }else if(IS_16X16(*mb_type)){
  1005. int a=0, b=0;
  1006. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  1007. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  1008. if(!IS_INTRA(mb_type_col[0])
  1009. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  1010. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  1011. && (h->x264_build>33 || !h->x264_build)))){
  1012. if(ref[0] > 0)
  1013. a= pack16to32(mv[0][0],mv[0][1]);
  1014. if(ref[1] > 0)
  1015. b= pack16to32(mv[1][0],mv[1][1]);
  1016. }else{
  1017. a= pack16to32(mv[0][0],mv[0][1]);
  1018. b= pack16to32(mv[1][0],mv[1][1]);
  1019. }
  1020. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  1021. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  1022. }else{
  1023. for(i8=0; i8<4; i8++){
  1024. const int x8 = i8&1;
  1025. const int y8 = i8>>1;
  1026. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1027. continue;
  1028. h->sub_mb_type[i8] = sub_mb_type;
  1029. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1030. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1031. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1032. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1033. /* col_zero_flag */
  1034. if(!IS_INTRA(mb_type_col[0]) && ( l1ref0[x8 + y8*b8_stride] == 0
  1035. || (l1ref0[x8 + y8*b8_stride] < 0 && l1ref1[x8 + y8*b8_stride] == 0
  1036. && (h->x264_build>33 || !h->x264_build)))){
  1037. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*b8_stride] == 0 ? l1mv0 : l1mv1;
  1038. if(IS_SUB_8X8(sub_mb_type)){
  1039. const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
  1040. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1041. if(ref[0] == 0)
  1042. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1043. if(ref[1] == 0)
  1044. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1045. }
  1046. }else
  1047. for(i4=0; i4<4; i4++){
  1048. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
  1049. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1050. if(ref[0] == 0)
  1051. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1052. if(ref[1] == 0)
  1053. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1054. }
  1055. }
  1056. }
  1057. }
  1058. }
  1059. }else{ /* direct temporal mv pred */
  1060. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1061. const int *dist_scale_factor = h->dist_scale_factor;
  1062. int ref_offset= 0;
  1063. if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
  1064. map_col_to_list0[0] = h->map_col_to_list0_field[s->mb_y&1][0];
  1065. map_col_to_list0[1] = h->map_col_to_list0_field[s->mb_y&1][1];
  1066. dist_scale_factor =h->dist_scale_factor_field[s->mb_y&1];
  1067. }
  1068. if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0]))
  1069. ref_offset += 16;
  1070. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
  1071. /* FIXME assumes direct_8x8_inference == 1 */
  1072. int y_shift = 2*!IS_INTERLACED(*mb_type);
  1073. for(i8=0; i8<4; i8++){
  1074. const int x8 = i8&1;
  1075. const int y8 = i8>>1;
  1076. int ref0, scale;
  1077. const int16_t (*l1mv)[2]= l1mv0;
  1078. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1079. continue;
  1080. h->sub_mb_type[i8] = sub_mb_type;
  1081. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1082. if(IS_INTRA(mb_type_col[y8])){
  1083. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1084. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1085. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1086. continue;
  1087. }
  1088. ref0 = l1ref0[x8 + y8*b8_stride];
  1089. if(ref0 >= 0)
  1090. ref0 = map_col_to_list0[0][ref0 + ref_offset];
  1091. else{
  1092. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
  1093. l1mv= l1mv1;
  1094. }
  1095. scale = dist_scale_factor[ref0];
  1096. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1097. {
  1098. const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
  1099. int my_col = (mv_col[1]<<y_shift)/2;
  1100. int mx = (scale * mv_col[0] + 128) >> 8;
  1101. int my = (scale * my_col + 128) >> 8;
  1102. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1103. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1104. }
  1105. }
  1106. return;
  1107. }
  1108. /* one-to-one mv scaling */
  1109. if(IS_16X16(*mb_type)){
  1110. int ref, mv0, mv1;
  1111. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1112. if(IS_INTRA(mb_type_col[0])){
  1113. ref=mv0=mv1=0;
  1114. }else{
  1115. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
  1116. : map_col_to_list0[1][l1ref1[0] + ref_offset];
  1117. const int scale = dist_scale_factor[ref0];
  1118. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1119. int mv_l0[2];
  1120. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1121. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1122. ref= ref0;
  1123. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1124. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1125. }
  1126. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1127. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1128. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1129. }else{
  1130. for(i8=0; i8<4; i8++){
  1131. const int x8 = i8&1;
  1132. const int y8 = i8>>1;
  1133. int ref0, scale;
  1134. const int16_t (*l1mv)[2]= l1mv0;
  1135. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1136. continue;
  1137. h->sub_mb_type[i8] = sub_mb_type;
  1138. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1139. if(IS_INTRA(mb_type_col[0])){
  1140. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1141. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1142. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1143. continue;
  1144. }
  1145. ref0 = l1ref0[x8 + y8*b8_stride] + ref_offset;
  1146. if(ref0 >= 0)
  1147. ref0 = map_col_to_list0[0][ref0];
  1148. else{
  1149. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
  1150. l1mv= l1mv1;
  1151. }
  1152. scale = dist_scale_factor[ref0];
  1153. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1154. if(IS_SUB_8X8(sub_mb_type)){
  1155. const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
  1156. int mx = (scale * mv_col[0] + 128) >> 8;
  1157. int my = (scale * mv_col[1] + 128) >> 8;
  1158. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1159. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1160. }else
  1161. for(i4=0; i4<4; i4++){
  1162. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
  1163. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1164. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1165. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1166. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1167. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1168. }
  1169. }
  1170. }
  1171. }
  1172. }
  1173. static inline void write_back_motion(H264Context *h, int mb_type){
  1174. MpegEncContext * const s = &h->s;
  1175. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1176. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1177. int list;
  1178. if(!USES_LIST(mb_type, 0))
  1179. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1180. for(list=0; list<h->list_count; list++){
  1181. int y;
  1182. if(!USES_LIST(mb_type, list))
  1183. continue;
  1184. for(y=0; y<4; y++){
  1185. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1186. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1187. }
  1188. if( h->pps.cabac ) {
  1189. if(IS_SKIP(mb_type))
  1190. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1191. else
  1192. for(y=0; y<4; y++){
  1193. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1194. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1195. }
  1196. }
  1197. {
  1198. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1199. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1200. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1201. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1202. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1203. }
  1204. }
  1205. if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
  1206. if(IS_8X8(mb_type)){
  1207. uint8_t *direct_table = &h->direct_table[b8_xy];
  1208. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1209. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1210. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1211. }
  1212. }
  1213. }
  1214. /**
  1215. * Decodes a network abstraction layer unit.
  1216. * @param consumed is the number of bytes used as input
  1217. * @param length is the length of the array
  1218. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1219. * @returns decoded bytes, might be src+1 if no escapes
  1220. */
  1221. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1222. int i, si, di;
  1223. uint8_t *dst;
  1224. int bufidx;
  1225. // src[0]&0x80; //forbidden bit
  1226. h->nal_ref_idc= src[0]>>5;
  1227. h->nal_unit_type= src[0]&0x1F;
  1228. src++; length--;
  1229. #if 0
  1230. for(i=0; i<length; i++)
  1231. printf("%2X ", src[i]);
  1232. #endif
  1233. for(i=0; i+1<length; i+=2){
  1234. if(src[i]) continue;
  1235. if(i>0 && src[i-1]==0) i--;
  1236. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1237. if(src[i+2]!=3){
  1238. /* startcode, so we must be past the end */
  1239. length=i;
  1240. }
  1241. break;
  1242. }
  1243. }
  1244. if(i>=length-1){ //no escaped 0
  1245. *dst_length= length;
  1246. *consumed= length+1; //+1 for the header
  1247. return src;
  1248. }
  1249. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1250. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1251. dst= h->rbsp_buffer[bufidx];
  1252. if (dst == NULL){
  1253. return NULL;
  1254. }
  1255. //printf("decoding esc\n");
  1256. si=di=0;
  1257. while(si<length){
  1258. //remove escapes (very rare 1:2^22)
  1259. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1260. if(src[si+2]==3){ //escape
  1261. dst[di++]= 0;
  1262. dst[di++]= 0;
  1263. si+=3;
  1264. continue;
  1265. }else //next start code
  1266. break;
  1267. }
  1268. dst[di++]= src[si++];
  1269. }
  1270. *dst_length= di;
  1271. *consumed= si + 1;//+1 for the header
  1272. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1273. return dst;
  1274. }
  1275. /**
  1276. * identifies the exact end of the bitstream
  1277. * @return the length of the trailing, or 0 if damaged
  1278. */
  1279. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1280. int v= *src;
  1281. int r;
  1282. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1283. for(r=1; r<9; r++){
  1284. if(v&1) return r;
  1285. v>>=1;
  1286. }
  1287. return 0;
  1288. }
  1289. /**
  1290. * IDCT transforms the 16 dc values and dequantizes them.
  1291. * @param qp quantization parameter
  1292. */
  1293. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1294. #define stride 16
  1295. int i;
  1296. int temp[16]; //FIXME check if this is a good idea
  1297. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1298. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1299. //memset(block, 64, 2*256);
  1300. //return;
  1301. for(i=0; i<4; i++){
  1302. const int offset= y_offset[i];
  1303. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1304. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1305. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1306. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1307. temp[4*i+0]= z0+z3;
  1308. temp[4*i+1]= z1+z2;
  1309. temp[4*i+2]= z1-z2;
  1310. temp[4*i+3]= z0-z3;
  1311. }
  1312. for(i=0; i<4; i++){
  1313. const int offset= x_offset[i];
  1314. const int z0= temp[4*0+i] + temp[4*2+i];
  1315. const int z1= temp[4*0+i] - temp[4*2+i];
  1316. const int z2= temp[4*1+i] - temp[4*3+i];
  1317. const int z3= temp[4*1+i] + temp[4*3+i];
  1318. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  1319. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1320. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1321. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1322. }
  1323. }
  1324. #if 0
  1325. /**
  1326. * DCT transforms the 16 dc values.
  1327. * @param qp quantization parameter ??? FIXME
  1328. */
  1329. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1330. // const int qmul= dequant_coeff[qp][0];
  1331. int i;
  1332. int temp[16]; //FIXME check if this is a good idea
  1333. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1334. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1335. for(i=0; i<4; i++){
  1336. const int offset= y_offset[i];
  1337. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1338. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1339. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1340. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1341. temp[4*i+0]= z0+z3;
  1342. temp[4*i+1]= z1+z2;
  1343. temp[4*i+2]= z1-z2;
  1344. temp[4*i+3]= z0-z3;
  1345. }
  1346. for(i=0; i<4; i++){
  1347. const int offset= x_offset[i];
  1348. const int z0= temp[4*0+i] + temp[4*2+i];
  1349. const int z1= temp[4*0+i] - temp[4*2+i];
  1350. const int z2= temp[4*1+i] - temp[4*3+i];
  1351. const int z3= temp[4*1+i] + temp[4*3+i];
  1352. block[stride*0 +offset]= (z0 + z3)>>1;
  1353. block[stride*2 +offset]= (z1 + z2)>>1;
  1354. block[stride*8 +offset]= (z1 - z2)>>1;
  1355. block[stride*10+offset]= (z0 - z3)>>1;
  1356. }
  1357. }
  1358. #endif
  1359. #undef xStride
  1360. #undef stride
  1361. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1362. const int stride= 16*2;
  1363. const int xStride= 16;
  1364. int a,b,c,d,e;
  1365. a= block[stride*0 + xStride*0];
  1366. b= block[stride*0 + xStride*1];
  1367. c= block[stride*1 + xStride*0];
  1368. d= block[stride*1 + xStride*1];
  1369. e= a-b;
  1370. a= a+b;
  1371. b= c-d;
  1372. c= c+d;
  1373. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1374. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1375. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1376. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1377. }
  1378. #if 0
  1379. static void chroma_dc_dct_c(DCTELEM *block){
  1380. const int stride= 16*2;
  1381. const int xStride= 16;
  1382. int a,b,c,d,e;
  1383. a= block[stride*0 + xStride*0];
  1384. b= block[stride*0 + xStride*1];
  1385. c= block[stride*1 + xStride*0];
  1386. d= block[stride*1 + xStride*1];
  1387. e= a-b;
  1388. a= a+b;
  1389. b= c-d;
  1390. c= c+d;
  1391. block[stride*0 + xStride*0]= (a+c);
  1392. block[stride*0 + xStride*1]= (e+b);
  1393. block[stride*1 + xStride*0]= (a-c);
  1394. block[stride*1 + xStride*1]= (e-b);
  1395. }
  1396. #endif
  1397. /**
  1398. * gets the chroma qp.
  1399. */
  1400. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1401. return h->pps.chroma_qp_table[t][qscale];
  1402. }
  1403. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1404. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1405. int src_x_offset, int src_y_offset,
  1406. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1407. MpegEncContext * const s = &h->s;
  1408. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1409. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1410. const int luma_xy= (mx&3) + ((my&3)<<2);
  1411. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1412. uint8_t * src_cb, * src_cr;
  1413. int extra_width= h->emu_edge_width;
  1414. int extra_height= h->emu_edge_height;
  1415. int emu=0;
  1416. const int full_mx= mx>>2;
  1417. const int full_my= my>>2;
  1418. const int pic_width = 16*s->mb_width;
  1419. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1420. if(!pic->data[0]) //FIXME this is unacceptable, some sensible error concealment must be done for missing reference frames
  1421. return;
  1422. if(mx&7) extra_width -= 3;
  1423. if(my&7) extra_height -= 3;
  1424. if( full_mx < 0-extra_width
  1425. || full_my < 0-extra_height
  1426. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1427. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1428. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1429. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1430. emu=1;
  1431. }
  1432. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1433. if(!square){
  1434. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1435. }
  1436. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1437. if(MB_FIELD){
  1438. // chroma offset when predicting from a field of opposite parity
  1439. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1440. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1441. }
  1442. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1443. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1444. if(emu){
  1445. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1446. src_cb= s->edge_emu_buffer;
  1447. }
  1448. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1449. if(emu){
  1450. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1451. src_cr= s->edge_emu_buffer;
  1452. }
  1453. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1454. }
  1455. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1456. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1457. int x_offset, int y_offset,
  1458. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1459. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1460. int list0, int list1){
  1461. MpegEncContext * const s = &h->s;
  1462. qpel_mc_func *qpix_op= qpix_put;
  1463. h264_chroma_mc_func chroma_op= chroma_put;
  1464. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1465. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1466. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1467. x_offset += 8*s->mb_x;
  1468. y_offset += 8*(s->mb_y >> MB_FIELD);
  1469. if(list0){
  1470. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1471. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1472. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1473. qpix_op, chroma_op);
  1474. qpix_op= qpix_avg;
  1475. chroma_op= chroma_avg;
  1476. }
  1477. if(list1){
  1478. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1479. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1480. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1481. qpix_op, chroma_op);
  1482. }
  1483. }
  1484. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1485. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1486. int x_offset, int y_offset,
  1487. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1488. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1489. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1490. int list0, int list1){
  1491. MpegEncContext * const s = &h->s;
  1492. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1493. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1494. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1495. x_offset += 8*s->mb_x;
  1496. y_offset += 8*(s->mb_y >> MB_FIELD);
  1497. if(list0 && list1){
  1498. /* don't optimize for luma-only case, since B-frames usually
  1499. * use implicit weights => chroma too. */
  1500. uint8_t *tmp_cb = s->obmc_scratchpad;
  1501. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1502. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1503. int refn0 = h->ref_cache[0][ scan8[n] ];
  1504. int refn1 = h->ref_cache[1][ scan8[n] ];
  1505. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1506. dest_y, dest_cb, dest_cr,
  1507. x_offset, y_offset, qpix_put, chroma_put);
  1508. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1509. tmp_y, tmp_cb, tmp_cr,
  1510. x_offset, y_offset, qpix_put, chroma_put);
  1511. if(h->use_weight == 2){
  1512. int weight0 = h->implicit_weight[refn0][refn1];
  1513. int weight1 = 64 - weight0;
  1514. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1515. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1516. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1517. }else{
  1518. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1519. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1520. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1521. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1522. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1523. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1524. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1525. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1526. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1527. }
  1528. }else{
  1529. int list = list1 ? 1 : 0;
  1530. int refn = h->ref_cache[list][ scan8[n] ];
  1531. Picture *ref= &h->ref_list[list][refn];
  1532. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1533. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1534. qpix_put, chroma_put);
  1535. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1536. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1537. if(h->use_weight_chroma){
  1538. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1539. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1540. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1541. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1542. }
  1543. }
  1544. }
  1545. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1546. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1547. int x_offset, int y_offset,
  1548. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1549. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1550. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1551. int list0, int list1){
  1552. if((h->use_weight==2 && list0 && list1
  1553. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1554. || h->use_weight==1)
  1555. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1556. x_offset, y_offset, qpix_put, chroma_put,
  1557. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1558. else
  1559. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1560. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1561. }
  1562. static inline void prefetch_motion(H264Context *h, int list){
  1563. /* fetch pixels for estimated mv 4 macroblocks ahead
  1564. * optimized for 64byte cache lines */
  1565. MpegEncContext * const s = &h->s;
  1566. const int refn = h->ref_cache[list][scan8[0]];
  1567. if(refn >= 0){
  1568. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1569. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1570. uint8_t **src= h->ref_list[list][refn].data;
  1571. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1572. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1573. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1574. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1575. }
  1576. }
  1577. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1578. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1579. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1580. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1581. MpegEncContext * const s = &h->s;
  1582. const int mb_xy= h->mb_xy;
  1583. const int mb_type= s->current_picture.mb_type[mb_xy];
  1584. assert(IS_INTER(mb_type));
  1585. prefetch_motion(h, 0);
  1586. if(IS_16X16(mb_type)){
  1587. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1588. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1589. &weight_op[0], &weight_avg[0],
  1590. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1591. }else if(IS_16X8(mb_type)){
  1592. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1593. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1594. &weight_op[1], &weight_avg[1],
  1595. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1596. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1597. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1598. &weight_op[1], &weight_avg[1],
  1599. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1600. }else if(IS_8X16(mb_type)){
  1601. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1602. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1603. &weight_op[2], &weight_avg[2],
  1604. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1605. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1606. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1607. &weight_op[2], &weight_avg[2],
  1608. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1609. }else{
  1610. int i;
  1611. assert(IS_8X8(mb_type));
  1612. for(i=0; i<4; i++){
  1613. const int sub_mb_type= h->sub_mb_type[i];
  1614. const int n= 4*i;
  1615. int x_offset= (i&1)<<2;
  1616. int y_offset= (i&2)<<1;
  1617. if(IS_SUB_8X8(sub_mb_type)){
  1618. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1619. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1620. &weight_op[3], &weight_avg[3],
  1621. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1622. }else if(IS_SUB_8X4(sub_mb_type)){
  1623. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1624. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1625. &weight_op[4], &weight_avg[4],
  1626. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1627. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1628. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1629. &weight_op[4], &weight_avg[4],
  1630. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1631. }else if(IS_SUB_4X8(sub_mb_type)){
  1632. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1633. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1634. &weight_op[5], &weight_avg[5],
  1635. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1636. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1637. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1638. &weight_op[5], &weight_avg[5],
  1639. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1640. }else{
  1641. int j;
  1642. assert(IS_SUB_4X4(sub_mb_type));
  1643. for(j=0; j<4; j++){
  1644. int sub_x_offset= x_offset + 2*(j&1);
  1645. int sub_y_offset= y_offset + (j&2);
  1646. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1647. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1648. &weight_op[6], &weight_avg[6],
  1649. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1650. }
  1651. }
  1652. }
  1653. }
  1654. prefetch_motion(h, 1);
  1655. }
  1656. static av_cold void decode_init_vlc(void){
  1657. static int done = 0;
  1658. if (!done) {
  1659. int i;
  1660. int offset;
  1661. done = 1;
  1662. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  1663. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  1664. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1665. &chroma_dc_coeff_token_len [0], 1, 1,
  1666. &chroma_dc_coeff_token_bits[0], 1, 1,
  1667. INIT_VLC_USE_NEW_STATIC);
  1668. offset = 0;
  1669. for(i=0; i<4; i++){
  1670. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  1671. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  1672. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1673. &coeff_token_len [i][0], 1, 1,
  1674. &coeff_token_bits[i][0], 1, 1,
  1675. INIT_VLC_USE_NEW_STATIC);
  1676. offset += coeff_token_vlc_tables_size[i];
  1677. }
  1678. /*
  1679. * This is a one time safety check to make sure that
  1680. * the packed static coeff_token_vlc table sizes
  1681. * were initialized correctly.
  1682. */
  1683. assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  1684. for(i=0; i<3; i++){
  1685. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  1686. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  1687. init_vlc(&chroma_dc_total_zeros_vlc[i],
  1688. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1689. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1690. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  1691. INIT_VLC_USE_NEW_STATIC);
  1692. }
  1693. for(i=0; i<15; i++){
  1694. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  1695. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  1696. init_vlc(&total_zeros_vlc[i],
  1697. TOTAL_ZEROS_VLC_BITS, 16,
  1698. &total_zeros_len [i][0], 1, 1,
  1699. &total_zeros_bits[i][0], 1, 1,
  1700. INIT_VLC_USE_NEW_STATIC);
  1701. }
  1702. for(i=0; i<6; i++){
  1703. run_vlc[i].table = run_vlc_tables[i];
  1704. run_vlc[i].table_allocated = run_vlc_tables_size;
  1705. init_vlc(&run_vlc[i],
  1706. RUN_VLC_BITS, 7,
  1707. &run_len [i][0], 1, 1,
  1708. &run_bits[i][0], 1, 1,
  1709. INIT_VLC_USE_NEW_STATIC);
  1710. }
  1711. run7_vlc.table = run7_vlc_table,
  1712. run7_vlc.table_allocated = run7_vlc_table_size;
  1713. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1714. &run_len [6][0], 1, 1,
  1715. &run_bits[6][0], 1, 1,
  1716. INIT_VLC_USE_NEW_STATIC);
  1717. }
  1718. }
  1719. static void free_tables(H264Context *h){
  1720. int i;
  1721. H264Context *hx;
  1722. av_freep(&h->intra4x4_pred_mode);
  1723. av_freep(&h->chroma_pred_mode_table);
  1724. av_freep(&h->cbp_table);
  1725. av_freep(&h->mvd_table[0]);
  1726. av_freep(&h->mvd_table[1]);
  1727. av_freep(&h->direct_table);
  1728. av_freep(&h->non_zero_count);
  1729. av_freep(&h->slice_table_base);
  1730. h->slice_table= NULL;
  1731. av_freep(&h->mb2b_xy);
  1732. av_freep(&h->mb2b8_xy);
  1733. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1734. hx = h->thread_context[i];
  1735. if(!hx) continue;
  1736. av_freep(&hx->top_borders[1]);
  1737. av_freep(&hx->top_borders[0]);
  1738. av_freep(&hx->s.obmc_scratchpad);
  1739. }
  1740. }
  1741. static void init_dequant8_coeff_table(H264Context *h){
  1742. int i,q,x;
  1743. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1744. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1745. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1746. for(i=0; i<2; i++ ){
  1747. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1748. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1749. break;
  1750. }
  1751. for(q=0; q<52; q++){
  1752. int shift = div6[q];
  1753. int idx = rem6[q];
  1754. for(x=0; x<64; x++)
  1755. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1756. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1757. h->pps.scaling_matrix8[i][x]) << shift;
  1758. }
  1759. }
  1760. }
  1761. static void init_dequant4_coeff_table(H264Context *h){
  1762. int i,j,q,x;
  1763. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1764. for(i=0; i<6; i++ ){
  1765. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1766. for(j=0; j<i; j++){
  1767. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1768. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1769. break;
  1770. }
  1771. }
  1772. if(j<i)
  1773. continue;
  1774. for(q=0; q<52; q++){
  1775. int shift = div6[q] + 2;
  1776. int idx = rem6[q];
  1777. for(x=0; x<16; x++)
  1778. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1779. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1780. h->pps.scaling_matrix4[i][x]) << shift;
  1781. }
  1782. }
  1783. }
  1784. static void init_dequant_tables(H264Context *h){
  1785. int i,x;
  1786. init_dequant4_coeff_table(h);
  1787. if(h->pps.transform_8x8_mode)
  1788. init_dequant8_coeff_table(h);
  1789. if(h->sps.transform_bypass){
  1790. for(i=0; i<6; i++)
  1791. for(x=0; x<16; x++)
  1792. h->dequant4_coeff[i][0][x] = 1<<6;
  1793. if(h->pps.transform_8x8_mode)
  1794. for(i=0; i<2; i++)
  1795. for(x=0; x<64; x++)
  1796. h->dequant8_coeff[i][0][x] = 1<<6;
  1797. }
  1798. }
  1799. /**
  1800. * allocates tables.
  1801. * needs width/height
  1802. */
  1803. static int alloc_tables(H264Context *h){
  1804. MpegEncContext * const s = &h->s;
  1805. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1806. int x,y;
  1807. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1808. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1809. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base))
  1810. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1811. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1812. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1813. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1814. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1815. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  1816. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1817. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1818. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1819. for(y=0; y<s->mb_height; y++){
  1820. for(x=0; x<s->mb_width; x++){
  1821. const int mb_xy= x + y*s->mb_stride;
  1822. const int b_xy = 4*x + 4*y*h->b_stride;
  1823. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1824. h->mb2b_xy [mb_xy]= b_xy;
  1825. h->mb2b8_xy[mb_xy]= b8_xy;
  1826. }
  1827. }
  1828. s->obmc_scratchpad = NULL;
  1829. if(!h->dequant4_coeff[0])
  1830. init_dequant_tables(h);
  1831. return 0;
  1832. fail:
  1833. free_tables(h);
  1834. return -1;
  1835. }
  1836. /**
  1837. * Mimic alloc_tables(), but for every context thread.
  1838. */
  1839. static void clone_tables(H264Context *dst, H264Context *src){
  1840. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1841. dst->non_zero_count = src->non_zero_count;
  1842. dst->slice_table = src->slice_table;
  1843. dst->cbp_table = src->cbp_table;
  1844. dst->mb2b_xy = src->mb2b_xy;
  1845. dst->mb2b8_xy = src->mb2b8_xy;
  1846. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1847. dst->mvd_table[0] = src->mvd_table[0];
  1848. dst->mvd_table[1] = src->mvd_table[1];
  1849. dst->direct_table = src->direct_table;
  1850. dst->s.obmc_scratchpad = NULL;
  1851. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1852. }
  1853. /**
  1854. * Init context
  1855. * Allocate buffers which are not shared amongst multiple threads.
  1856. */
  1857. static int context_init(H264Context *h){
  1858. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1859. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1860. return 0;
  1861. fail:
  1862. return -1; // free_tables will clean up for us
  1863. }
  1864. static av_cold void common_init(H264Context *h){
  1865. MpegEncContext * const s = &h->s;
  1866. s->width = s->avctx->width;
  1867. s->height = s->avctx->height;
  1868. s->codec_id= s->avctx->codec->id;
  1869. ff_h264_pred_init(&h->hpc, s->codec_id);
  1870. h->dequant_coeff_pps= -1;
  1871. s->unrestricted_mv=1;
  1872. s->decode=1; //FIXME
  1873. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1874. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1875. }
  1876. static av_cold int decode_init(AVCodecContext *avctx){
  1877. H264Context *h= avctx->priv_data;
  1878. MpegEncContext * const s = &h->s;
  1879. MPV_decode_defaults(s);
  1880. s->avctx = avctx;
  1881. common_init(h);
  1882. s->out_format = FMT_H264;
  1883. s->workaround_bugs= avctx->workaround_bugs;
  1884. // set defaults
  1885. // s->decode_mb= ff_h263_decode_mb;
  1886. s->quarter_sample = 1;
  1887. s->low_delay= 1;
  1888. if(avctx->codec_id == CODEC_ID_SVQ3)
  1889. avctx->pix_fmt= PIX_FMT_YUVJ420P;
  1890. else
  1891. avctx->pix_fmt= PIX_FMT_YUV420P;
  1892. decode_init_vlc();
  1893. if(avctx->extradata_size > 0 && avctx->extradata &&
  1894. *(char *)avctx->extradata == 1){
  1895. h->is_avc = 1;
  1896. h->got_avcC = 0;
  1897. } else {
  1898. h->is_avc = 0;
  1899. }
  1900. h->thread_context[0] = h;
  1901. h->outputed_poc = INT_MIN;
  1902. h->prev_poc_msb= 1<<16;
  1903. return 0;
  1904. }
  1905. static int frame_start(H264Context *h){
  1906. MpegEncContext * const s = &h->s;
  1907. int i;
  1908. if(MPV_frame_start(s, s->avctx) < 0)
  1909. return -1;
  1910. ff_er_frame_start(s);
  1911. /*
  1912. * MPV_frame_start uses pict_type to derive key_frame.
  1913. * This is incorrect for H.264; IDR markings must be used.
  1914. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  1915. * See decode_nal_units().
  1916. */
  1917. s->current_picture_ptr->key_frame= 0;
  1918. assert(s->linesize && s->uvlinesize);
  1919. for(i=0; i<16; i++){
  1920. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1921. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1922. }
  1923. for(i=0; i<4; i++){
  1924. h->block_offset[16+i]=
  1925. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1926. h->block_offset[24+16+i]=
  1927. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1928. }
  1929. /* can't be in alloc_tables because linesize isn't known there.
  1930. * FIXME: redo bipred weight to not require extra buffer? */
  1931. for(i = 0; i < s->avctx->thread_count; i++)
  1932. if(!h->thread_context[i]->s.obmc_scratchpad)
  1933. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1934. /* some macroblocks will be accessed before they're available */
  1935. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1936. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  1937. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1938. // We mark the current picture as non-reference after allocating it, so
  1939. // that if we break out due to an error it can be released automatically
  1940. // in the next MPV_frame_start().
  1941. // SVQ3 as well as most other codecs have only last/next/current and thus
  1942. // get released even with set reference, besides SVQ3 and others do not
  1943. // mark frames as reference later "naturally".
  1944. if(s->codec_id != CODEC_ID_SVQ3)
  1945. s->current_picture_ptr->reference= 0;
  1946. s->current_picture_ptr->field_poc[0]=
  1947. s->current_picture_ptr->field_poc[1]= INT_MAX;
  1948. assert(s->current_picture_ptr->long_ref==0);
  1949. return 0;
  1950. }
  1951. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  1952. MpegEncContext * const s = &h->s;
  1953. int i;
  1954. int step = 1;
  1955. int offset = 1;
  1956. int uvoffset= 1;
  1957. int top_idx = 1;
  1958. int skiplast= 0;
  1959. src_y -= linesize;
  1960. src_cb -= uvlinesize;
  1961. src_cr -= uvlinesize;
  1962. if(!simple && FRAME_MBAFF){
  1963. if(s->mb_y&1){
  1964. offset = MB_MBAFF ? 1 : 17;
  1965. uvoffset= MB_MBAFF ? 1 : 9;
  1966. if(!MB_MBAFF){
  1967. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
  1968. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
  1969. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1970. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+7*uvlinesize);
  1971. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
  1972. }
  1973. }
  1974. }else{
  1975. if(!MB_MBAFF){
  1976. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  1977. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1978. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7 ];
  1979. h->left_border[34+18]= h->top_borders[0][s->mb_x][16+8+7];
  1980. }
  1981. skiplast= 1;
  1982. }
  1983. offset =
  1984. uvoffset=
  1985. top_idx = MB_MBAFF ? 0 : 1;
  1986. }
  1987. step= MB_MBAFF ? 2 : 1;
  1988. }
  1989. // There are two lines saved, the line above the the top macroblock of a pair,
  1990. // and the line above the bottom macroblock
  1991. h->left_border[offset]= h->top_borders[top_idx][s->mb_x][15];
  1992. for(i=1; i<17 - skiplast; i++){
  1993. h->left_border[offset+i*step]= src_y[15+i* linesize];
  1994. }
  1995. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  1996. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  1997. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1998. h->left_border[uvoffset+34 ]= h->top_borders[top_idx][s->mb_x][16+7];
  1999. h->left_border[uvoffset+34+18]= h->top_borders[top_idx][s->mb_x][24+7];
  2000. for(i=1; i<9 - skiplast; i++){
  2001. h->left_border[uvoffset+34 +i*step]= src_cb[7+i*uvlinesize];
  2002. h->left_border[uvoffset+34+18+i*step]= src_cr[7+i*uvlinesize];
  2003. }
  2004. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2005. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2006. }
  2007. }
  2008. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2009. MpegEncContext * const s = &h->s;
  2010. int temp8, i;
  2011. uint64_t temp64;
  2012. int deblock_left;
  2013. int deblock_top;
  2014. int mb_xy;
  2015. int step = 1;
  2016. int offset = 1;
  2017. int uvoffset= 1;
  2018. int top_idx = 1;
  2019. if(!simple && FRAME_MBAFF){
  2020. if(s->mb_y&1){
  2021. offset = MB_MBAFF ? 1 : 17;
  2022. uvoffset= MB_MBAFF ? 1 : 9;
  2023. }else{
  2024. offset =
  2025. uvoffset=
  2026. top_idx = MB_MBAFF ? 0 : 1;
  2027. }
  2028. step= MB_MBAFF ? 2 : 1;
  2029. }
  2030. if(h->deblocking_filter == 2) {
  2031. mb_xy = h->mb_xy;
  2032. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2033. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2034. } else {
  2035. deblock_left = (s->mb_x > 0);
  2036. deblock_top = (s->mb_y > !!MB_FIELD);
  2037. }
  2038. src_y -= linesize + 1;
  2039. src_cb -= uvlinesize + 1;
  2040. src_cr -= uvlinesize + 1;
  2041. #define XCHG(a,b,t,xchg)\
  2042. t= a;\
  2043. if(xchg)\
  2044. a= b;\
  2045. b= t;
  2046. if(deblock_left){
  2047. for(i = !deblock_top; i<16; i++){
  2048. XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, xchg);
  2049. }
  2050. XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, 1);
  2051. }
  2052. if(deblock_top){
  2053. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2054. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2055. if(s->mb_x+1 < s->mb_width){
  2056. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2057. }
  2058. }
  2059. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2060. if(deblock_left){
  2061. for(i = !deblock_top; i<8; i++){
  2062. XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, xchg);
  2063. XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, xchg);
  2064. }
  2065. XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, 1);
  2066. XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, 1);
  2067. }
  2068. if(deblock_top){
  2069. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2070. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2071. }
  2072. }
  2073. }
  2074. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2075. MpegEncContext * const s = &h->s;
  2076. const int mb_x= s->mb_x;
  2077. const int mb_y= s->mb_y;
  2078. const int mb_xy= h->mb_xy;
  2079. const int mb_type= s->current_picture.mb_type[mb_xy];
  2080. uint8_t *dest_y, *dest_cb, *dest_cr;
  2081. int linesize, uvlinesize /*dct_offset*/;
  2082. int i;
  2083. int *block_offset = &h->block_offset[0];
  2084. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  2085. const int is_h264 = simple || s->codec_id == CODEC_ID_H264;
  2086. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2087. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2088. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  2089. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  2090. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  2091. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2092. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2093. if (!simple && MB_FIELD) {
  2094. linesize = h->mb_linesize = s->linesize * 2;
  2095. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2096. block_offset = &h->block_offset[24];
  2097. if(mb_y&1){ //FIXME move out of this function?
  2098. dest_y -= s->linesize*15;
  2099. dest_cb-= s->uvlinesize*7;
  2100. dest_cr-= s->uvlinesize*7;
  2101. }
  2102. if(FRAME_MBAFF) {
  2103. int list;
  2104. for(list=0; list<h->list_count; list++){
  2105. if(!USES_LIST(mb_type, list))
  2106. continue;
  2107. if(IS_16X16(mb_type)){
  2108. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2109. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2110. }else{
  2111. for(i=0; i<16; i+=4){
  2112. int ref = h->ref_cache[list][scan8[i]];
  2113. if(ref >= 0)
  2114. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2115. }
  2116. }
  2117. }
  2118. }
  2119. } else {
  2120. linesize = h->mb_linesize = s->linesize;
  2121. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2122. // dct_offset = s->linesize * 16;
  2123. }
  2124. if (!simple && IS_INTRA_PCM(mb_type)) {
  2125. for (i=0; i<16; i++) {
  2126. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  2127. }
  2128. for (i=0; i<8; i++) {
  2129. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  2130. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  2131. }
  2132. } else {
  2133. if(IS_INTRA(mb_type)){
  2134. if(h->deblocking_filter)
  2135. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2136. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2137. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2138. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2139. }
  2140. if(IS_INTRA4x4(mb_type)){
  2141. if(simple || !s->encoding){
  2142. if(IS_8x8DCT(mb_type)){
  2143. if(transform_bypass){
  2144. idct_dc_add =
  2145. idct_add = s->dsp.add_pixels8;
  2146. }else{
  2147. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2148. idct_add = s->dsp.h264_idct8_add;
  2149. }
  2150. for(i=0; i<16; i+=4){
  2151. uint8_t * const ptr= dest_y + block_offset[i];
  2152. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2153. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  2154. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  2155. }else{
  2156. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2157. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2158. (h->topright_samples_available<<i)&0x4000, linesize);
  2159. if(nnz){
  2160. if(nnz == 1 && h->mb[i*16])
  2161. idct_dc_add(ptr, h->mb + i*16, linesize);
  2162. else
  2163. idct_add (ptr, h->mb + i*16, linesize);
  2164. }
  2165. }
  2166. }
  2167. }else{
  2168. if(transform_bypass){
  2169. idct_dc_add =
  2170. idct_add = s->dsp.add_pixels4;
  2171. }else{
  2172. idct_dc_add = s->dsp.h264_idct_dc_add;
  2173. idct_add = s->dsp.h264_idct_add;
  2174. }
  2175. for(i=0; i<16; i++){
  2176. uint8_t * const ptr= dest_y + block_offset[i];
  2177. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2178. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  2179. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  2180. }else{
  2181. uint8_t *topright;
  2182. int nnz, tr;
  2183. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2184. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2185. assert(mb_y || linesize <= block_offset[i]);
  2186. if(!topright_avail){
  2187. tr= ptr[3 - linesize]*0x01010101;
  2188. topright= (uint8_t*) &tr;
  2189. }else
  2190. topright= ptr + 4 - linesize;
  2191. }else
  2192. topright= NULL;
  2193. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2194. nnz = h->non_zero_count_cache[ scan8[i] ];
  2195. if(nnz){
  2196. if(is_h264){
  2197. if(nnz == 1 && h->mb[i*16])
  2198. idct_dc_add(ptr, h->mb + i*16, linesize);
  2199. else
  2200. idct_add (ptr, h->mb + i*16, linesize);
  2201. }else
  2202. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2203. }
  2204. }
  2205. }
  2206. }
  2207. }
  2208. }else{
  2209. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2210. if(is_h264){
  2211. if(!transform_bypass)
  2212. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2213. }else
  2214. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2215. }
  2216. if(h->deblocking_filter)
  2217. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2218. }else if(is_h264){
  2219. hl_motion(h, dest_y, dest_cb, dest_cr,
  2220. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2221. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2222. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2223. }
  2224. if(!IS_INTRA4x4(mb_type)){
  2225. if(is_h264){
  2226. if(IS_INTRA16x16(mb_type)){
  2227. if(transform_bypass){
  2228. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  2229. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  2230. }else{
  2231. for(i=0; i<16; i++){
  2232. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  2233. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  2234. }
  2235. }
  2236. }else{
  2237. s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  2238. }
  2239. }else if(h->cbp&15){
  2240. if(transform_bypass){
  2241. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2242. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2243. for(i=0; i<16; i+=di){
  2244. if(h->non_zero_count_cache[ scan8[i] ]){
  2245. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2246. }
  2247. }
  2248. }else{
  2249. if(IS_8x8DCT(mb_type)){
  2250. s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  2251. }else{
  2252. s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  2253. }
  2254. }
  2255. }
  2256. }else{
  2257. for(i=0; i<16; i++){
  2258. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2259. uint8_t * const ptr= dest_y + block_offset[i];
  2260. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2261. }
  2262. }
  2263. }
  2264. }
  2265. if((simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  2266. uint8_t *dest[2] = {dest_cb, dest_cr};
  2267. if(transform_bypass){
  2268. idct_add = s->dsp.add_pixels4;
  2269. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  2270. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  2271. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  2272. }else{
  2273. for(i=16; i<16+8; i++){
  2274. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  2275. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2276. }
  2277. }
  2278. }else{
  2279. idct_add = s->dsp.h264_idct_add;
  2280. idct_dc_add = s->dsp.h264_idct_dc_add;
  2281. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2282. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2283. if(is_h264){
  2284. for(i=16; i<16+8; i++){
  2285. if(h->non_zero_count_cache[ scan8[i] ])
  2286. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2287. else if(h->mb[i*16])
  2288. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2289. }
  2290. }else{
  2291. for(i=16; i<16+8; i++){
  2292. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2293. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2294. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2295. }
  2296. }
  2297. }
  2298. }
  2299. }
  2300. }
  2301. if(h->deblocking_filter) {
  2302. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2303. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2304. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2305. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2306. if (!simple && FRAME_MBAFF) {
  2307. filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2308. } else {
  2309. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2310. }
  2311. }
  2312. }
  2313. /**
  2314. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2315. */
  2316. static void hl_decode_mb_simple(H264Context *h){
  2317. hl_decode_mb_internal(h, 1);
  2318. }
  2319. /**
  2320. * Process a macroblock; this handles edge cases, such as interlacing.
  2321. */
  2322. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2323. hl_decode_mb_internal(h, 0);
  2324. }
  2325. static void hl_decode_mb(H264Context *h){
  2326. MpegEncContext * const s = &h->s;
  2327. const int mb_xy= h->mb_xy;
  2328. const int mb_type= s->current_picture.mb_type[mb_xy];
  2329. int is_complex = ENABLE_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  2330. if(ENABLE_H264_ENCODER && !s->decode)
  2331. return;
  2332. if (is_complex)
  2333. hl_decode_mb_complex(h);
  2334. else hl_decode_mb_simple(h);
  2335. }
  2336. static void pic_as_field(Picture *pic, const int parity){
  2337. int i;
  2338. for (i = 0; i < 4; ++i) {
  2339. if (parity == PICT_BOTTOM_FIELD)
  2340. pic->data[i] += pic->linesize[i];
  2341. pic->reference = parity;
  2342. pic->linesize[i] *= 2;
  2343. }
  2344. pic->poc= pic->field_poc[parity == PICT_BOTTOM_FIELD];
  2345. }
  2346. static int split_field_copy(Picture *dest, Picture *src,
  2347. int parity, int id_add){
  2348. int match = !!(src->reference & parity);
  2349. if (match) {
  2350. *dest = *src;
  2351. if(parity != PICT_FRAME){
  2352. pic_as_field(dest, parity);
  2353. dest->pic_id *= 2;
  2354. dest->pic_id += id_add;
  2355. }
  2356. }
  2357. return match;
  2358. }
  2359. static int build_def_list(Picture *def, Picture **in, int len, int is_long, int sel){
  2360. int i[2]={0};
  2361. int index=0;
  2362. while(i[0]<len || i[1]<len){
  2363. while(i[0]<len && !(in[ i[0] ] && (in[ i[0] ]->reference & sel)))
  2364. i[0]++;
  2365. while(i[1]<len && !(in[ i[1] ] && (in[ i[1] ]->reference & (sel^3))))
  2366. i[1]++;
  2367. if(i[0] < len){
  2368. in[ i[0] ]->pic_id= is_long ? i[0] : in[ i[0] ]->frame_num;
  2369. split_field_copy(&def[index++], in[ i[0]++ ], sel , 1);
  2370. }
  2371. if(i[1] < len){
  2372. in[ i[1] ]->pic_id= is_long ? i[1] : in[ i[1] ]->frame_num;
  2373. split_field_copy(&def[index++], in[ i[1]++ ], sel^3, 0);
  2374. }
  2375. }
  2376. return index;
  2377. }
  2378. static int add_sorted(Picture **sorted, Picture **src, int len, int limit, int dir){
  2379. int i, best_poc;
  2380. int out_i= 0;
  2381. for(;;){
  2382. best_poc= dir ? INT_MIN : INT_MAX;
  2383. for(i=0; i<len; i++){
  2384. const int poc= src[i]->poc;
  2385. if(((poc > limit) ^ dir) && ((poc < best_poc) ^ dir)){
  2386. best_poc= poc;
  2387. sorted[out_i]= src[i];
  2388. }
  2389. }
  2390. if(best_poc == (dir ? INT_MIN : INT_MAX))
  2391. break;
  2392. limit= sorted[out_i++]->poc - dir;
  2393. }
  2394. return out_i;
  2395. }
  2396. /**
  2397. * fills the default_ref_list.
  2398. */
  2399. static int fill_default_ref_list(H264Context *h){
  2400. MpegEncContext * const s = &h->s;
  2401. int i, len;
  2402. if(h->slice_type_nos==FF_B_TYPE){
  2403. Picture *sorted[32];
  2404. int cur_poc, list;
  2405. int lens[2];
  2406. if(FIELD_PICTURE)
  2407. cur_poc= s->current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
  2408. else
  2409. cur_poc= s->current_picture_ptr->poc;
  2410. for(list= 0; list<2; list++){
  2411. len= add_sorted(sorted , h->short_ref, h->short_ref_count, cur_poc, 1^list);
  2412. len+=add_sorted(sorted+len, h->short_ref, h->short_ref_count, cur_poc, 0^list);
  2413. assert(len<=32);
  2414. len= build_def_list(h->default_ref_list[list] , sorted , len, 0, s->picture_structure);
  2415. len+=build_def_list(h->default_ref_list[list]+len, h->long_ref, 16 , 1, s->picture_structure);
  2416. assert(len<=32);
  2417. if(len < h->ref_count[list])
  2418. memset(&h->default_ref_list[list][len], 0, sizeof(Picture)*(h->ref_count[list] - len));
  2419. lens[list]= len;
  2420. }
  2421. if(lens[0] == lens[1] && lens[1] > 1){
  2422. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0] && i<lens[0]; i++);
  2423. if(i == lens[0])
  2424. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2425. }
  2426. }else{
  2427. len = build_def_list(h->default_ref_list[0] , h->short_ref, h->short_ref_count, 0, s->picture_structure);
  2428. len+= build_def_list(h->default_ref_list[0]+len, h-> long_ref, 16 , 1, s->picture_structure);
  2429. assert(len <= 32);
  2430. if(len < h->ref_count[0])
  2431. memset(&h->default_ref_list[0][len], 0, sizeof(Picture)*(h->ref_count[0] - len));
  2432. }
  2433. #ifdef TRACE
  2434. for (i=0; i<h->ref_count[0]; i++) {
  2435. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2436. }
  2437. if(h->slice_type_nos==FF_B_TYPE){
  2438. for (i=0; i<h->ref_count[1]; i++) {
  2439. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2440. }
  2441. }
  2442. #endif
  2443. return 0;
  2444. }
  2445. static void print_short_term(H264Context *h);
  2446. static void print_long_term(H264Context *h);
  2447. /**
  2448. * Extract structure information about the picture described by pic_num in
  2449. * the current decoding context (frame or field). Note that pic_num is
  2450. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2451. * @param pic_num picture number for which to extract structure information
  2452. * @param structure one of PICT_XXX describing structure of picture
  2453. * with pic_num
  2454. * @return frame number (short term) or long term index of picture
  2455. * described by pic_num
  2456. */
  2457. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2458. MpegEncContext * const s = &h->s;
  2459. *structure = s->picture_structure;
  2460. if(FIELD_PICTURE){
  2461. if (!(pic_num & 1))
  2462. /* opposite field */
  2463. *structure ^= PICT_FRAME;
  2464. pic_num >>= 1;
  2465. }
  2466. return pic_num;
  2467. }
  2468. static int decode_ref_pic_list_reordering(H264Context *h){
  2469. MpegEncContext * const s = &h->s;
  2470. int list, index, pic_structure;
  2471. print_short_term(h);
  2472. print_long_term(h);
  2473. for(list=0; list<h->list_count; list++){
  2474. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2475. if(get_bits1(&s->gb)){
  2476. int pred= h->curr_pic_num;
  2477. for(index=0; ; index++){
  2478. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2479. unsigned int pic_id;
  2480. int i;
  2481. Picture *ref = NULL;
  2482. if(reordering_of_pic_nums_idc==3)
  2483. break;
  2484. if(index >= h->ref_count[list]){
  2485. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2486. return -1;
  2487. }
  2488. if(reordering_of_pic_nums_idc<3){
  2489. if(reordering_of_pic_nums_idc<2){
  2490. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2491. int frame_num;
  2492. if(abs_diff_pic_num > h->max_pic_num){
  2493. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2494. return -1;
  2495. }
  2496. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2497. else pred+= abs_diff_pic_num;
  2498. pred &= h->max_pic_num - 1;
  2499. frame_num = pic_num_extract(h, pred, &pic_structure);
  2500. for(i= h->short_ref_count-1; i>=0; i--){
  2501. ref = h->short_ref[i];
  2502. assert(ref->reference);
  2503. assert(!ref->long_ref);
  2504. if(
  2505. ref->frame_num == frame_num &&
  2506. (ref->reference & pic_structure)
  2507. )
  2508. break;
  2509. }
  2510. if(i>=0)
  2511. ref->pic_id= pred;
  2512. }else{
  2513. int long_idx;
  2514. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2515. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2516. if(long_idx>31){
  2517. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2518. return -1;
  2519. }
  2520. ref = h->long_ref[long_idx];
  2521. assert(!(ref && !ref->reference));
  2522. if(ref && (ref->reference & pic_structure)){
  2523. ref->pic_id= pic_id;
  2524. assert(ref->long_ref);
  2525. i=0;
  2526. }else{
  2527. i=-1;
  2528. }
  2529. }
  2530. if (i < 0) {
  2531. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2532. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2533. } else {
  2534. for(i=index; i+1<h->ref_count[list]; i++){
  2535. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2536. break;
  2537. }
  2538. for(; i > index; i--){
  2539. h->ref_list[list][i]= h->ref_list[list][i-1];
  2540. }
  2541. h->ref_list[list][index]= *ref;
  2542. if (FIELD_PICTURE){
  2543. pic_as_field(&h->ref_list[list][index], pic_structure);
  2544. }
  2545. }
  2546. }else{
  2547. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2548. return -1;
  2549. }
  2550. }
  2551. }
  2552. }
  2553. for(list=0; list<h->list_count; list++){
  2554. for(index= 0; index < h->ref_count[list]; index++){
  2555. if(!h->ref_list[list][index].data[0]){
  2556. av_log(h->s.avctx, AV_LOG_ERROR, "Missing reference picture\n");
  2557. h->ref_list[list][index]= s->current_picture; //FIXME this is not a sensible solution
  2558. }
  2559. }
  2560. }
  2561. return 0;
  2562. }
  2563. static void fill_mbaff_ref_list(H264Context *h){
  2564. int list, i, j;
  2565. for(list=0; list<2; list++){ //FIXME try list_count
  2566. for(i=0; i<h->ref_count[list]; i++){
  2567. Picture *frame = &h->ref_list[list][i];
  2568. Picture *field = &h->ref_list[list][16+2*i];
  2569. field[0] = *frame;
  2570. for(j=0; j<3; j++)
  2571. field[0].linesize[j] <<= 1;
  2572. field[0].reference = PICT_TOP_FIELD;
  2573. field[0].poc= field[0].field_poc[0];
  2574. field[1] = field[0];
  2575. for(j=0; j<3; j++)
  2576. field[1].data[j] += frame->linesize[j];
  2577. field[1].reference = PICT_BOTTOM_FIELD;
  2578. field[1].poc= field[1].field_poc[1];
  2579. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2580. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2581. for(j=0; j<2; j++){
  2582. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2583. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2584. }
  2585. }
  2586. }
  2587. for(j=0; j<h->ref_count[1]; j++){
  2588. for(i=0; i<h->ref_count[0]; i++)
  2589. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2590. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2591. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2592. }
  2593. }
  2594. static int pred_weight_table(H264Context *h){
  2595. MpegEncContext * const s = &h->s;
  2596. int list, i;
  2597. int luma_def, chroma_def;
  2598. h->use_weight= 0;
  2599. h->use_weight_chroma= 0;
  2600. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2601. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2602. luma_def = 1<<h->luma_log2_weight_denom;
  2603. chroma_def = 1<<h->chroma_log2_weight_denom;
  2604. for(list=0; list<2; list++){
  2605. for(i=0; i<h->ref_count[list]; i++){
  2606. int luma_weight_flag, chroma_weight_flag;
  2607. luma_weight_flag= get_bits1(&s->gb);
  2608. if(luma_weight_flag){
  2609. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2610. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2611. if( h->luma_weight[list][i] != luma_def
  2612. || h->luma_offset[list][i] != 0)
  2613. h->use_weight= 1;
  2614. }else{
  2615. h->luma_weight[list][i]= luma_def;
  2616. h->luma_offset[list][i]= 0;
  2617. }
  2618. if(CHROMA){
  2619. chroma_weight_flag= get_bits1(&s->gb);
  2620. if(chroma_weight_flag){
  2621. int j;
  2622. for(j=0; j<2; j++){
  2623. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2624. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2625. if( h->chroma_weight[list][i][j] != chroma_def
  2626. || h->chroma_offset[list][i][j] != 0)
  2627. h->use_weight_chroma= 1;
  2628. }
  2629. }else{
  2630. int j;
  2631. for(j=0; j<2; j++){
  2632. h->chroma_weight[list][i][j]= chroma_def;
  2633. h->chroma_offset[list][i][j]= 0;
  2634. }
  2635. }
  2636. }
  2637. }
  2638. if(h->slice_type_nos != FF_B_TYPE) break;
  2639. }
  2640. h->use_weight= h->use_weight || h->use_weight_chroma;
  2641. return 0;
  2642. }
  2643. static void implicit_weight_table(H264Context *h){
  2644. MpegEncContext * const s = &h->s;
  2645. int ref0, ref1;
  2646. int cur_poc = s->current_picture_ptr->poc;
  2647. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2648. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2649. h->use_weight= 0;
  2650. h->use_weight_chroma= 0;
  2651. return;
  2652. }
  2653. h->use_weight= 2;
  2654. h->use_weight_chroma= 2;
  2655. h->luma_log2_weight_denom= 5;
  2656. h->chroma_log2_weight_denom= 5;
  2657. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2658. int poc0 = h->ref_list[0][ref0].poc;
  2659. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2660. int poc1 = h->ref_list[1][ref1].poc;
  2661. int td = av_clip(poc1 - poc0, -128, 127);
  2662. if(td){
  2663. int tb = av_clip(cur_poc - poc0, -128, 127);
  2664. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2665. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2666. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2667. h->implicit_weight[ref0][ref1] = 32;
  2668. else
  2669. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2670. }else
  2671. h->implicit_weight[ref0][ref1] = 32;
  2672. }
  2673. }
  2674. }
  2675. /**
  2676. * Mark a picture as no longer needed for reference. The refmask
  2677. * argument allows unreferencing of individual fields or the whole frame.
  2678. * If the picture becomes entirely unreferenced, but is being held for
  2679. * display purposes, it is marked as such.
  2680. * @param refmask mask of fields to unreference; the mask is bitwise
  2681. * anded with the reference marking of pic
  2682. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2683. * for display purposes) zero if one of the fields remains in
  2684. * reference
  2685. */
  2686. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2687. int i;
  2688. if (pic->reference &= refmask) {
  2689. return 0;
  2690. } else {
  2691. for(i = 0; h->delayed_pic[i]; i++)
  2692. if(pic == h->delayed_pic[i]){
  2693. pic->reference=DELAYED_PIC_REF;
  2694. break;
  2695. }
  2696. return 1;
  2697. }
  2698. }
  2699. /**
  2700. * instantaneous decoder refresh.
  2701. */
  2702. static void idr(H264Context *h){
  2703. int i;
  2704. for(i=0; i<16; i++){
  2705. remove_long(h, i, 0);
  2706. }
  2707. assert(h->long_ref_count==0);
  2708. for(i=0; i<h->short_ref_count; i++){
  2709. unreference_pic(h, h->short_ref[i], 0);
  2710. h->short_ref[i]= NULL;
  2711. }
  2712. h->short_ref_count=0;
  2713. h->prev_frame_num= 0;
  2714. h->prev_frame_num_offset= 0;
  2715. h->prev_poc_msb=
  2716. h->prev_poc_lsb= 0;
  2717. }
  2718. /* forget old pics after a seek */
  2719. static void flush_dpb(AVCodecContext *avctx){
  2720. H264Context *h= avctx->priv_data;
  2721. int i;
  2722. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  2723. if(h->delayed_pic[i])
  2724. h->delayed_pic[i]->reference= 0;
  2725. h->delayed_pic[i]= NULL;
  2726. }
  2727. h->outputed_poc= INT_MIN;
  2728. idr(h);
  2729. if(h->s.current_picture_ptr)
  2730. h->s.current_picture_ptr->reference= 0;
  2731. h->s.first_field= 0;
  2732. ff_mpeg_flush(avctx);
  2733. }
  2734. /**
  2735. * Find a Picture in the short term reference list by frame number.
  2736. * @param frame_num frame number to search for
  2737. * @param idx the index into h->short_ref where returned picture is found
  2738. * undefined if no picture found.
  2739. * @return pointer to the found picture, or NULL if no pic with the provided
  2740. * frame number is found
  2741. */
  2742. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2743. MpegEncContext * const s = &h->s;
  2744. int i;
  2745. for(i=0; i<h->short_ref_count; i++){
  2746. Picture *pic= h->short_ref[i];
  2747. if(s->avctx->debug&FF_DEBUG_MMCO)
  2748. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2749. if(pic->frame_num == frame_num) {
  2750. *idx = i;
  2751. return pic;
  2752. }
  2753. }
  2754. return NULL;
  2755. }
  2756. /**
  2757. * Remove a picture from the short term reference list by its index in
  2758. * that list. This does no checking on the provided index; it is assumed
  2759. * to be valid. Other list entries are shifted down.
  2760. * @param i index into h->short_ref of picture to remove.
  2761. */
  2762. static void remove_short_at_index(H264Context *h, int i){
  2763. assert(i >= 0 && i < h->short_ref_count);
  2764. h->short_ref[i]= NULL;
  2765. if (--h->short_ref_count)
  2766. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2767. }
  2768. /**
  2769. *
  2770. * @return the removed picture or NULL if an error occurs
  2771. */
  2772. static Picture * remove_short(H264Context *h, int frame_num, int ref_mask){
  2773. MpegEncContext * const s = &h->s;
  2774. Picture *pic;
  2775. int i;
  2776. if(s->avctx->debug&FF_DEBUG_MMCO)
  2777. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2778. pic = find_short(h, frame_num, &i);
  2779. if (pic){
  2780. if(unreference_pic(h, pic, ref_mask))
  2781. remove_short_at_index(h, i);
  2782. }
  2783. return pic;
  2784. }
  2785. /**
  2786. * Remove a picture from the long term reference list by its index in
  2787. * that list.
  2788. * @return the removed picture or NULL if an error occurs
  2789. */
  2790. static Picture * remove_long(H264Context *h, int i, int ref_mask){
  2791. Picture *pic;
  2792. pic= h->long_ref[i];
  2793. if (pic){
  2794. if(unreference_pic(h, pic, ref_mask)){
  2795. assert(h->long_ref[i]->long_ref == 1);
  2796. h->long_ref[i]->long_ref= 0;
  2797. h->long_ref[i]= NULL;
  2798. h->long_ref_count--;
  2799. }
  2800. }
  2801. return pic;
  2802. }
  2803. /**
  2804. * print short term list
  2805. */
  2806. static void print_short_term(H264Context *h) {
  2807. uint32_t i;
  2808. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  2809. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  2810. for(i=0; i<h->short_ref_count; i++){
  2811. Picture *pic= h->short_ref[i];
  2812. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  2813. }
  2814. }
  2815. }
  2816. /**
  2817. * print long term list
  2818. */
  2819. static void print_long_term(H264Context *h) {
  2820. uint32_t i;
  2821. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  2822. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  2823. for(i = 0; i < 16; i++){
  2824. Picture *pic= h->long_ref[i];
  2825. if (pic) {
  2826. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  2827. }
  2828. }
  2829. }
  2830. }
  2831. /**
  2832. * Executes the reference picture marking (memory management control operations).
  2833. */
  2834. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  2835. MpegEncContext * const s = &h->s;
  2836. int i, j;
  2837. int current_ref_assigned=0;
  2838. Picture *pic;
  2839. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  2840. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  2841. for(i=0; i<mmco_count; i++){
  2842. int structure, frame_num;
  2843. if(s->avctx->debug&FF_DEBUG_MMCO)
  2844. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  2845. if( mmco[i].opcode == MMCO_SHORT2UNUSED
  2846. || mmco[i].opcode == MMCO_SHORT2LONG){
  2847. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  2848. pic = find_short(h, frame_num, &j);
  2849. if(!pic){
  2850. if(mmco[i].opcode != MMCO_SHORT2LONG || !h->long_ref[mmco[i].long_arg]
  2851. || h->long_ref[mmco[i].long_arg]->frame_num != frame_num)
  2852. av_log(h->s.avctx, AV_LOG_ERROR, "mmco: unref short failure\n");
  2853. continue;
  2854. }
  2855. }
  2856. switch(mmco[i].opcode){
  2857. case MMCO_SHORT2UNUSED:
  2858. if(s->avctx->debug&FF_DEBUG_MMCO)
  2859. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  2860. remove_short(h, frame_num, structure ^ PICT_FRAME);
  2861. break;
  2862. case MMCO_SHORT2LONG:
  2863. if (h->long_ref[mmco[i].long_arg] != pic)
  2864. remove_long(h, mmco[i].long_arg, 0);
  2865. remove_short_at_index(h, j);
  2866. h->long_ref[ mmco[i].long_arg ]= pic;
  2867. if (h->long_ref[ mmco[i].long_arg ]){
  2868. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  2869. h->long_ref_count++;
  2870. }
  2871. break;
  2872. case MMCO_LONG2UNUSED:
  2873. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  2874. pic = h->long_ref[j];
  2875. if (pic) {
  2876. remove_long(h, j, structure ^ PICT_FRAME);
  2877. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  2878. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  2879. break;
  2880. case MMCO_LONG:
  2881. // Comment below left from previous code as it is an interresting note.
  2882. /* First field in pair is in short term list or
  2883. * at a different long term index.
  2884. * This is not allowed; see 7.4.3.3, notes 2 and 3.
  2885. * Report the problem and keep the pair where it is,
  2886. * and mark this field valid.
  2887. */
  2888. if (h->long_ref[mmco[i].long_arg] != s->current_picture_ptr) {
  2889. remove_long(h, mmco[i].long_arg, 0);
  2890. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  2891. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  2892. h->long_ref_count++;
  2893. }
  2894. s->current_picture_ptr->reference |= s->picture_structure;
  2895. current_ref_assigned=1;
  2896. break;
  2897. case MMCO_SET_MAX_LONG:
  2898. assert(mmco[i].long_arg <= 16);
  2899. // just remove the long term which index is greater than new max
  2900. for(j = mmco[i].long_arg; j<16; j++){
  2901. remove_long(h, j, 0);
  2902. }
  2903. break;
  2904. case MMCO_RESET:
  2905. while(h->short_ref_count){
  2906. remove_short(h, h->short_ref[0]->frame_num, 0);
  2907. }
  2908. for(j = 0; j < 16; j++) {
  2909. remove_long(h, j, 0);
  2910. }
  2911. s->current_picture_ptr->poc=
  2912. s->current_picture_ptr->field_poc[0]=
  2913. s->current_picture_ptr->field_poc[1]=
  2914. h->poc_lsb=
  2915. h->poc_msb=
  2916. h->frame_num=
  2917. s->current_picture_ptr->frame_num= 0;
  2918. break;
  2919. default: assert(0);
  2920. }
  2921. }
  2922. if (!current_ref_assigned) {
  2923. /* Second field of complementary field pair; the first field of
  2924. * which is already referenced. If short referenced, it
  2925. * should be first entry in short_ref. If not, it must exist
  2926. * in long_ref; trying to put it on the short list here is an
  2927. * error in the encoded bit stream (ref: 7.4.3.3, NOTE 2 and 3).
  2928. */
  2929. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  2930. /* Just mark the second field valid */
  2931. s->current_picture_ptr->reference = PICT_FRAME;
  2932. } else if (s->current_picture_ptr->long_ref) {
  2933. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  2934. "assignment for second field "
  2935. "in complementary field pair "
  2936. "(first field is long term)\n");
  2937. } else {
  2938. pic= remove_short(h, s->current_picture_ptr->frame_num, 0);
  2939. if(pic){
  2940. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  2941. }
  2942. if(h->short_ref_count)
  2943. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  2944. h->short_ref[0]= s->current_picture_ptr;
  2945. h->short_ref_count++;
  2946. s->current_picture_ptr->reference |= s->picture_structure;
  2947. }
  2948. }
  2949. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  2950. /* We have too many reference frames, probably due to corrupted
  2951. * stream. Need to discard one frame. Prevents overrun of the
  2952. * short_ref and long_ref buffers.
  2953. */
  2954. av_log(h->s.avctx, AV_LOG_ERROR,
  2955. "number of reference frames exceeds max (probably "
  2956. "corrupt input), discarding one\n");
  2957. if (h->long_ref_count && !h->short_ref_count) {
  2958. for (i = 0; i < 16; ++i)
  2959. if (h->long_ref[i])
  2960. break;
  2961. assert(i < 16);
  2962. remove_long(h, i, 0);
  2963. } else {
  2964. pic = h->short_ref[h->short_ref_count - 1];
  2965. remove_short(h, pic->frame_num, 0);
  2966. }
  2967. }
  2968. print_short_term(h);
  2969. print_long_term(h);
  2970. return 0;
  2971. }
  2972. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  2973. MpegEncContext * const s = &h->s;
  2974. int i;
  2975. h->mmco_index= 0;
  2976. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  2977. s->broken_link= get_bits1(gb) -1;
  2978. if(get_bits1(gb)){
  2979. h->mmco[0].opcode= MMCO_LONG;
  2980. h->mmco[0].long_arg= 0;
  2981. h->mmco_index= 1;
  2982. }
  2983. }else{
  2984. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  2985. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  2986. MMCOOpcode opcode= get_ue_golomb(gb);
  2987. h->mmco[i].opcode= opcode;
  2988. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  2989. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  2990. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  2991. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  2992. return -1;
  2993. }*/
  2994. }
  2995. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  2996. unsigned int long_arg= get_ue_golomb(gb);
  2997. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  2998. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  2999. return -1;
  3000. }
  3001. h->mmco[i].long_arg= long_arg;
  3002. }
  3003. if(opcode > (unsigned)MMCO_LONG){
  3004. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3005. return -1;
  3006. }
  3007. if(opcode == MMCO_END)
  3008. break;
  3009. }
  3010. h->mmco_index= i;
  3011. }else{
  3012. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3013. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3014. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3015. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3016. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3017. h->mmco_index= 1;
  3018. if (FIELD_PICTURE) {
  3019. h->mmco[0].short_pic_num *= 2;
  3020. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3021. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3022. h->mmco_index= 2;
  3023. }
  3024. }
  3025. }
  3026. }
  3027. return 0;
  3028. }
  3029. static int init_poc(H264Context *h){
  3030. MpegEncContext * const s = &h->s;
  3031. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3032. int field_poc[2];
  3033. Picture *cur = s->current_picture_ptr;
  3034. h->frame_num_offset= h->prev_frame_num_offset;
  3035. if(h->frame_num < h->prev_frame_num)
  3036. h->frame_num_offset += max_frame_num;
  3037. if(h->sps.poc_type==0){
  3038. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3039. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3040. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3041. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3042. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3043. else
  3044. h->poc_msb = h->prev_poc_msb;
  3045. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3046. field_poc[0] =
  3047. field_poc[1] = h->poc_msb + h->poc_lsb;
  3048. if(s->picture_structure == PICT_FRAME)
  3049. field_poc[1] += h->delta_poc_bottom;
  3050. }else if(h->sps.poc_type==1){
  3051. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3052. int i;
  3053. if(h->sps.poc_cycle_length != 0)
  3054. abs_frame_num = h->frame_num_offset + h->frame_num;
  3055. else
  3056. abs_frame_num = 0;
  3057. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3058. abs_frame_num--;
  3059. expected_delta_per_poc_cycle = 0;
  3060. for(i=0; i < h->sps.poc_cycle_length; i++)
  3061. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3062. if(abs_frame_num > 0){
  3063. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3064. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3065. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3066. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3067. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3068. } else
  3069. expectedpoc = 0;
  3070. if(h->nal_ref_idc == 0)
  3071. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3072. field_poc[0] = expectedpoc + h->delta_poc[0];
  3073. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3074. if(s->picture_structure == PICT_FRAME)
  3075. field_poc[1] += h->delta_poc[1];
  3076. }else{
  3077. int poc= 2*(h->frame_num_offset + h->frame_num);
  3078. if(!h->nal_ref_idc)
  3079. poc--;
  3080. field_poc[0]= poc;
  3081. field_poc[1]= poc;
  3082. }
  3083. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3084. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3085. if(s->picture_structure != PICT_TOP_FIELD)
  3086. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3087. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3088. return 0;
  3089. }
  3090. /**
  3091. * initialize scan tables
  3092. */
  3093. static void init_scan_tables(H264Context *h){
  3094. MpegEncContext * const s = &h->s;
  3095. int i;
  3096. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3097. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3098. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3099. }else{
  3100. for(i=0; i<16; i++){
  3101. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3102. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3103. h-> field_scan[i] = T( field_scan[i]);
  3104. #undef T
  3105. }
  3106. }
  3107. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3108. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3109. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3110. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3111. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3112. }else{
  3113. for(i=0; i<64; i++){
  3114. #define T(x) (x>>3) | ((x&7)<<3)
  3115. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3116. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3117. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3118. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3119. #undef T
  3120. }
  3121. }
  3122. if(h->sps.transform_bypass){ //FIXME same ugly
  3123. h->zigzag_scan_q0 = zigzag_scan;
  3124. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3125. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3126. h->field_scan_q0 = field_scan;
  3127. h->field_scan8x8_q0 = field_scan8x8;
  3128. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3129. }else{
  3130. h->zigzag_scan_q0 = h->zigzag_scan;
  3131. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3132. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3133. h->field_scan_q0 = h->field_scan;
  3134. h->field_scan8x8_q0 = h->field_scan8x8;
  3135. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3136. }
  3137. }
  3138. /**
  3139. * Replicates H264 "master" context to thread contexts.
  3140. */
  3141. static void clone_slice(H264Context *dst, H264Context *src)
  3142. {
  3143. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3144. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3145. dst->s.current_picture = src->s.current_picture;
  3146. dst->s.linesize = src->s.linesize;
  3147. dst->s.uvlinesize = src->s.uvlinesize;
  3148. dst->s.first_field = src->s.first_field;
  3149. dst->prev_poc_msb = src->prev_poc_msb;
  3150. dst->prev_poc_lsb = src->prev_poc_lsb;
  3151. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3152. dst->prev_frame_num = src->prev_frame_num;
  3153. dst->short_ref_count = src->short_ref_count;
  3154. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3155. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3156. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3157. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3158. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3159. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3160. }
  3161. /**
  3162. * decodes a slice header.
  3163. * This will also call MPV_common_init() and frame_start() as needed.
  3164. *
  3165. * @param h h264context
  3166. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3167. *
  3168. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3169. */
  3170. static int decode_slice_header(H264Context *h, H264Context *h0){
  3171. MpegEncContext * const s = &h->s;
  3172. MpegEncContext * const s0 = &h0->s;
  3173. unsigned int first_mb_in_slice;
  3174. unsigned int pps_id;
  3175. int num_ref_idx_active_override_flag;
  3176. unsigned int slice_type, tmp, i, j;
  3177. int default_ref_list_done = 0;
  3178. int last_pic_structure;
  3179. s->dropable= h->nal_ref_idc == 0;
  3180. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3181. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3182. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3183. }else{
  3184. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3185. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3186. }
  3187. first_mb_in_slice= get_ue_golomb(&s->gb);
  3188. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3189. h0->current_slice = 0;
  3190. if (!s0->first_field)
  3191. s->current_picture_ptr= NULL;
  3192. }
  3193. slice_type= get_ue_golomb(&s->gb);
  3194. if(slice_type > 9){
  3195. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3196. return -1;
  3197. }
  3198. if(slice_type > 4){
  3199. slice_type -= 5;
  3200. h->slice_type_fixed=1;
  3201. }else
  3202. h->slice_type_fixed=0;
  3203. slice_type= golomb_to_pict_type[ slice_type ];
  3204. if (slice_type == FF_I_TYPE
  3205. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3206. default_ref_list_done = 1;
  3207. }
  3208. h->slice_type= slice_type;
  3209. h->slice_type_nos= slice_type & 3;
  3210. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  3211. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3212. av_log(h->s.avctx, AV_LOG_ERROR,
  3213. "B picture before any references, skipping\n");
  3214. return -1;
  3215. }
  3216. pps_id= get_ue_golomb(&s->gb);
  3217. if(pps_id>=MAX_PPS_COUNT){
  3218. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3219. return -1;
  3220. }
  3221. if(!h0->pps_buffers[pps_id]) {
  3222. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS referenced\n");
  3223. return -1;
  3224. }
  3225. h->pps= *h0->pps_buffers[pps_id];
  3226. if(!h0->sps_buffers[h->pps.sps_id]) {
  3227. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS referenced\n");
  3228. return -1;
  3229. }
  3230. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3231. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3232. h->dequant_coeff_pps = pps_id;
  3233. init_dequant_tables(h);
  3234. }
  3235. s->mb_width= h->sps.mb_width;
  3236. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3237. h->b_stride= s->mb_width*4;
  3238. h->b8_stride= s->mb_width*2;
  3239. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  3240. if(h->sps.frame_mbs_only_flag)
  3241. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  3242. else
  3243. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  3244. if (s->context_initialized
  3245. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3246. if(h != h0)
  3247. return -1; // width / height changed during parallelized decoding
  3248. free_tables(h);
  3249. flush_dpb(s->avctx);
  3250. MPV_common_end(s);
  3251. }
  3252. if (!s->context_initialized) {
  3253. if(h != h0)
  3254. return -1; // we cant (re-)initialize context during parallel decoding
  3255. if (MPV_common_init(s) < 0)
  3256. return -1;
  3257. s->first_field = 0;
  3258. init_scan_tables(h);
  3259. alloc_tables(h);
  3260. for(i = 1; i < s->avctx->thread_count; i++) {
  3261. H264Context *c;
  3262. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3263. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3264. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3265. c->sps = h->sps;
  3266. c->pps = h->pps;
  3267. init_scan_tables(c);
  3268. clone_tables(c, h);
  3269. }
  3270. for(i = 0; i < s->avctx->thread_count; i++)
  3271. if(context_init(h->thread_context[i]) < 0)
  3272. return -1;
  3273. s->avctx->width = s->width;
  3274. s->avctx->height = s->height;
  3275. s->avctx->sample_aspect_ratio= h->sps.sar;
  3276. if(!s->avctx->sample_aspect_ratio.den)
  3277. s->avctx->sample_aspect_ratio.den = 1;
  3278. if(h->sps.timing_info_present_flag){
  3279. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3280. if(h->x264_build > 0 && h->x264_build < 44)
  3281. s->avctx->time_base.den *= 2;
  3282. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3283. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3284. }
  3285. }
  3286. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3287. h->mb_mbaff = 0;
  3288. h->mb_aff_frame = 0;
  3289. last_pic_structure = s0->picture_structure;
  3290. if(h->sps.frame_mbs_only_flag){
  3291. s->picture_structure= PICT_FRAME;
  3292. }else{
  3293. if(get_bits1(&s->gb)) { //field_pic_flag
  3294. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3295. } else {
  3296. s->picture_structure= PICT_FRAME;
  3297. h->mb_aff_frame = h->sps.mb_aff;
  3298. }
  3299. }
  3300. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  3301. if(h0->current_slice == 0){
  3302. while(h->frame_num != h->prev_frame_num &&
  3303. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  3304. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  3305. frame_start(h);
  3306. h->prev_frame_num++;
  3307. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  3308. s->current_picture_ptr->frame_num= h->prev_frame_num;
  3309. execute_ref_pic_marking(h, NULL, 0);
  3310. }
  3311. /* See if we have a decoded first field looking for a pair... */
  3312. if (s0->first_field) {
  3313. assert(s0->current_picture_ptr);
  3314. assert(s0->current_picture_ptr->data[0]);
  3315. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3316. /* figure out if we have a complementary field pair */
  3317. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3318. /*
  3319. * Previous field is unmatched. Don't display it, but let it
  3320. * remain for reference if marked as such.
  3321. */
  3322. s0->current_picture_ptr = NULL;
  3323. s0->first_field = FIELD_PICTURE;
  3324. } else {
  3325. if (h->nal_ref_idc &&
  3326. s0->current_picture_ptr->reference &&
  3327. s0->current_picture_ptr->frame_num != h->frame_num) {
  3328. /*
  3329. * This and previous field were reference, but had
  3330. * different frame_nums. Consider this field first in
  3331. * pair. Throw away previous field except for reference
  3332. * purposes.
  3333. */
  3334. s0->first_field = 1;
  3335. s0->current_picture_ptr = NULL;
  3336. } else {
  3337. /* Second field in complementary pair */
  3338. s0->first_field = 0;
  3339. }
  3340. }
  3341. } else {
  3342. /* Frame or first field in a potentially complementary pair */
  3343. assert(!s0->current_picture_ptr);
  3344. s0->first_field = FIELD_PICTURE;
  3345. }
  3346. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3347. s0->first_field = 0;
  3348. return -1;
  3349. }
  3350. }
  3351. if(h != h0)
  3352. clone_slice(h, h0);
  3353. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3354. assert(s->mb_num == s->mb_width * s->mb_height);
  3355. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3356. first_mb_in_slice >= s->mb_num){
  3357. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3358. return -1;
  3359. }
  3360. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3361. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3362. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3363. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3364. assert(s->mb_y < s->mb_height);
  3365. if(s->picture_structure==PICT_FRAME){
  3366. h->curr_pic_num= h->frame_num;
  3367. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3368. }else{
  3369. h->curr_pic_num= 2*h->frame_num + 1;
  3370. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3371. }
  3372. if(h->nal_unit_type == NAL_IDR_SLICE){
  3373. get_ue_golomb(&s->gb); /* idr_pic_id */
  3374. }
  3375. if(h->sps.poc_type==0){
  3376. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3377. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3378. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3379. }
  3380. }
  3381. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3382. h->delta_poc[0]= get_se_golomb(&s->gb);
  3383. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3384. h->delta_poc[1]= get_se_golomb(&s->gb);
  3385. }
  3386. init_poc(h);
  3387. if(h->pps.redundant_pic_cnt_present){
  3388. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3389. }
  3390. //set defaults, might be overridden a few lines later
  3391. h->ref_count[0]= h->pps.ref_count[0];
  3392. h->ref_count[1]= h->pps.ref_count[1];
  3393. if(h->slice_type_nos != FF_I_TYPE){
  3394. if(h->slice_type_nos == FF_B_TYPE){
  3395. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3396. }
  3397. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3398. if(num_ref_idx_active_override_flag){
  3399. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3400. if(h->slice_type_nos==FF_B_TYPE)
  3401. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3402. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3403. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3404. h->ref_count[0]= h->ref_count[1]= 1;
  3405. return -1;
  3406. }
  3407. }
  3408. if(h->slice_type_nos == FF_B_TYPE)
  3409. h->list_count= 2;
  3410. else
  3411. h->list_count= 1;
  3412. }else
  3413. h->list_count= 0;
  3414. if(!default_ref_list_done){
  3415. fill_default_ref_list(h);
  3416. }
  3417. if(h->slice_type_nos!=FF_I_TYPE && decode_ref_pic_list_reordering(h) < 0)
  3418. return -1;
  3419. if(h->slice_type_nos!=FF_I_TYPE){
  3420. s->last_picture_ptr= &h->ref_list[0][0];
  3421. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  3422. }
  3423. if(h->slice_type_nos==FF_B_TYPE){
  3424. s->next_picture_ptr= &h->ref_list[1][0];
  3425. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  3426. }
  3427. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  3428. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  3429. pred_weight_table(h);
  3430. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  3431. implicit_weight_table(h);
  3432. else
  3433. h->use_weight = 0;
  3434. if(h->nal_ref_idc)
  3435. decode_ref_pic_marking(h0, &s->gb);
  3436. if(FRAME_MBAFF)
  3437. fill_mbaff_ref_list(h);
  3438. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  3439. direct_dist_scale_factor(h);
  3440. direct_ref_list_init(h);
  3441. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  3442. tmp = get_ue_golomb(&s->gb);
  3443. if(tmp > 2){
  3444. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3445. return -1;
  3446. }
  3447. h->cabac_init_idc= tmp;
  3448. }
  3449. h->last_qscale_diff = 0;
  3450. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3451. if(tmp>51){
  3452. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3453. return -1;
  3454. }
  3455. s->qscale= tmp;
  3456. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3457. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3458. //FIXME qscale / qp ... stuff
  3459. if(h->slice_type == FF_SP_TYPE){
  3460. get_bits1(&s->gb); /* sp_for_switch_flag */
  3461. }
  3462. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3463. get_se_golomb(&s->gb); /* slice_qs_delta */
  3464. }
  3465. h->deblocking_filter = 1;
  3466. h->slice_alpha_c0_offset = 0;
  3467. h->slice_beta_offset = 0;
  3468. if( h->pps.deblocking_filter_parameters_present ) {
  3469. tmp= get_ue_golomb(&s->gb);
  3470. if(tmp > 2){
  3471. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3472. return -1;
  3473. }
  3474. h->deblocking_filter= tmp;
  3475. if(h->deblocking_filter < 2)
  3476. h->deblocking_filter^= 1; // 1<->0
  3477. if( h->deblocking_filter ) {
  3478. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3479. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3480. }
  3481. }
  3482. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3483. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  3484. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  3485. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3486. h->deblocking_filter= 0;
  3487. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3488. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3489. /* Cheat slightly for speed:
  3490. Do not bother to deblock across slices. */
  3491. h->deblocking_filter = 2;
  3492. } else {
  3493. h0->max_contexts = 1;
  3494. if(!h0->single_decode_warning) {
  3495. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3496. h0->single_decode_warning = 1;
  3497. }
  3498. if(h != h0)
  3499. return 1; // deblocking switched inside frame
  3500. }
  3501. }
  3502. #if 0 //FMO
  3503. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3504. slice_group_change_cycle= get_bits(&s->gb, ?);
  3505. #endif
  3506. h0->last_slice_type = slice_type;
  3507. h->slice_num = ++h0->current_slice;
  3508. if(h->slice_num >= MAX_SLICES){
  3509. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  3510. }
  3511. for(j=0; j<2; j++){
  3512. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  3513. ref2frm[0]=
  3514. ref2frm[1]= -1;
  3515. for(i=0; i<16; i++)
  3516. ref2frm[i+2]= 4*h->ref_list[j][i].frame_num
  3517. +(h->ref_list[j][i].reference&3);
  3518. ref2frm[18+0]=
  3519. ref2frm[18+1]= -1;
  3520. for(i=16; i<48; i++)
  3521. ref2frm[i+4]= 4*h->ref_list[j][i].frame_num
  3522. +(h->ref_list[j][i].reference&3);
  3523. }
  3524. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3525. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3526. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3527. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  3528. h->slice_num,
  3529. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3530. first_mb_in_slice,
  3531. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  3532. pps_id, h->frame_num,
  3533. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3534. h->ref_count[0], h->ref_count[1],
  3535. s->qscale,
  3536. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3537. h->use_weight,
  3538. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  3539. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  3540. );
  3541. }
  3542. return 0;
  3543. }
  3544. /**
  3545. *
  3546. */
  3547. static inline int get_level_prefix(GetBitContext *gb){
  3548. unsigned int buf;
  3549. int log;
  3550. OPEN_READER(re, gb);
  3551. UPDATE_CACHE(re, gb);
  3552. buf=GET_CACHE(re, gb);
  3553. log= 32 - av_log2(buf);
  3554. #ifdef TRACE
  3555. print_bin(buf>>(32-log), log);
  3556. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3557. #endif
  3558. LAST_SKIP_BITS(re, gb, log);
  3559. CLOSE_READER(re, gb);
  3560. return log-1;
  3561. }
  3562. static inline int get_dct8x8_allowed(H264Context *h){
  3563. int i;
  3564. for(i=0; i<4; i++){
  3565. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3566. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3567. return 0;
  3568. }
  3569. return 1;
  3570. }
  3571. /**
  3572. * decodes a residual block.
  3573. * @param n block index
  3574. * @param scantable scantable
  3575. * @param max_coeff number of coefficients in the block
  3576. * @return <0 if an error occurred
  3577. */
  3578. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3579. MpegEncContext * const s = &h->s;
  3580. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3581. int level[16];
  3582. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3583. //FIXME put trailing_onex into the context
  3584. if(n == CHROMA_DC_BLOCK_INDEX){
  3585. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3586. total_coeff= coeff_token>>2;
  3587. }else{
  3588. if(n == LUMA_DC_BLOCK_INDEX){
  3589. total_coeff= pred_non_zero_count(h, 0);
  3590. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3591. total_coeff= coeff_token>>2;
  3592. }else{
  3593. total_coeff= pred_non_zero_count(h, n);
  3594. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3595. total_coeff= coeff_token>>2;
  3596. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3597. }
  3598. }
  3599. //FIXME set last_non_zero?
  3600. if(total_coeff==0)
  3601. return 0;
  3602. if(total_coeff > (unsigned)max_coeff) {
  3603. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3604. return -1;
  3605. }
  3606. trailing_ones= coeff_token&3;
  3607. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3608. assert(total_coeff<=16);
  3609. i = show_bits(gb, 3);
  3610. skip_bits(gb, trailing_ones);
  3611. level[0] = 1-((i&4)>>1);
  3612. level[1] = 1-((i&2) );
  3613. level[2] = 1-((i&1)<<1);
  3614. if(trailing_ones<total_coeff) {
  3615. int level_code, mask;
  3616. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3617. int prefix= get_level_prefix(gb);
  3618. //first coefficient has suffix_length equal to 0 or 1
  3619. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3620. if(suffix_length)
  3621. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3622. else
  3623. level_code= (prefix<<suffix_length); //part
  3624. }else if(prefix==14){
  3625. if(suffix_length)
  3626. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3627. else
  3628. level_code= prefix + get_bits(gb, 4); //part
  3629. }else{
  3630. level_code= (15<<suffix_length) + get_bits(gb, prefix-3); //part
  3631. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3632. if(prefix>=16)
  3633. level_code += (1<<(prefix-3))-4096;
  3634. }
  3635. if(trailing_ones < 3) level_code += 2;
  3636. suffix_length = 1;
  3637. if(level_code > 5)
  3638. suffix_length++;
  3639. mask= -(level_code&1);
  3640. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  3641. //remaining coefficients have suffix_length > 0
  3642. for(i=trailing_ones+1;i<total_coeff;i++) {
  3643. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3644. prefix = get_level_prefix(gb);
  3645. if(prefix<15){
  3646. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3647. }else{
  3648. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  3649. if(prefix>=16)
  3650. level_code += (1<<(prefix-3))-4096;
  3651. }
  3652. mask= -(level_code&1);
  3653. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3654. if(level_code > suffix_limit[suffix_length])
  3655. suffix_length++;
  3656. }
  3657. }
  3658. if(total_coeff == max_coeff)
  3659. zeros_left=0;
  3660. else{
  3661. if(n == CHROMA_DC_BLOCK_INDEX)
  3662. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3663. else
  3664. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3665. }
  3666. coeff_num = zeros_left + total_coeff - 1;
  3667. j = scantable[coeff_num];
  3668. if(n > 24){
  3669. block[j] = level[0];
  3670. for(i=1;i<total_coeff;i++) {
  3671. if(zeros_left <= 0)
  3672. run_before = 0;
  3673. else if(zeros_left < 7){
  3674. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3675. }else{
  3676. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3677. }
  3678. zeros_left -= run_before;
  3679. coeff_num -= 1 + run_before;
  3680. j= scantable[ coeff_num ];
  3681. block[j]= level[i];
  3682. }
  3683. }else{
  3684. block[j] = (level[0] * qmul[j] + 32)>>6;
  3685. for(i=1;i<total_coeff;i++) {
  3686. if(zeros_left <= 0)
  3687. run_before = 0;
  3688. else if(zeros_left < 7){
  3689. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3690. }else{
  3691. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3692. }
  3693. zeros_left -= run_before;
  3694. coeff_num -= 1 + run_before;
  3695. j= scantable[ coeff_num ];
  3696. block[j]= (level[i] * qmul[j] + 32)>>6;
  3697. }
  3698. }
  3699. if(zeros_left<0){
  3700. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3701. return -1;
  3702. }
  3703. return 0;
  3704. }
  3705. static void predict_field_decoding_flag(H264Context *h){
  3706. MpegEncContext * const s = &h->s;
  3707. const int mb_xy= h->mb_xy;
  3708. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3709. ? s->current_picture.mb_type[mb_xy-1]
  3710. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3711. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3712. : 0;
  3713. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3714. }
  3715. /**
  3716. * decodes a P_SKIP or B_SKIP macroblock
  3717. */
  3718. static void decode_mb_skip(H264Context *h){
  3719. MpegEncContext * const s = &h->s;
  3720. const int mb_xy= h->mb_xy;
  3721. int mb_type=0;
  3722. memset(h->non_zero_count[mb_xy], 0, 16);
  3723. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3724. if(MB_FIELD)
  3725. mb_type|= MB_TYPE_INTERLACED;
  3726. if( h->slice_type_nos == FF_B_TYPE )
  3727. {
  3728. // just for fill_caches. pred_direct_motion will set the real mb_type
  3729. mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3730. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3731. pred_direct_motion(h, &mb_type);
  3732. mb_type|= MB_TYPE_SKIP;
  3733. }
  3734. else
  3735. {
  3736. int mx, my;
  3737. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3738. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3739. pred_pskip_motion(h, &mx, &my);
  3740. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3741. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3742. }
  3743. write_back_motion(h, mb_type);
  3744. s->current_picture.mb_type[mb_xy]= mb_type;
  3745. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3746. h->slice_table[ mb_xy ]= h->slice_num;
  3747. h->prev_mb_skipped= 1;
  3748. }
  3749. /**
  3750. * decodes a macroblock
  3751. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3752. */
  3753. static int decode_mb_cavlc(H264Context *h){
  3754. MpegEncContext * const s = &h->s;
  3755. int mb_xy;
  3756. int partition_count;
  3757. unsigned int mb_type, cbp;
  3758. int dct8x8_allowed= h->pps.transform_8x8_mode;
  3759. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  3760. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  3761. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  3762. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  3763. down the code */
  3764. if(h->slice_type_nos != FF_I_TYPE){
  3765. if(s->mb_skip_run==-1)
  3766. s->mb_skip_run= get_ue_golomb(&s->gb);
  3767. if (s->mb_skip_run--) {
  3768. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  3769. if(s->mb_skip_run==0)
  3770. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3771. else
  3772. predict_field_decoding_flag(h);
  3773. }
  3774. decode_mb_skip(h);
  3775. return 0;
  3776. }
  3777. }
  3778. if(FRAME_MBAFF){
  3779. if( (s->mb_y&1) == 0 )
  3780. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3781. }
  3782. h->prev_mb_skipped= 0;
  3783. mb_type= get_ue_golomb(&s->gb);
  3784. if(h->slice_type_nos == FF_B_TYPE){
  3785. if(mb_type < 23){
  3786. partition_count= b_mb_type_info[mb_type].partition_count;
  3787. mb_type= b_mb_type_info[mb_type].type;
  3788. }else{
  3789. mb_type -= 23;
  3790. goto decode_intra_mb;
  3791. }
  3792. }else if(h->slice_type_nos == FF_P_TYPE){
  3793. if(mb_type < 5){
  3794. partition_count= p_mb_type_info[mb_type].partition_count;
  3795. mb_type= p_mb_type_info[mb_type].type;
  3796. }else{
  3797. mb_type -= 5;
  3798. goto decode_intra_mb;
  3799. }
  3800. }else{
  3801. assert(h->slice_type_nos == FF_I_TYPE);
  3802. if(h->slice_type == FF_SI_TYPE && mb_type)
  3803. mb_type--;
  3804. decode_intra_mb:
  3805. if(mb_type > 25){
  3806. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  3807. return -1;
  3808. }
  3809. partition_count=0;
  3810. cbp= i_mb_type_info[mb_type].cbp;
  3811. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  3812. mb_type= i_mb_type_info[mb_type].type;
  3813. }
  3814. if(MB_FIELD)
  3815. mb_type |= MB_TYPE_INTERLACED;
  3816. h->slice_table[ mb_xy ]= h->slice_num;
  3817. if(IS_INTRA_PCM(mb_type)){
  3818. unsigned int x;
  3819. // We assume these blocks are very rare so we do not optimize it.
  3820. align_get_bits(&s->gb);
  3821. // The pixels are stored in the same order as levels in h->mb array.
  3822. for(x=0; x < (CHROMA ? 384 : 256); x++){
  3823. ((uint8_t*)h->mb)[x]= get_bits(&s->gb, 8);
  3824. }
  3825. // In deblocking, the quantizer is 0
  3826. s->current_picture.qscale_table[mb_xy]= 0;
  3827. // All coeffs are present
  3828. memset(h->non_zero_count[mb_xy], 16, 16);
  3829. s->current_picture.mb_type[mb_xy]= mb_type;
  3830. return 0;
  3831. }
  3832. if(MB_MBAFF){
  3833. h->ref_count[0] <<= 1;
  3834. h->ref_count[1] <<= 1;
  3835. }
  3836. fill_caches(h, mb_type, 0);
  3837. //mb_pred
  3838. if(IS_INTRA(mb_type)){
  3839. int pred_mode;
  3840. // init_top_left_availability(h);
  3841. if(IS_INTRA4x4(mb_type)){
  3842. int i;
  3843. int di = 1;
  3844. if(dct8x8_allowed && get_bits1(&s->gb)){
  3845. mb_type |= MB_TYPE_8x8DCT;
  3846. di = 4;
  3847. }
  3848. // fill_intra4x4_pred_table(h);
  3849. for(i=0; i<16; i+=di){
  3850. int mode= pred_intra_mode(h, i);
  3851. if(!get_bits1(&s->gb)){
  3852. const int rem_mode= get_bits(&s->gb, 3);
  3853. mode = rem_mode + (rem_mode >= mode);
  3854. }
  3855. if(di==4)
  3856. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  3857. else
  3858. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  3859. }
  3860. write_back_intra_pred_mode(h);
  3861. if( check_intra4x4_pred_mode(h) < 0)
  3862. return -1;
  3863. }else{
  3864. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  3865. if(h->intra16x16_pred_mode < 0)
  3866. return -1;
  3867. }
  3868. if(CHROMA){
  3869. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  3870. if(pred_mode < 0)
  3871. return -1;
  3872. h->chroma_pred_mode= pred_mode;
  3873. }
  3874. }else if(partition_count==4){
  3875. int i, j, sub_partition_count[4], list, ref[2][4];
  3876. if(h->slice_type_nos == FF_B_TYPE){
  3877. for(i=0; i<4; i++){
  3878. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  3879. if(h->sub_mb_type[i] >=13){
  3880. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  3881. return -1;
  3882. }
  3883. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  3884. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  3885. }
  3886. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  3887. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  3888. pred_direct_motion(h, &mb_type);
  3889. h->ref_cache[0][scan8[4]] =
  3890. h->ref_cache[1][scan8[4]] =
  3891. h->ref_cache[0][scan8[12]] =
  3892. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  3893. }
  3894. }else{
  3895. assert(h->slice_type_nos == FF_P_TYPE); //FIXME SP correct ?
  3896. for(i=0; i<4; i++){
  3897. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  3898. if(h->sub_mb_type[i] >=4){
  3899. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  3900. return -1;
  3901. }
  3902. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  3903. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  3904. }
  3905. }
  3906. for(list=0; list<h->list_count; list++){
  3907. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  3908. for(i=0; i<4; i++){
  3909. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  3910. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  3911. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  3912. if(tmp>=ref_count){
  3913. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  3914. return -1;
  3915. }
  3916. ref[list][i]= tmp;
  3917. }else{
  3918. //FIXME
  3919. ref[list][i] = -1;
  3920. }
  3921. }
  3922. }
  3923. if(dct8x8_allowed)
  3924. dct8x8_allowed = get_dct8x8_allowed(h);
  3925. for(list=0; list<h->list_count; list++){
  3926. for(i=0; i<4; i++){
  3927. if(IS_DIRECT(h->sub_mb_type[i])) {
  3928. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  3929. continue;
  3930. }
  3931. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  3932. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  3933. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  3934. const int sub_mb_type= h->sub_mb_type[i];
  3935. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  3936. for(j=0; j<sub_partition_count[i]; j++){
  3937. int mx, my;
  3938. const int index= 4*i + block_width*j;
  3939. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  3940. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  3941. mx += get_se_golomb(&s->gb);
  3942. my += get_se_golomb(&s->gb);
  3943. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  3944. if(IS_SUB_8X8(sub_mb_type)){
  3945. mv_cache[ 1 ][0]=
  3946. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  3947. mv_cache[ 1 ][1]=
  3948. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  3949. }else if(IS_SUB_8X4(sub_mb_type)){
  3950. mv_cache[ 1 ][0]= mx;
  3951. mv_cache[ 1 ][1]= my;
  3952. }else if(IS_SUB_4X8(sub_mb_type)){
  3953. mv_cache[ 8 ][0]= mx;
  3954. mv_cache[ 8 ][1]= my;
  3955. }
  3956. mv_cache[ 0 ][0]= mx;
  3957. mv_cache[ 0 ][1]= my;
  3958. }
  3959. }else{
  3960. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  3961. p[0] = p[1]=
  3962. p[8] = p[9]= 0;
  3963. }
  3964. }
  3965. }
  3966. }else if(IS_DIRECT(mb_type)){
  3967. pred_direct_motion(h, &mb_type);
  3968. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  3969. }else{
  3970. int list, mx, my, i;
  3971. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  3972. if(IS_16X16(mb_type)){
  3973. for(list=0; list<h->list_count; list++){
  3974. unsigned int val;
  3975. if(IS_DIR(mb_type, 0, list)){
  3976. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  3977. if(val >= h->ref_count[list]){
  3978. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  3979. return -1;
  3980. }
  3981. }else
  3982. val= LIST_NOT_USED&0xFF;
  3983. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  3984. }
  3985. for(list=0; list<h->list_count; list++){
  3986. unsigned int val;
  3987. if(IS_DIR(mb_type, 0, list)){
  3988. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  3989. mx += get_se_golomb(&s->gb);
  3990. my += get_se_golomb(&s->gb);
  3991. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  3992. val= pack16to32(mx,my);
  3993. }else
  3994. val=0;
  3995. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  3996. }
  3997. }
  3998. else if(IS_16X8(mb_type)){
  3999. for(list=0; list<h->list_count; list++){
  4000. for(i=0; i<2; i++){
  4001. unsigned int val;
  4002. if(IS_DIR(mb_type, i, list)){
  4003. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4004. if(val >= h->ref_count[list]){
  4005. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4006. return -1;
  4007. }
  4008. }else
  4009. val= LIST_NOT_USED&0xFF;
  4010. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4011. }
  4012. }
  4013. for(list=0; list<h->list_count; list++){
  4014. for(i=0; i<2; i++){
  4015. unsigned int val;
  4016. if(IS_DIR(mb_type, i, list)){
  4017. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4018. mx += get_se_golomb(&s->gb);
  4019. my += get_se_golomb(&s->gb);
  4020. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4021. val= pack16to32(mx,my);
  4022. }else
  4023. val=0;
  4024. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4025. }
  4026. }
  4027. }else{
  4028. assert(IS_8X16(mb_type));
  4029. for(list=0; list<h->list_count; list++){
  4030. for(i=0; i<2; i++){
  4031. unsigned int val;
  4032. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4033. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4034. if(val >= h->ref_count[list]){
  4035. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4036. return -1;
  4037. }
  4038. }else
  4039. val= LIST_NOT_USED&0xFF;
  4040. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4041. }
  4042. }
  4043. for(list=0; list<h->list_count; list++){
  4044. for(i=0; i<2; i++){
  4045. unsigned int val;
  4046. if(IS_DIR(mb_type, i, list)){
  4047. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4048. mx += get_se_golomb(&s->gb);
  4049. my += get_se_golomb(&s->gb);
  4050. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4051. val= pack16to32(mx,my);
  4052. }else
  4053. val=0;
  4054. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4055. }
  4056. }
  4057. }
  4058. }
  4059. if(IS_INTER(mb_type))
  4060. write_back_motion(h, mb_type);
  4061. if(!IS_INTRA16x16(mb_type)){
  4062. cbp= get_ue_golomb(&s->gb);
  4063. if(cbp > 47){
  4064. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4065. return -1;
  4066. }
  4067. if(CHROMA){
  4068. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  4069. else cbp= golomb_to_inter_cbp [cbp];
  4070. }else{
  4071. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  4072. else cbp= golomb_to_inter_cbp_gray[cbp];
  4073. }
  4074. }
  4075. h->cbp = cbp;
  4076. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4077. if(get_bits1(&s->gb)){
  4078. mb_type |= MB_TYPE_8x8DCT;
  4079. h->cbp_table[mb_xy]= cbp;
  4080. }
  4081. }
  4082. s->current_picture.mb_type[mb_xy]= mb_type;
  4083. if(cbp || IS_INTRA16x16(mb_type)){
  4084. int i8x8, i4x4, chroma_idx;
  4085. int dquant;
  4086. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4087. const uint8_t *scan, *scan8x8, *dc_scan;
  4088. // fill_non_zero_count_cache(h);
  4089. if(IS_INTERLACED(mb_type)){
  4090. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4091. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4092. dc_scan= luma_dc_field_scan;
  4093. }else{
  4094. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4095. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4096. dc_scan= luma_dc_zigzag_scan;
  4097. }
  4098. dquant= get_se_golomb(&s->gb);
  4099. if( dquant > 25 || dquant < -26 ){
  4100. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4101. return -1;
  4102. }
  4103. s->qscale += dquant;
  4104. if(((unsigned)s->qscale) > 51){
  4105. if(s->qscale<0) s->qscale+= 52;
  4106. else s->qscale-= 52;
  4107. }
  4108. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4109. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4110. if(IS_INTRA16x16(mb_type)){
  4111. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4112. return -1; //FIXME continue if partitioned and other return -1 too
  4113. }
  4114. assert((cbp&15) == 0 || (cbp&15) == 15);
  4115. if(cbp&15){
  4116. for(i8x8=0; i8x8<4; i8x8++){
  4117. for(i4x4=0; i4x4<4; i4x4++){
  4118. const int index= i4x4 + 4*i8x8;
  4119. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4120. return -1;
  4121. }
  4122. }
  4123. }
  4124. }else{
  4125. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4126. }
  4127. }else{
  4128. for(i8x8=0; i8x8<4; i8x8++){
  4129. if(cbp & (1<<i8x8)){
  4130. if(IS_8x8DCT(mb_type)){
  4131. DCTELEM *buf = &h->mb[64*i8x8];
  4132. uint8_t *nnz;
  4133. for(i4x4=0; i4x4<4; i4x4++){
  4134. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4135. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4136. return -1;
  4137. }
  4138. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4139. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4140. }else{
  4141. for(i4x4=0; i4x4<4; i4x4++){
  4142. const int index= i4x4 + 4*i8x8;
  4143. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4144. return -1;
  4145. }
  4146. }
  4147. }
  4148. }else{
  4149. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4150. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4151. }
  4152. }
  4153. }
  4154. if(cbp&0x30){
  4155. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4156. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4157. return -1;
  4158. }
  4159. }
  4160. if(cbp&0x20){
  4161. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4162. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4163. for(i4x4=0; i4x4<4; i4x4++){
  4164. const int index= 16 + 4*chroma_idx + i4x4;
  4165. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4166. return -1;
  4167. }
  4168. }
  4169. }
  4170. }else{
  4171. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4172. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4173. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4174. }
  4175. }else{
  4176. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4177. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4178. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4179. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4180. }
  4181. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4182. write_back_non_zero_count(h);
  4183. if(MB_MBAFF){
  4184. h->ref_count[0] >>= 1;
  4185. h->ref_count[1] >>= 1;
  4186. }
  4187. return 0;
  4188. }
  4189. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4190. MpegEncContext * const s = &h->s;
  4191. const int mb_x = s->mb_x;
  4192. const int mb_y = s->mb_y & ~1;
  4193. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4194. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4195. unsigned int ctx = 0;
  4196. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4197. ctx += 1;
  4198. }
  4199. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4200. ctx += 1;
  4201. }
  4202. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4203. }
  4204. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4205. uint8_t *state= &h->cabac_state[ctx_base];
  4206. int mb_type;
  4207. if(intra_slice){
  4208. MpegEncContext * const s = &h->s;
  4209. const int mba_xy = h->left_mb_xy[0];
  4210. const int mbb_xy = h->top_mb_xy;
  4211. int ctx=0;
  4212. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4213. ctx++;
  4214. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4215. ctx++;
  4216. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4217. return 0; /* I4x4 */
  4218. state += 2;
  4219. }else{
  4220. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4221. return 0; /* I4x4 */
  4222. }
  4223. if( get_cabac_terminate( &h->cabac ) )
  4224. return 25; /* PCM */
  4225. mb_type = 1; /* I16x16 */
  4226. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4227. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4228. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4229. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4230. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4231. return mb_type;
  4232. }
  4233. static int decode_cabac_mb_type( H264Context *h ) {
  4234. MpegEncContext * const s = &h->s;
  4235. if( h->slice_type_nos == FF_I_TYPE ) {
  4236. return decode_cabac_intra_mb_type(h, 3, 1);
  4237. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4238. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4239. /* P-type */
  4240. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4241. /* P_L0_D16x16, P_8x8 */
  4242. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4243. } else {
  4244. /* P_L0_D8x16, P_L0_D16x8 */
  4245. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4246. }
  4247. } else {
  4248. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4249. }
  4250. } else {
  4251. const int mba_xy = h->left_mb_xy[0];
  4252. const int mbb_xy = h->top_mb_xy;
  4253. int ctx = 0;
  4254. int bits;
  4255. assert(h->slice_type_nos == FF_B_TYPE);
  4256. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4257. ctx++;
  4258. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4259. ctx++;
  4260. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4261. return 0; /* B_Direct_16x16 */
  4262. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4263. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4264. }
  4265. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4266. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4267. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4268. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4269. if( bits < 8 )
  4270. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4271. else if( bits == 13 ) {
  4272. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4273. } else if( bits == 14 )
  4274. return 11; /* B_L1_L0_8x16 */
  4275. else if( bits == 15 )
  4276. return 22; /* B_8x8 */
  4277. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4278. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4279. }
  4280. }
  4281. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4282. MpegEncContext * const s = &h->s;
  4283. int mba_xy, mbb_xy;
  4284. int ctx = 0;
  4285. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4286. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4287. mba_xy = mb_xy - 1;
  4288. if( (mb_y&1)
  4289. && h->slice_table[mba_xy] == h->slice_num
  4290. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4291. mba_xy += s->mb_stride;
  4292. if( MB_FIELD ){
  4293. mbb_xy = mb_xy - s->mb_stride;
  4294. if( !(mb_y&1)
  4295. && h->slice_table[mbb_xy] == h->slice_num
  4296. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4297. mbb_xy -= s->mb_stride;
  4298. }else
  4299. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4300. }else{
  4301. int mb_xy = h->mb_xy;
  4302. mba_xy = mb_xy - 1;
  4303. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4304. }
  4305. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4306. ctx++;
  4307. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4308. ctx++;
  4309. if( h->slice_type_nos == FF_B_TYPE )
  4310. ctx += 13;
  4311. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4312. }
  4313. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4314. int mode = 0;
  4315. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4316. return pred_mode;
  4317. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4318. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4319. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4320. if( mode >= pred_mode )
  4321. return mode + 1;
  4322. else
  4323. return mode;
  4324. }
  4325. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4326. const int mba_xy = h->left_mb_xy[0];
  4327. const int mbb_xy = h->top_mb_xy;
  4328. int ctx = 0;
  4329. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4330. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4331. ctx++;
  4332. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4333. ctx++;
  4334. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4335. return 0;
  4336. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4337. return 1;
  4338. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4339. return 2;
  4340. else
  4341. return 3;
  4342. }
  4343. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4344. int cbp_b, cbp_a, ctx, cbp = 0;
  4345. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4346. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4347. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4348. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4349. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4350. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4351. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4352. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4353. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4354. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4355. return cbp;
  4356. }
  4357. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4358. int ctx;
  4359. int cbp_a, cbp_b;
  4360. cbp_a = (h->left_cbp>>4)&0x03;
  4361. cbp_b = (h-> top_cbp>>4)&0x03;
  4362. ctx = 0;
  4363. if( cbp_a > 0 ) ctx++;
  4364. if( cbp_b > 0 ) ctx += 2;
  4365. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4366. return 0;
  4367. ctx = 4;
  4368. if( cbp_a == 2 ) ctx++;
  4369. if( cbp_b == 2 ) ctx += 2;
  4370. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4371. }
  4372. static int decode_cabac_mb_dqp( H264Context *h) {
  4373. int ctx = 0;
  4374. int val = 0;
  4375. if( h->last_qscale_diff != 0 )
  4376. ctx++;
  4377. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4378. if( ctx < 2 )
  4379. ctx = 2;
  4380. else
  4381. ctx = 3;
  4382. val++;
  4383. if(val > 102) //prevent infinite loop
  4384. return INT_MIN;
  4385. }
  4386. if( val&0x01 )
  4387. return (val + 1)/2;
  4388. else
  4389. return -(val + 1)/2;
  4390. }
  4391. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4392. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4393. return 0; /* 8x8 */
  4394. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4395. return 1; /* 8x4 */
  4396. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4397. return 2; /* 4x8 */
  4398. return 3; /* 4x4 */
  4399. }
  4400. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4401. int type;
  4402. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4403. return 0; /* B_Direct_8x8 */
  4404. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4405. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4406. type = 3;
  4407. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4408. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4409. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4410. type += 4;
  4411. }
  4412. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4413. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4414. return type;
  4415. }
  4416. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4417. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4418. }
  4419. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4420. int refa = h->ref_cache[list][scan8[n] - 1];
  4421. int refb = h->ref_cache[list][scan8[n] - 8];
  4422. int ref = 0;
  4423. int ctx = 0;
  4424. if( h->slice_type_nos == FF_B_TYPE) {
  4425. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4426. ctx++;
  4427. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4428. ctx += 2;
  4429. } else {
  4430. if( refa > 0 )
  4431. ctx++;
  4432. if( refb > 0 )
  4433. ctx += 2;
  4434. }
  4435. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4436. ref++;
  4437. if( ctx < 4 )
  4438. ctx = 4;
  4439. else
  4440. ctx = 5;
  4441. if(ref >= 32 /*h->ref_list[list]*/){
  4442. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4443. return 0; //FIXME we should return -1 and check the return everywhere
  4444. }
  4445. }
  4446. return ref;
  4447. }
  4448. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4449. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4450. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4451. int ctxbase = (l == 0) ? 40 : 47;
  4452. int ctx, mvd;
  4453. if( amvd < 3 )
  4454. ctx = 0;
  4455. else if( amvd > 32 )
  4456. ctx = 2;
  4457. else
  4458. ctx = 1;
  4459. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4460. return 0;
  4461. mvd= 1;
  4462. ctx= 3;
  4463. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4464. mvd++;
  4465. if( ctx < 6 )
  4466. ctx++;
  4467. }
  4468. if( mvd >= 9 ) {
  4469. int k = 3;
  4470. while( get_cabac_bypass( &h->cabac ) ) {
  4471. mvd += 1 << k;
  4472. k++;
  4473. if(k>24){
  4474. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4475. return INT_MIN;
  4476. }
  4477. }
  4478. while( k-- ) {
  4479. if( get_cabac_bypass( &h->cabac ) )
  4480. mvd += 1 << k;
  4481. }
  4482. }
  4483. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4484. }
  4485. static av_always_inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx, int is_dc ) {
  4486. int nza, nzb;
  4487. int ctx = 0;
  4488. if( is_dc ) {
  4489. if( cat == 0 ) {
  4490. nza = h->left_cbp&0x100;
  4491. nzb = h-> top_cbp&0x100;
  4492. } else {
  4493. nza = (h->left_cbp>>(6+idx))&0x01;
  4494. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4495. }
  4496. } else {
  4497. if( cat == 4 ) {
  4498. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4499. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4500. } else {
  4501. assert(cat == 1 || cat == 2);
  4502. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4503. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4504. }
  4505. }
  4506. if( nza > 0 )
  4507. ctx++;
  4508. if( nzb > 0 )
  4509. ctx += 2;
  4510. return ctx + 4 * cat;
  4511. }
  4512. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4513. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4514. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4515. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4516. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4517. };
  4518. static av_always_inline void decode_cabac_residual_internal( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff, int is_dc ) {
  4519. static const int significant_coeff_flag_offset[2][6] = {
  4520. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4521. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4522. };
  4523. static const int last_coeff_flag_offset[2][6] = {
  4524. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4525. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4526. };
  4527. static const int coeff_abs_level_m1_offset[6] = {
  4528. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4529. };
  4530. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4531. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4532. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4533. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4534. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4535. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4536. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4537. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4538. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4539. };
  4540. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  4541. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  4542. * map node ctx => cabac ctx for level=1 */
  4543. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  4544. /* map node ctx => cabac ctx for level>1 */
  4545. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  4546. static const uint8_t coeff_abs_level_transition[2][8] = {
  4547. /* update node ctx after decoding a level=1 */
  4548. { 1, 2, 3, 3, 4, 5, 6, 7 },
  4549. /* update node ctx after decoding a level>1 */
  4550. { 4, 4, 4, 4, 5, 6, 7, 7 }
  4551. };
  4552. int index[64];
  4553. int av_unused last;
  4554. int coeff_count = 0;
  4555. int node_ctx = 0;
  4556. uint8_t *significant_coeff_ctx_base;
  4557. uint8_t *last_coeff_ctx_base;
  4558. uint8_t *abs_level_m1_ctx_base;
  4559. #ifndef ARCH_X86
  4560. #define CABAC_ON_STACK
  4561. #endif
  4562. #ifdef CABAC_ON_STACK
  4563. #define CC &cc
  4564. CABACContext cc;
  4565. cc.range = h->cabac.range;
  4566. cc.low = h->cabac.low;
  4567. cc.bytestream= h->cabac.bytestream;
  4568. #else
  4569. #define CC &h->cabac
  4570. #endif
  4571. /* cat: 0-> DC 16x16 n = 0
  4572. * 1-> AC 16x16 n = luma4x4idx
  4573. * 2-> Luma4x4 n = luma4x4idx
  4574. * 3-> DC Chroma n = iCbCr
  4575. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4576. * 5-> Luma8x8 n = 4 * luma8x8idx
  4577. */
  4578. /* read coded block flag */
  4579. if( is_dc || cat != 5 ) {
  4580. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n, is_dc ) ] ) == 0 ) {
  4581. if( !is_dc ) {
  4582. if( cat == 4 )
  4583. h->non_zero_count_cache[scan8[16+n]] = 0;
  4584. else
  4585. h->non_zero_count_cache[scan8[n]] = 0;
  4586. }
  4587. #ifdef CABAC_ON_STACK
  4588. h->cabac.range = cc.range ;
  4589. h->cabac.low = cc.low ;
  4590. h->cabac.bytestream= cc.bytestream;
  4591. #endif
  4592. return;
  4593. }
  4594. }
  4595. significant_coeff_ctx_base = h->cabac_state
  4596. + significant_coeff_flag_offset[MB_FIELD][cat];
  4597. last_coeff_ctx_base = h->cabac_state
  4598. + last_coeff_flag_offset[MB_FIELD][cat];
  4599. abs_level_m1_ctx_base = h->cabac_state
  4600. + coeff_abs_level_m1_offset[cat];
  4601. if( !is_dc && cat == 5 ) {
  4602. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4603. for(last= 0; last < coefs; last++) { \
  4604. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4605. if( get_cabac( CC, sig_ctx )) { \
  4606. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4607. index[coeff_count++] = last; \
  4608. if( get_cabac( CC, last_ctx ) ) { \
  4609. last= max_coeff; \
  4610. break; \
  4611. } \
  4612. } \
  4613. }\
  4614. if( last == max_coeff -1 ) {\
  4615. index[coeff_count++] = last;\
  4616. }
  4617. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4618. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4619. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4620. } else {
  4621. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4622. #else
  4623. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4624. } else {
  4625. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4626. #endif
  4627. }
  4628. assert(coeff_count > 0);
  4629. if( is_dc ) {
  4630. if( cat == 0 )
  4631. h->cbp_table[h->mb_xy] |= 0x100;
  4632. else
  4633. h->cbp_table[h->mb_xy] |= 0x40 << n;
  4634. } else {
  4635. if( cat == 5 )
  4636. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4637. else if( cat == 4 )
  4638. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4639. else {
  4640. assert( cat == 1 || cat == 2 );
  4641. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4642. }
  4643. }
  4644. do {
  4645. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4646. int j= scantable[index[--coeff_count]];
  4647. if( get_cabac( CC, ctx ) == 0 ) {
  4648. node_ctx = coeff_abs_level_transition[0][node_ctx];
  4649. if( is_dc ) {
  4650. block[j] = get_cabac_bypass_sign( CC, -1);
  4651. }else{
  4652. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4653. }
  4654. } else {
  4655. int coeff_abs = 2;
  4656. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4657. node_ctx = coeff_abs_level_transition[1][node_ctx];
  4658. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4659. coeff_abs++;
  4660. }
  4661. if( coeff_abs >= 15 ) {
  4662. int j = 0;
  4663. while( get_cabac_bypass( CC ) ) {
  4664. j++;
  4665. }
  4666. coeff_abs=1;
  4667. while( j-- ) {
  4668. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4669. }
  4670. coeff_abs+= 14;
  4671. }
  4672. if( is_dc ) {
  4673. block[j] = get_cabac_bypass_sign( CC, -coeff_abs );
  4674. }else{
  4675. block[j] = (get_cabac_bypass_sign( CC, -coeff_abs ) * qmul[j] + 32) >> 6;
  4676. }
  4677. }
  4678. } while( coeff_count );
  4679. #ifdef CABAC_ON_STACK
  4680. h->cabac.range = cc.range ;
  4681. h->cabac.low = cc.low ;
  4682. h->cabac.bytestream= cc.bytestream;
  4683. #endif
  4684. }
  4685. #ifndef CONFIG_SMALL
  4686. static void decode_cabac_residual_dc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4687. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 1);
  4688. }
  4689. static void decode_cabac_residual_nondc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4690. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 0);
  4691. }
  4692. #endif
  4693. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4694. #ifdef CONFIG_SMALL
  4695. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, cat == 0 || cat == 3);
  4696. #else
  4697. if( cat == 0 || cat == 3 ) decode_cabac_residual_dc(h, block, cat, n, scantable, qmul, max_coeff);
  4698. else decode_cabac_residual_nondc(h, block, cat, n, scantable, qmul, max_coeff);
  4699. #endif
  4700. }
  4701. static inline void compute_mb_neighbors(H264Context *h)
  4702. {
  4703. MpegEncContext * const s = &h->s;
  4704. const int mb_xy = h->mb_xy;
  4705. h->top_mb_xy = mb_xy - s->mb_stride;
  4706. h->left_mb_xy[0] = mb_xy - 1;
  4707. if(FRAME_MBAFF){
  4708. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4709. const int top_pair_xy = pair_xy - s->mb_stride;
  4710. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4711. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4712. const int curr_mb_frame_flag = !MB_FIELD;
  4713. const int bottom = (s->mb_y & 1);
  4714. if (bottom
  4715. ? !curr_mb_frame_flag // bottom macroblock
  4716. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4717. ) {
  4718. h->top_mb_xy -= s->mb_stride;
  4719. }
  4720. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4721. h->left_mb_xy[0] = pair_xy - 1;
  4722. }
  4723. } else if (FIELD_PICTURE) {
  4724. h->top_mb_xy -= s->mb_stride;
  4725. }
  4726. return;
  4727. }
  4728. /**
  4729. * decodes a macroblock
  4730. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4731. */
  4732. static int decode_mb_cabac(H264Context *h) {
  4733. MpegEncContext * const s = &h->s;
  4734. int mb_xy;
  4735. int mb_type, partition_count, cbp = 0;
  4736. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4737. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4738. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4739. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4740. if( h->slice_type_nos != FF_I_TYPE ) {
  4741. int skip;
  4742. /* a skipped mb needs the aff flag from the following mb */
  4743. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  4744. predict_field_decoding_flag(h);
  4745. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  4746. skip = h->next_mb_skipped;
  4747. else
  4748. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  4749. /* read skip flags */
  4750. if( skip ) {
  4751. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  4752. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  4753. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  4754. if(h->next_mb_skipped)
  4755. predict_field_decoding_flag(h);
  4756. else
  4757. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4758. }
  4759. decode_mb_skip(h);
  4760. h->cbp_table[mb_xy] = 0;
  4761. h->chroma_pred_mode_table[mb_xy] = 0;
  4762. h->last_qscale_diff = 0;
  4763. return 0;
  4764. }
  4765. }
  4766. if(FRAME_MBAFF){
  4767. if( (s->mb_y&1) == 0 )
  4768. h->mb_mbaff =
  4769. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4770. }
  4771. h->prev_mb_skipped = 0;
  4772. compute_mb_neighbors(h);
  4773. mb_type = decode_cabac_mb_type( h );
  4774. assert(mb_type >= 0);
  4775. if( h->slice_type_nos == FF_B_TYPE ) {
  4776. if( mb_type < 23 ){
  4777. partition_count= b_mb_type_info[mb_type].partition_count;
  4778. mb_type= b_mb_type_info[mb_type].type;
  4779. }else{
  4780. mb_type -= 23;
  4781. goto decode_intra_mb;
  4782. }
  4783. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4784. if( mb_type < 5) {
  4785. partition_count= p_mb_type_info[mb_type].partition_count;
  4786. mb_type= p_mb_type_info[mb_type].type;
  4787. } else {
  4788. mb_type -= 5;
  4789. goto decode_intra_mb;
  4790. }
  4791. } else {
  4792. if(h->slice_type == FF_SI_TYPE && mb_type)
  4793. mb_type--;
  4794. assert(h->slice_type_nos == FF_I_TYPE);
  4795. decode_intra_mb:
  4796. partition_count = 0;
  4797. cbp= i_mb_type_info[mb_type].cbp;
  4798. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4799. mb_type= i_mb_type_info[mb_type].type;
  4800. }
  4801. if(MB_FIELD)
  4802. mb_type |= MB_TYPE_INTERLACED;
  4803. h->slice_table[ mb_xy ]= h->slice_num;
  4804. if(IS_INTRA_PCM(mb_type)) {
  4805. const uint8_t *ptr;
  4806. // We assume these blocks are very rare so we do not optimize it.
  4807. // FIXME The two following lines get the bitstream position in the cabac
  4808. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  4809. ptr= h->cabac.bytestream;
  4810. if(h->cabac.low&0x1) ptr--;
  4811. if(CABAC_BITS==16){
  4812. if(h->cabac.low&0x1FF) ptr--;
  4813. }
  4814. // The pixels are stored in the same order as levels in h->mb array.
  4815. memcpy(h->mb, ptr, 256); ptr+=256;
  4816. if(CHROMA){
  4817. memcpy(h->mb+128, ptr, 128); ptr+=128;
  4818. }
  4819. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  4820. // All blocks are present
  4821. h->cbp_table[mb_xy] = 0x1ef;
  4822. h->chroma_pred_mode_table[mb_xy] = 0;
  4823. // In deblocking, the quantizer is 0
  4824. s->current_picture.qscale_table[mb_xy]= 0;
  4825. // All coeffs are present
  4826. memset(h->non_zero_count[mb_xy], 16, 16);
  4827. s->current_picture.mb_type[mb_xy]= mb_type;
  4828. h->last_qscale_diff = 0;
  4829. return 0;
  4830. }
  4831. if(MB_MBAFF){
  4832. h->ref_count[0] <<= 1;
  4833. h->ref_count[1] <<= 1;
  4834. }
  4835. fill_caches(h, mb_type, 0);
  4836. if( IS_INTRA( mb_type ) ) {
  4837. int i, pred_mode;
  4838. if( IS_INTRA4x4( mb_type ) ) {
  4839. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  4840. mb_type |= MB_TYPE_8x8DCT;
  4841. for( i = 0; i < 16; i+=4 ) {
  4842. int pred = pred_intra_mode( h, i );
  4843. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  4844. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4845. }
  4846. } else {
  4847. for( i = 0; i < 16; i++ ) {
  4848. int pred = pred_intra_mode( h, i );
  4849. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  4850. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  4851. }
  4852. }
  4853. write_back_intra_pred_mode(h);
  4854. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  4855. } else {
  4856. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  4857. if( h->intra16x16_pred_mode < 0 ) return -1;
  4858. }
  4859. if(CHROMA){
  4860. h->chroma_pred_mode_table[mb_xy] =
  4861. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  4862. pred_mode= check_intra_pred_mode( h, pred_mode );
  4863. if( pred_mode < 0 ) return -1;
  4864. h->chroma_pred_mode= pred_mode;
  4865. }
  4866. } else if( partition_count == 4 ) {
  4867. int i, j, sub_partition_count[4], list, ref[2][4];
  4868. if( h->slice_type_nos == FF_B_TYPE ) {
  4869. for( i = 0; i < 4; i++ ) {
  4870. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  4871. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4872. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4873. }
  4874. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  4875. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  4876. pred_direct_motion(h, &mb_type);
  4877. h->ref_cache[0][scan8[4]] =
  4878. h->ref_cache[1][scan8[4]] =
  4879. h->ref_cache[0][scan8[12]] =
  4880. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4881. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  4882. for( i = 0; i < 4; i++ )
  4883. if( IS_DIRECT(h->sub_mb_type[i]) )
  4884. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  4885. }
  4886. }
  4887. } else {
  4888. for( i = 0; i < 4; i++ ) {
  4889. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  4890. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4891. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4892. }
  4893. }
  4894. for( list = 0; list < h->list_count; list++ ) {
  4895. for( i = 0; i < 4; i++ ) {
  4896. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4897. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4898. if( h->ref_count[list] > 1 )
  4899. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  4900. else
  4901. ref[list][i] = 0;
  4902. } else {
  4903. ref[list][i] = -1;
  4904. }
  4905. h->ref_cache[list][ scan8[4*i]+1 ]=
  4906. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4907. }
  4908. }
  4909. if(dct8x8_allowed)
  4910. dct8x8_allowed = get_dct8x8_allowed(h);
  4911. for(list=0; list<h->list_count; list++){
  4912. for(i=0; i<4; i++){
  4913. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  4914. if(IS_DIRECT(h->sub_mb_type[i])){
  4915. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  4916. continue;
  4917. }
  4918. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  4919. const int sub_mb_type= h->sub_mb_type[i];
  4920. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4921. for(j=0; j<sub_partition_count[i]; j++){
  4922. int mpx, mpy;
  4923. int mx, my;
  4924. const int index= 4*i + block_width*j;
  4925. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4926. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  4927. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  4928. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  4929. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  4930. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4931. if(IS_SUB_8X8(sub_mb_type)){
  4932. mv_cache[ 1 ][0]=
  4933. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4934. mv_cache[ 1 ][1]=
  4935. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4936. mvd_cache[ 1 ][0]=
  4937. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  4938. mvd_cache[ 1 ][1]=
  4939. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  4940. }else if(IS_SUB_8X4(sub_mb_type)){
  4941. mv_cache[ 1 ][0]= mx;
  4942. mv_cache[ 1 ][1]= my;
  4943. mvd_cache[ 1 ][0]= mx - mpx;
  4944. mvd_cache[ 1 ][1]= my - mpy;
  4945. }else if(IS_SUB_4X8(sub_mb_type)){
  4946. mv_cache[ 8 ][0]= mx;
  4947. mv_cache[ 8 ][1]= my;
  4948. mvd_cache[ 8 ][0]= mx - mpx;
  4949. mvd_cache[ 8 ][1]= my - mpy;
  4950. }
  4951. mv_cache[ 0 ][0]= mx;
  4952. mv_cache[ 0 ][1]= my;
  4953. mvd_cache[ 0 ][0]= mx - mpx;
  4954. mvd_cache[ 0 ][1]= my - mpy;
  4955. }
  4956. }else{
  4957. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4958. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  4959. p[0] = p[1] = p[8] = p[9] = 0;
  4960. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  4961. }
  4962. }
  4963. }
  4964. } else if( IS_DIRECT(mb_type) ) {
  4965. pred_direct_motion(h, &mb_type);
  4966. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  4967. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  4968. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4969. } else {
  4970. int list, mx, my, i, mpx, mpy;
  4971. if(IS_16X16(mb_type)){
  4972. for(list=0; list<h->list_count; list++){
  4973. if(IS_DIR(mb_type, 0, list)){
  4974. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  4975. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  4976. }else
  4977. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  4978. }
  4979. for(list=0; list<h->list_count; list++){
  4980. if(IS_DIR(mb_type, 0, list)){
  4981. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  4982. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  4983. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  4984. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4985. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  4986. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  4987. }else
  4988. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  4989. }
  4990. }
  4991. else if(IS_16X8(mb_type)){
  4992. for(list=0; list<h->list_count; list++){
  4993. for(i=0; i<2; i++){
  4994. if(IS_DIR(mb_type, i, list)){
  4995. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  4996. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  4997. }else
  4998. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  4999. }
  5000. }
  5001. for(list=0; list<h->list_count; list++){
  5002. for(i=0; i<2; i++){
  5003. if(IS_DIR(mb_type, i, list)){
  5004. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5005. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5006. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5007. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5008. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5009. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5010. }else{
  5011. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5012. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5013. }
  5014. }
  5015. }
  5016. }else{
  5017. assert(IS_8X16(mb_type));
  5018. for(list=0; list<h->list_count; list++){
  5019. for(i=0; i<2; i++){
  5020. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5021. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5022. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5023. }else
  5024. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5025. }
  5026. }
  5027. for(list=0; list<h->list_count; list++){
  5028. for(i=0; i<2; i++){
  5029. if(IS_DIR(mb_type, i, list)){
  5030. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5031. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5032. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5033. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5034. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5035. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5036. }else{
  5037. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5038. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5039. }
  5040. }
  5041. }
  5042. }
  5043. }
  5044. if( IS_INTER( mb_type ) ) {
  5045. h->chroma_pred_mode_table[mb_xy] = 0;
  5046. write_back_motion( h, mb_type );
  5047. }
  5048. if( !IS_INTRA16x16( mb_type ) ) {
  5049. cbp = decode_cabac_mb_cbp_luma( h );
  5050. if(CHROMA)
  5051. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5052. }
  5053. h->cbp_table[mb_xy] = h->cbp = cbp;
  5054. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5055. if( decode_cabac_mb_transform_size( h ) )
  5056. mb_type |= MB_TYPE_8x8DCT;
  5057. }
  5058. s->current_picture.mb_type[mb_xy]= mb_type;
  5059. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5060. const uint8_t *scan, *scan8x8, *dc_scan;
  5061. const uint32_t *qmul;
  5062. int dqp;
  5063. if(IS_INTERLACED(mb_type)){
  5064. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5065. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5066. dc_scan= luma_dc_field_scan;
  5067. }else{
  5068. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5069. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5070. dc_scan= luma_dc_zigzag_scan;
  5071. }
  5072. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5073. if( dqp == INT_MIN ){
  5074. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5075. return -1;
  5076. }
  5077. s->qscale += dqp;
  5078. if(((unsigned)s->qscale) > 51){
  5079. if(s->qscale<0) s->qscale+= 52;
  5080. else s->qscale-= 52;
  5081. }
  5082. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5083. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5084. if( IS_INTRA16x16( mb_type ) ) {
  5085. int i;
  5086. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5087. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5088. if( cbp&15 ) {
  5089. qmul = h->dequant4_coeff[0][s->qscale];
  5090. for( i = 0; i < 16; i++ ) {
  5091. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5092. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5093. }
  5094. } else {
  5095. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5096. }
  5097. } else {
  5098. int i8x8, i4x4;
  5099. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5100. if( cbp & (1<<i8x8) ) {
  5101. if( IS_8x8DCT(mb_type) ) {
  5102. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5103. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5104. } else {
  5105. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5106. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5107. const int index = 4*i8x8 + i4x4;
  5108. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5109. //START_TIMER
  5110. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5111. //STOP_TIMER("decode_residual")
  5112. }
  5113. }
  5114. } else {
  5115. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5116. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5117. }
  5118. }
  5119. }
  5120. if( cbp&0x30 ){
  5121. int c;
  5122. for( c = 0; c < 2; c++ ) {
  5123. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5124. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5125. }
  5126. }
  5127. if( cbp&0x20 ) {
  5128. int c, i;
  5129. for( c = 0; c < 2; c++ ) {
  5130. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5131. for( i = 0; i < 4; i++ ) {
  5132. const int index = 16 + 4 * c + i;
  5133. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5134. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5135. }
  5136. }
  5137. } else {
  5138. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5139. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5140. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5141. }
  5142. } else {
  5143. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5144. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5145. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5146. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5147. h->last_qscale_diff = 0;
  5148. }
  5149. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5150. write_back_non_zero_count(h);
  5151. if(MB_MBAFF){
  5152. h->ref_count[0] >>= 1;
  5153. h->ref_count[1] >>= 1;
  5154. }
  5155. return 0;
  5156. }
  5157. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5158. int i, d;
  5159. const int index_a = qp + h->slice_alpha_c0_offset;
  5160. const int alpha = (alpha_table+52)[index_a];
  5161. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5162. if( bS[0] < 4 ) {
  5163. int8_t tc[4];
  5164. for(i=0; i<4; i++)
  5165. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5166. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5167. } else {
  5168. /* 16px edge length, because bS=4 is triggered by being at
  5169. * the edge of an intra MB, so all 4 bS are the same */
  5170. for( d = 0; d < 16; d++ ) {
  5171. const int p0 = pix[-1];
  5172. const int p1 = pix[-2];
  5173. const int p2 = pix[-3];
  5174. const int q0 = pix[0];
  5175. const int q1 = pix[1];
  5176. const int q2 = pix[2];
  5177. if( FFABS( p0 - q0 ) < alpha &&
  5178. FFABS( p1 - p0 ) < beta &&
  5179. FFABS( q1 - q0 ) < beta ) {
  5180. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5181. if( FFABS( p2 - p0 ) < beta)
  5182. {
  5183. const int p3 = pix[-4];
  5184. /* p0', p1', p2' */
  5185. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5186. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5187. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5188. } else {
  5189. /* p0' */
  5190. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5191. }
  5192. if( FFABS( q2 - q0 ) < beta)
  5193. {
  5194. const int q3 = pix[3];
  5195. /* q0', q1', q2' */
  5196. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5197. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5198. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5199. } else {
  5200. /* q0' */
  5201. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5202. }
  5203. }else{
  5204. /* p0', q0' */
  5205. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5206. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5207. }
  5208. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5209. }
  5210. pix += stride;
  5211. }
  5212. }
  5213. }
  5214. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5215. int i;
  5216. const int index_a = qp + h->slice_alpha_c0_offset;
  5217. const int alpha = (alpha_table+52)[index_a];
  5218. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5219. if( bS[0] < 4 ) {
  5220. int8_t tc[4];
  5221. for(i=0; i<4; i++)
  5222. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5223. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5224. } else {
  5225. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5226. }
  5227. }
  5228. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5229. int i;
  5230. for( i = 0; i < 16; i++, pix += stride) {
  5231. int index_a;
  5232. int alpha;
  5233. int beta;
  5234. int qp_index;
  5235. int bS_index = (i >> 1);
  5236. if (!MB_FIELD) {
  5237. bS_index &= ~1;
  5238. bS_index |= (i & 1);
  5239. }
  5240. if( bS[bS_index] == 0 ) {
  5241. continue;
  5242. }
  5243. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5244. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5245. alpha = (alpha_table+52)[index_a];
  5246. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5247. if( bS[bS_index] < 4 ) {
  5248. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5249. const int p0 = pix[-1];
  5250. const int p1 = pix[-2];
  5251. const int p2 = pix[-3];
  5252. const int q0 = pix[0];
  5253. const int q1 = pix[1];
  5254. const int q2 = pix[2];
  5255. if( FFABS( p0 - q0 ) < alpha &&
  5256. FFABS( p1 - p0 ) < beta &&
  5257. FFABS( q1 - q0 ) < beta ) {
  5258. int tc = tc0;
  5259. int i_delta;
  5260. if( FFABS( p2 - p0 ) < beta ) {
  5261. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5262. tc++;
  5263. }
  5264. if( FFABS( q2 - q0 ) < beta ) {
  5265. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5266. tc++;
  5267. }
  5268. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5269. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5270. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5271. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5272. }
  5273. }else{
  5274. const int p0 = pix[-1];
  5275. const int p1 = pix[-2];
  5276. const int p2 = pix[-3];
  5277. const int q0 = pix[0];
  5278. const int q1 = pix[1];
  5279. const int q2 = pix[2];
  5280. if( FFABS( p0 - q0 ) < alpha &&
  5281. FFABS( p1 - p0 ) < beta &&
  5282. FFABS( q1 - q0 ) < beta ) {
  5283. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5284. if( FFABS( p2 - p0 ) < beta)
  5285. {
  5286. const int p3 = pix[-4];
  5287. /* p0', p1', p2' */
  5288. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5289. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5290. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5291. } else {
  5292. /* p0' */
  5293. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5294. }
  5295. if( FFABS( q2 - q0 ) < beta)
  5296. {
  5297. const int q3 = pix[3];
  5298. /* q0', q1', q2' */
  5299. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5300. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5301. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5302. } else {
  5303. /* q0' */
  5304. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5305. }
  5306. }else{
  5307. /* p0', q0' */
  5308. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5309. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5310. }
  5311. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5312. }
  5313. }
  5314. }
  5315. }
  5316. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5317. int i;
  5318. for( i = 0; i < 8; i++, pix += stride) {
  5319. int index_a;
  5320. int alpha;
  5321. int beta;
  5322. int qp_index;
  5323. int bS_index = i;
  5324. if( bS[bS_index] == 0 ) {
  5325. continue;
  5326. }
  5327. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5328. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5329. alpha = (alpha_table+52)[index_a];
  5330. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5331. if( bS[bS_index] < 4 ) {
  5332. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5333. const int p0 = pix[-1];
  5334. const int p1 = pix[-2];
  5335. const int q0 = pix[0];
  5336. const int q1 = pix[1];
  5337. if( FFABS( p0 - q0 ) < alpha &&
  5338. FFABS( p1 - p0 ) < beta &&
  5339. FFABS( q1 - q0 ) < beta ) {
  5340. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5341. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5342. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5343. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5344. }
  5345. }else{
  5346. const int p0 = pix[-1];
  5347. const int p1 = pix[-2];
  5348. const int q0 = pix[0];
  5349. const int q1 = pix[1];
  5350. if( FFABS( p0 - q0 ) < alpha &&
  5351. FFABS( p1 - p0 ) < beta &&
  5352. FFABS( q1 - q0 ) < beta ) {
  5353. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5354. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5355. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5356. }
  5357. }
  5358. }
  5359. }
  5360. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5361. int i, d;
  5362. const int index_a = qp + h->slice_alpha_c0_offset;
  5363. const int alpha = (alpha_table+52)[index_a];
  5364. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5365. const int pix_next = stride;
  5366. if( bS[0] < 4 ) {
  5367. int8_t tc[4];
  5368. for(i=0; i<4; i++)
  5369. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5370. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5371. } else {
  5372. /* 16px edge length, see filter_mb_edgev */
  5373. for( d = 0; d < 16; d++ ) {
  5374. const int p0 = pix[-1*pix_next];
  5375. const int p1 = pix[-2*pix_next];
  5376. const int p2 = pix[-3*pix_next];
  5377. const int q0 = pix[0];
  5378. const int q1 = pix[1*pix_next];
  5379. const int q2 = pix[2*pix_next];
  5380. if( FFABS( p0 - q0 ) < alpha &&
  5381. FFABS( p1 - p0 ) < beta &&
  5382. FFABS( q1 - q0 ) < beta ) {
  5383. const int p3 = pix[-4*pix_next];
  5384. const int q3 = pix[ 3*pix_next];
  5385. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5386. if( FFABS( p2 - p0 ) < beta) {
  5387. /* p0', p1', p2' */
  5388. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5389. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5390. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5391. } else {
  5392. /* p0' */
  5393. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5394. }
  5395. if( FFABS( q2 - q0 ) < beta) {
  5396. /* q0', q1', q2' */
  5397. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5398. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5399. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5400. } else {
  5401. /* q0' */
  5402. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5403. }
  5404. }else{
  5405. /* p0', q0' */
  5406. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5407. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5408. }
  5409. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5410. }
  5411. pix++;
  5412. }
  5413. }
  5414. }
  5415. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5416. int i;
  5417. const int index_a = qp + h->slice_alpha_c0_offset;
  5418. const int alpha = (alpha_table+52)[index_a];
  5419. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5420. if( bS[0] < 4 ) {
  5421. int8_t tc[4];
  5422. for(i=0; i<4; i++)
  5423. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5424. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5425. } else {
  5426. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5427. }
  5428. }
  5429. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5430. MpegEncContext * const s = &h->s;
  5431. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5432. int mb_xy, mb_type;
  5433. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5434. mb_xy = h->mb_xy;
  5435. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5436. !(s->flags2 & CODEC_FLAG2_FAST) || //FIXME filter_mb_fast is broken, thus hasto be, but should not under CODEC_FLAG2_FAST
  5437. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5438. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5439. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5440. return;
  5441. }
  5442. assert(!FRAME_MBAFF);
  5443. mb_type = s->current_picture.mb_type[mb_xy];
  5444. qp = s->current_picture.qscale_table[mb_xy];
  5445. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5446. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5447. qpc = get_chroma_qp( h, 0, qp );
  5448. qpc0 = get_chroma_qp( h, 0, qp0 );
  5449. qpc1 = get_chroma_qp( h, 0, qp1 );
  5450. qp0 = (qp + qp0 + 1) >> 1;
  5451. qp1 = (qp + qp1 + 1) >> 1;
  5452. qpc0 = (qpc + qpc0 + 1) >> 1;
  5453. qpc1 = (qpc + qpc1 + 1) >> 1;
  5454. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5455. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5456. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5457. return;
  5458. if( IS_INTRA(mb_type) ) {
  5459. int16_t bS4[4] = {4,4,4,4};
  5460. int16_t bS3[4] = {3,3,3,3};
  5461. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5462. if( IS_8x8DCT(mb_type) ) {
  5463. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5464. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5465. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5466. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5467. } else {
  5468. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5469. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5470. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5471. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5472. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5473. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5474. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5475. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5476. }
  5477. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5478. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5479. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5480. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5481. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5482. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5483. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5484. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5485. return;
  5486. } else {
  5487. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5488. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5489. int edges;
  5490. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5491. edges = 4;
  5492. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5493. } else {
  5494. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5495. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5496. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5497. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5498. ? 3 : 0;
  5499. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5500. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5501. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5502. (h->slice_type_nos == FF_B_TYPE), edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  5503. }
  5504. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5505. bSv[0][0] = 0x0004000400040004ULL;
  5506. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5507. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5508. #define FILTER(hv,dir,edge)\
  5509. if(bSv[dir][edge]) {\
  5510. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5511. if(!(edge&1)) {\
  5512. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5513. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5514. }\
  5515. }
  5516. if( edges == 1 ) {
  5517. FILTER(v,0,0);
  5518. FILTER(h,1,0);
  5519. } else if( IS_8x8DCT(mb_type) ) {
  5520. FILTER(v,0,0);
  5521. FILTER(v,0,2);
  5522. FILTER(h,1,0);
  5523. FILTER(h,1,2);
  5524. } else {
  5525. FILTER(v,0,0);
  5526. FILTER(v,0,1);
  5527. FILTER(v,0,2);
  5528. FILTER(v,0,3);
  5529. FILTER(h,1,0);
  5530. FILTER(h,1,1);
  5531. FILTER(h,1,2);
  5532. FILTER(h,1,3);
  5533. }
  5534. #undef FILTER
  5535. }
  5536. }
  5537. static void av_always_inline filter_mb_dir(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int mb_xy, int mb_type, int mvy_limit, int first_vertical_edge_done, int dir) {
  5538. MpegEncContext * const s = &h->s;
  5539. int edge;
  5540. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5541. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5542. int (*ref2frm) [64] = h->ref2frm[ h->slice_num &(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  5543. int (*ref2frmm)[64] = h->ref2frm[ h->slice_table[mbm_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  5544. int start = h->slice_table[mbm_xy] == 0xFFFF ? 1 : 0;
  5545. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5546. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5547. // how often to recheck mv-based bS when iterating between edges
  5548. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5549. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5550. // how often to recheck mv-based bS when iterating along each edge
  5551. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5552. if (first_vertical_edge_done) {
  5553. start = 1;
  5554. }
  5555. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5556. start = 1;
  5557. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5558. && !IS_INTERLACED(mb_type)
  5559. && IS_INTERLACED(mbm_type)
  5560. ) {
  5561. // This is a special case in the norm where the filtering must
  5562. // be done twice (one each of the field) even if we are in a
  5563. // frame macroblock.
  5564. //
  5565. static const int nnz_idx[4] = {4,5,6,3};
  5566. unsigned int tmp_linesize = 2 * linesize;
  5567. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5568. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5569. int qp;
  5570. int i, j;
  5571. int16_t bS[4];
  5572. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5573. if( IS_INTRA(mb_type) ||
  5574. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5575. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5576. } else {
  5577. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5578. for( i = 0; i < 4; i++ ) {
  5579. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5580. mbn_nnz[nnz_idx[i]] != 0 )
  5581. bS[i] = 2;
  5582. else
  5583. bS[i] = 1;
  5584. }
  5585. }
  5586. // Do not use s->qscale as luma quantizer because it has not the same
  5587. // value in IPCM macroblocks.
  5588. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5589. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5590. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5591. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5592. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5593. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5594. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5595. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5596. }
  5597. start = 1;
  5598. }
  5599. /* Calculate bS */
  5600. for( edge = start; edge < edges; edge++ ) {
  5601. /* mbn_xy: neighbor macroblock */
  5602. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5603. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5604. int (*ref2frmn)[64] = edge > 0 ? ref2frm : ref2frmm;
  5605. int16_t bS[4];
  5606. int qp;
  5607. if( (edge&1) && IS_8x8DCT(mb_type) )
  5608. continue;
  5609. if( IS_INTRA(mb_type) ||
  5610. IS_INTRA(mbn_type) ) {
  5611. int value;
  5612. if (edge == 0) {
  5613. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5614. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5615. ) {
  5616. value = 4;
  5617. } else {
  5618. value = 3;
  5619. }
  5620. } else {
  5621. value = 3;
  5622. }
  5623. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5624. } else {
  5625. int i, l;
  5626. int mv_done;
  5627. if( edge & mask_edge ) {
  5628. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5629. mv_done = 1;
  5630. }
  5631. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5632. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5633. mv_done = 1;
  5634. }
  5635. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5636. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5637. int bn_idx= b_idx - (dir ? 8:1);
  5638. int v = 0;
  5639. for( l = 0; !v && l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  5640. v |= ref2frm[l][h->ref_cache[l][b_idx]] != ref2frmn[l][h->ref_cache[l][bn_idx]] ||
  5641. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5642. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5643. }
  5644. if(h->slice_type_nos == FF_B_TYPE && v){
  5645. v=0;
  5646. for( l = 0; !v && l < 2; l++ ) {
  5647. int ln= 1-l;
  5648. v |= ref2frm[l][h->ref_cache[l][b_idx]] != ref2frmn[ln][h->ref_cache[ln][bn_idx]] ||
  5649. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  5650. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit;
  5651. }
  5652. }
  5653. bS[0] = bS[1] = bS[2] = bS[3] = v;
  5654. mv_done = 1;
  5655. }
  5656. else
  5657. mv_done = 0;
  5658. for( i = 0; i < 4; i++ ) {
  5659. int x = dir == 0 ? edge : i;
  5660. int y = dir == 0 ? i : edge;
  5661. int b_idx= 8 + 4 + x + 8*y;
  5662. int bn_idx= b_idx - (dir ? 8:1);
  5663. if( h->non_zero_count_cache[b_idx] |
  5664. h->non_zero_count_cache[bn_idx] ) {
  5665. bS[i] = 2;
  5666. }
  5667. else if(!mv_done)
  5668. {
  5669. bS[i] = 0;
  5670. for( l = 0; l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  5671. if( ref2frm[l][h->ref_cache[l][b_idx]] != ref2frmn[l][h->ref_cache[l][bn_idx]] ||
  5672. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5673. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  5674. bS[i] = 1;
  5675. break;
  5676. }
  5677. }
  5678. if(h->slice_type_nos == FF_B_TYPE && bS[i]){
  5679. bS[i] = 0;
  5680. for( l = 0; l < 2; l++ ) {
  5681. int ln= 1-l;
  5682. if( ref2frm[l][h->ref_cache[l][b_idx]] != ref2frmn[ln][h->ref_cache[ln][bn_idx]] ||
  5683. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  5684. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit ) {
  5685. bS[i] = 1;
  5686. break;
  5687. }
  5688. }
  5689. }
  5690. }
  5691. }
  5692. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  5693. continue;
  5694. }
  5695. /* Filter edge */
  5696. // Do not use s->qscale as luma quantizer because it has not the same
  5697. // value in IPCM macroblocks.
  5698. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5699. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  5700. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  5701. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5702. if( dir == 0 ) {
  5703. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  5704. if( (edge&1) == 0 ) {
  5705. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  5706. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5707. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  5708. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5709. }
  5710. } else {
  5711. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  5712. if( (edge&1) == 0 ) {
  5713. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  5714. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5715. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  5716. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5717. }
  5718. }
  5719. }
  5720. }
  5721. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5722. MpegEncContext * const s = &h->s;
  5723. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5724. const int mb_type = s->current_picture.mb_type[mb_xy];
  5725. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5726. int first_vertical_edge_done = 0;
  5727. int dir;
  5728. //for sufficiently low qp, filtering wouldn't do anything
  5729. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5730. if(!FRAME_MBAFF){
  5731. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  5732. int qp = s->current_picture.qscale_table[mb_xy];
  5733. if(qp <= qp_thresh
  5734. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5735. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5736. return;
  5737. }
  5738. }
  5739. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  5740. if(!h->pps.cabac && h->pps.transform_8x8_mode){
  5741. int top_type, left_type[2];
  5742. top_type = s->current_picture.mb_type[h->top_mb_xy] ;
  5743. left_type[0] = s->current_picture.mb_type[h->left_mb_xy[0]];
  5744. left_type[1] = s->current_picture.mb_type[h->left_mb_xy[1]];
  5745. if(IS_8x8DCT(top_type)){
  5746. h->non_zero_count_cache[4+8*0]=
  5747. h->non_zero_count_cache[5+8*0]= h->cbp_table[h->top_mb_xy] & 4;
  5748. h->non_zero_count_cache[6+8*0]=
  5749. h->non_zero_count_cache[7+8*0]= h->cbp_table[h->top_mb_xy] & 8;
  5750. }
  5751. if(IS_8x8DCT(left_type[0])){
  5752. h->non_zero_count_cache[3+8*1]=
  5753. h->non_zero_count_cache[3+8*2]= h->cbp_table[h->left_mb_xy[0]]&2; //FIXME check MBAFF
  5754. }
  5755. if(IS_8x8DCT(left_type[1])){
  5756. h->non_zero_count_cache[3+8*3]=
  5757. h->non_zero_count_cache[3+8*4]= h->cbp_table[h->left_mb_xy[1]]&8; //FIXME check MBAFF
  5758. }
  5759. if(IS_8x8DCT(mb_type)){
  5760. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  5761. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  5762. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  5763. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  5764. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  5765. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  5766. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  5767. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  5768. }
  5769. }
  5770. if (FRAME_MBAFF
  5771. // left mb is in picture
  5772. && h->slice_table[mb_xy-1] != 0xFFFF
  5773. // and current and left pair do not have the same interlaced type
  5774. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5775. // and left mb is in the same slice if deblocking_filter == 2
  5776. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5777. /* First vertical edge is different in MBAFF frames
  5778. * There are 8 different bS to compute and 2 different Qp
  5779. */
  5780. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5781. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5782. int16_t bS[8];
  5783. int qp[2];
  5784. int bqp[2];
  5785. int rqp[2];
  5786. int mb_qp, mbn0_qp, mbn1_qp;
  5787. int i;
  5788. first_vertical_edge_done = 1;
  5789. if( IS_INTRA(mb_type) )
  5790. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5791. else {
  5792. for( i = 0; i < 8; i++ ) {
  5793. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5794. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5795. bS[i] = 4;
  5796. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5797. ((!h->pps.cabac && IS_8x8DCT(s->current_picture.mb_type[mbn_xy])) ?
  5798. (h->cbp_table[mbn_xy] & ((MB_FIELD ? (i&2) : (mb_y&1)) ? 8 : 2))
  5799. :
  5800. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2]))
  5801. bS[i] = 2;
  5802. else
  5803. bS[i] = 1;
  5804. }
  5805. }
  5806. mb_qp = s->current_picture.qscale_table[mb_xy];
  5807. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5808. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5809. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5810. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5811. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5812. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5813. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5814. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5815. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5816. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5817. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5818. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5819. /* Filter edge */
  5820. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5821. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5822. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5823. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5824. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5825. }
  5826. #ifdef CONFIG_SMALL
  5827. for( dir = 0; dir < 2; dir++ )
  5828. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, dir ? 0 : first_vertical_edge_done, dir);
  5829. #else
  5830. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, first_vertical_edge_done, 0);
  5831. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, 0, 1);
  5832. #endif
  5833. }
  5834. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  5835. H264Context *h = *(void**)arg;
  5836. MpegEncContext * const s = &h->s;
  5837. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  5838. s->mb_skip_run= -1;
  5839. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  5840. (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || (ENABLE_H264_ENCODER && s->encoding);
  5841. if( h->pps.cabac ) {
  5842. int i;
  5843. /* realign */
  5844. align_get_bits( &s->gb );
  5845. /* init cabac */
  5846. ff_init_cabac_states( &h->cabac);
  5847. ff_init_cabac_decoder( &h->cabac,
  5848. s->gb.buffer + get_bits_count(&s->gb)/8,
  5849. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  5850. /* calculate pre-state */
  5851. for( i= 0; i < 460; i++ ) {
  5852. int pre;
  5853. if( h->slice_type_nos == FF_I_TYPE )
  5854. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  5855. else
  5856. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  5857. if( pre <= 63 )
  5858. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  5859. else
  5860. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  5861. }
  5862. for(;;){
  5863. //START_TIMER
  5864. int ret = decode_mb_cabac(h);
  5865. int eos;
  5866. //STOP_TIMER("decode_mb_cabac")
  5867. if(ret>=0) hl_decode_mb(h);
  5868. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  5869. s->mb_y++;
  5870. if(ret>=0) ret = decode_mb_cabac(h);
  5871. if(ret>=0) hl_decode_mb(h);
  5872. s->mb_y--;
  5873. }
  5874. eos = get_cabac_terminate( &h->cabac );
  5875. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  5876. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  5877. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  5878. return -1;
  5879. }
  5880. if( ++s->mb_x >= s->mb_width ) {
  5881. s->mb_x = 0;
  5882. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  5883. ++s->mb_y;
  5884. if(FIELD_OR_MBAFF_PICTURE) {
  5885. ++s->mb_y;
  5886. }
  5887. }
  5888. if( eos || s->mb_y >= s->mb_height ) {
  5889. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  5890. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5891. return 0;
  5892. }
  5893. }
  5894. } else {
  5895. for(;;){
  5896. int ret = decode_mb_cavlc(h);
  5897. if(ret>=0) hl_decode_mb(h);
  5898. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  5899. s->mb_y++;
  5900. ret = decode_mb_cavlc(h);
  5901. if(ret>=0) hl_decode_mb(h);
  5902. s->mb_y--;
  5903. }
  5904. if(ret<0){
  5905. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  5906. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  5907. return -1;
  5908. }
  5909. if(++s->mb_x >= s->mb_width){
  5910. s->mb_x=0;
  5911. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  5912. ++s->mb_y;
  5913. if(FIELD_OR_MBAFF_PICTURE) {
  5914. ++s->mb_y;
  5915. }
  5916. if(s->mb_y >= s->mb_height){
  5917. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  5918. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  5919. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5920. return 0;
  5921. }else{
  5922. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5923. return -1;
  5924. }
  5925. }
  5926. }
  5927. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  5928. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  5929. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  5930. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5931. return 0;
  5932. }else{
  5933. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  5934. return -1;
  5935. }
  5936. }
  5937. }
  5938. }
  5939. #if 0
  5940. for(;s->mb_y < s->mb_height; s->mb_y++){
  5941. for(;s->mb_x < s->mb_width; s->mb_x++){
  5942. int ret= decode_mb(h);
  5943. hl_decode_mb(h);
  5944. if(ret<0){
  5945. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  5946. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  5947. return -1;
  5948. }
  5949. if(++s->mb_x >= s->mb_width){
  5950. s->mb_x=0;
  5951. if(++s->mb_y >= s->mb_height){
  5952. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  5953. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5954. return 0;
  5955. }else{
  5956. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5957. return -1;
  5958. }
  5959. }
  5960. }
  5961. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  5962. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  5963. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  5964. return 0;
  5965. }else{
  5966. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  5967. return -1;
  5968. }
  5969. }
  5970. }
  5971. s->mb_x=0;
  5972. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  5973. }
  5974. #endif
  5975. return -1; //not reached
  5976. }
  5977. static int decode_picture_timing(H264Context *h){
  5978. MpegEncContext * const s = &h->s;
  5979. if(h->sps.nal_hrd_parameters_present_flag || h->sps.vcl_hrd_parameters_present_flag){
  5980. skip_bits(&s->gb, h->sps.cpb_removal_delay_length); /* cpb_removal_delay */
  5981. skip_bits(&s->gb, h->sps.dpb_output_delay_length); /* dpb_output_delay */
  5982. }
  5983. if(h->sps.pic_struct_present_flag){
  5984. unsigned int i, num_clock_ts;
  5985. h->sei_pic_struct = get_bits(&s->gb, 4);
  5986. if (h->sei_pic_struct > SEI_PIC_STRUCT_FRAME_TRIPLING)
  5987. return -1;
  5988. num_clock_ts = sei_num_clock_ts_table[h->sei_pic_struct];
  5989. for (i = 0 ; i < num_clock_ts ; i++){
  5990. if(get_bits(&s->gb, 1)){ /* clock_timestamp_flag */
  5991. unsigned int full_timestamp_flag;
  5992. skip_bits(&s->gb, 2); /* ct_type */
  5993. skip_bits(&s->gb, 1); /* nuit_field_based_flag */
  5994. skip_bits(&s->gb, 5); /* counting_type */
  5995. full_timestamp_flag = get_bits(&s->gb, 1);
  5996. skip_bits(&s->gb, 1); /* discontinuity_flag */
  5997. skip_bits(&s->gb, 1); /* cnt_dropped_flag */
  5998. skip_bits(&s->gb, 8); /* n_frames */
  5999. if(full_timestamp_flag){
  6000. skip_bits(&s->gb, 6); /* seconds_value 0..59 */
  6001. skip_bits(&s->gb, 6); /* minutes_value 0..59 */
  6002. skip_bits(&s->gb, 5); /* hours_value 0..23 */
  6003. }else{
  6004. if(get_bits(&s->gb, 1)){ /* seconds_flag */
  6005. skip_bits(&s->gb, 6); /* seconds_value range 0..59 */
  6006. if(get_bits(&s->gb, 1)){ /* minutes_flag */
  6007. skip_bits(&s->gb, 6); /* minutes_value 0..59 */
  6008. if(get_bits(&s->gb, 1)) /* hours_flag */
  6009. skip_bits(&s->gb, 5); /* hours_value 0..23 */
  6010. }
  6011. }
  6012. }
  6013. if(h->sps.time_offset_length > 0)
  6014. skip_bits(&s->gb, h->sps.time_offset_length); /* time_offset */
  6015. }
  6016. }
  6017. }
  6018. return 0;
  6019. }
  6020. static int decode_unregistered_user_data(H264Context *h, int size){
  6021. MpegEncContext * const s = &h->s;
  6022. uint8_t user_data[16+256];
  6023. int e, build, i;
  6024. if(size<16)
  6025. return -1;
  6026. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6027. user_data[i]= get_bits(&s->gb, 8);
  6028. }
  6029. user_data[i]= 0;
  6030. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6031. if(e==1 && build>=0)
  6032. h->x264_build= build;
  6033. if(s->avctx->debug & FF_DEBUG_BUGS)
  6034. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6035. for(; i<size; i++)
  6036. skip_bits(&s->gb, 8);
  6037. return 0;
  6038. }
  6039. static int decode_sei(H264Context *h){
  6040. MpegEncContext * const s = &h->s;
  6041. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6042. int size, type;
  6043. type=0;
  6044. do{
  6045. type+= show_bits(&s->gb, 8);
  6046. }while(get_bits(&s->gb, 8) == 255);
  6047. size=0;
  6048. do{
  6049. size+= show_bits(&s->gb, 8);
  6050. }while(get_bits(&s->gb, 8) == 255);
  6051. switch(type){
  6052. case 1: // Picture timing SEI
  6053. if(decode_picture_timing(h) < 0)
  6054. return -1;
  6055. break;
  6056. case 5:
  6057. if(decode_unregistered_user_data(h, size) < 0)
  6058. return -1;
  6059. break;
  6060. default:
  6061. skip_bits(&s->gb, 8*size);
  6062. }
  6063. //FIXME check bits here
  6064. align_get_bits(&s->gb);
  6065. }
  6066. return 0;
  6067. }
  6068. static inline int decode_hrd_parameters(H264Context *h, SPS *sps){
  6069. MpegEncContext * const s = &h->s;
  6070. int cpb_count, i;
  6071. cpb_count = get_ue_golomb(&s->gb) + 1;
  6072. if(cpb_count > 32U){
  6073. av_log(h->s.avctx, AV_LOG_ERROR, "cpb_count %d invalid\n", cpb_count);
  6074. return -1;
  6075. }
  6076. get_bits(&s->gb, 4); /* bit_rate_scale */
  6077. get_bits(&s->gb, 4); /* cpb_size_scale */
  6078. for(i=0; i<cpb_count; i++){
  6079. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6080. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6081. get_bits1(&s->gb); /* cbr_flag */
  6082. }
  6083. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6084. sps->cpb_removal_delay_length = get_bits(&s->gb, 5) + 1;
  6085. sps->dpb_output_delay_length = get_bits(&s->gb, 5) + 1;
  6086. sps->time_offset_length = get_bits(&s->gb, 5);
  6087. return 0;
  6088. }
  6089. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6090. MpegEncContext * const s = &h->s;
  6091. int aspect_ratio_info_present_flag;
  6092. unsigned int aspect_ratio_idc;
  6093. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6094. if( aspect_ratio_info_present_flag ) {
  6095. aspect_ratio_idc= get_bits(&s->gb, 8);
  6096. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6097. sps->sar.num= get_bits(&s->gb, 16);
  6098. sps->sar.den= get_bits(&s->gb, 16);
  6099. }else if(aspect_ratio_idc < FF_ARRAY_ELEMS(pixel_aspect)){
  6100. sps->sar= pixel_aspect[aspect_ratio_idc];
  6101. }else{
  6102. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6103. return -1;
  6104. }
  6105. }else{
  6106. sps->sar.num=
  6107. sps->sar.den= 0;
  6108. }
  6109. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6110. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6111. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6112. }
  6113. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6114. get_bits(&s->gb, 3); /* video_format */
  6115. get_bits1(&s->gb); /* video_full_range_flag */
  6116. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6117. get_bits(&s->gb, 8); /* colour_primaries */
  6118. get_bits(&s->gb, 8); /* transfer_characteristics */
  6119. get_bits(&s->gb, 8); /* matrix_coefficients */
  6120. }
  6121. }
  6122. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6123. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6124. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6125. }
  6126. sps->timing_info_present_flag = get_bits1(&s->gb);
  6127. if(sps->timing_info_present_flag){
  6128. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6129. sps->time_scale = get_bits_long(&s->gb, 32);
  6130. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6131. }
  6132. sps->nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6133. if(sps->nal_hrd_parameters_present_flag)
  6134. if(decode_hrd_parameters(h, sps) < 0)
  6135. return -1;
  6136. sps->vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6137. if(sps->vcl_hrd_parameters_present_flag)
  6138. if(decode_hrd_parameters(h, sps) < 0)
  6139. return -1;
  6140. if(sps->nal_hrd_parameters_present_flag || sps->vcl_hrd_parameters_present_flag)
  6141. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6142. sps->pic_struct_present_flag = get_bits1(&s->gb);
  6143. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6144. if(sps->bitstream_restriction_flag){
  6145. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6146. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6147. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6148. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6149. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6150. sps->num_reorder_frames= get_ue_golomb(&s->gb);
  6151. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6152. if(sps->num_reorder_frames > 16U /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6153. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", sps->num_reorder_frames);
  6154. return -1;
  6155. }
  6156. }
  6157. return 0;
  6158. }
  6159. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6160. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6161. MpegEncContext * const s = &h->s;
  6162. int i, last = 8, next = 8;
  6163. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6164. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6165. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6166. else
  6167. for(i=0;i<size;i++){
  6168. if(next)
  6169. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6170. if(!i && !next){ /* matrix not written, we use the preset one */
  6171. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6172. break;
  6173. }
  6174. last = factors[scan[i]] = next ? next : last;
  6175. }
  6176. }
  6177. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6178. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6179. MpegEncContext * const s = &h->s;
  6180. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6181. const uint8_t *fallback[4] = {
  6182. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6183. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6184. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6185. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6186. };
  6187. if(get_bits1(&s->gb)){
  6188. sps->scaling_matrix_present |= is_sps;
  6189. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6190. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6191. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6192. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6193. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6194. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6195. if(is_sps || pps->transform_8x8_mode){
  6196. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6197. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6198. }
  6199. }
  6200. }
  6201. static inline int decode_seq_parameter_set(H264Context *h){
  6202. MpegEncContext * const s = &h->s;
  6203. int profile_idc, level_idc;
  6204. unsigned int sps_id;
  6205. int i;
  6206. SPS *sps;
  6207. profile_idc= get_bits(&s->gb, 8);
  6208. get_bits1(&s->gb); //constraint_set0_flag
  6209. get_bits1(&s->gb); //constraint_set1_flag
  6210. get_bits1(&s->gb); //constraint_set2_flag
  6211. get_bits1(&s->gb); //constraint_set3_flag
  6212. get_bits(&s->gb, 4); // reserved
  6213. level_idc= get_bits(&s->gb, 8);
  6214. sps_id= get_ue_golomb(&s->gb);
  6215. if(sps_id >= MAX_SPS_COUNT) {
  6216. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id (%d) out of range\n", sps_id);
  6217. return -1;
  6218. }
  6219. sps= av_mallocz(sizeof(SPS));
  6220. if(sps == NULL)
  6221. return -1;
  6222. sps->profile_idc= profile_idc;
  6223. sps->level_idc= level_idc;
  6224. memset(sps->scaling_matrix4, 16, sizeof(sps->scaling_matrix4));
  6225. memset(sps->scaling_matrix8, 16, sizeof(sps->scaling_matrix8));
  6226. sps->scaling_matrix_present = 0;
  6227. if(sps->profile_idc >= 100){ //high profile
  6228. sps->chroma_format_idc= get_ue_golomb(&s->gb);
  6229. if(sps->chroma_format_idc == 3)
  6230. get_bits1(&s->gb); //residual_color_transform_flag
  6231. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6232. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6233. sps->transform_bypass = get_bits1(&s->gb);
  6234. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6235. }else{
  6236. sps->chroma_format_idc= 1;
  6237. }
  6238. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6239. sps->poc_type= get_ue_golomb(&s->gb);
  6240. if(sps->poc_type == 0){ //FIXME #define
  6241. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6242. } else if(sps->poc_type == 1){//FIXME #define
  6243. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6244. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6245. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6246. sps->poc_cycle_length = get_ue_golomb(&s->gb);
  6247. if((unsigned)sps->poc_cycle_length >= FF_ARRAY_ELEMS(sps->offset_for_ref_frame)){
  6248. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", sps->poc_cycle_length);
  6249. goto fail;
  6250. }
  6251. for(i=0; i<sps->poc_cycle_length; i++)
  6252. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6253. }else if(sps->poc_type != 2){
  6254. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6255. goto fail;
  6256. }
  6257. sps->ref_frame_count= get_ue_golomb(&s->gb);
  6258. if(sps->ref_frame_count > MAX_PICTURE_COUNT-2 || sps->ref_frame_count >= 32U){
  6259. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6260. goto fail;
  6261. }
  6262. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6263. sps->mb_width = get_ue_golomb(&s->gb) + 1;
  6264. sps->mb_height= get_ue_golomb(&s->gb) + 1;
  6265. if((unsigned)sps->mb_width >= INT_MAX/16 || (unsigned)sps->mb_height >= INT_MAX/16 ||
  6266. avcodec_check_dimensions(NULL, 16*sps->mb_width, 16*sps->mb_height)){
  6267. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6268. goto fail;
  6269. }
  6270. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6271. if(!sps->frame_mbs_only_flag)
  6272. sps->mb_aff= get_bits1(&s->gb);
  6273. else
  6274. sps->mb_aff= 0;
  6275. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6276. #ifndef ALLOW_INTERLACE
  6277. if(sps->mb_aff)
  6278. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6279. #endif
  6280. sps->crop= get_bits1(&s->gb);
  6281. if(sps->crop){
  6282. sps->crop_left = get_ue_golomb(&s->gb);
  6283. sps->crop_right = get_ue_golomb(&s->gb);
  6284. sps->crop_top = get_ue_golomb(&s->gb);
  6285. sps->crop_bottom= get_ue_golomb(&s->gb);
  6286. if(sps->crop_left || sps->crop_top){
  6287. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6288. }
  6289. if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !sps->frame_mbs_only_flag)){
  6290. av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
  6291. }
  6292. }else{
  6293. sps->crop_left =
  6294. sps->crop_right =
  6295. sps->crop_top =
  6296. sps->crop_bottom= 0;
  6297. }
  6298. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6299. if( sps->vui_parameters_present_flag )
  6300. decode_vui_parameters(h, sps);
  6301. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6302. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s %s\n",
  6303. sps_id, sps->profile_idc, sps->level_idc,
  6304. sps->poc_type,
  6305. sps->ref_frame_count,
  6306. sps->mb_width, sps->mb_height,
  6307. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6308. sps->direct_8x8_inference_flag ? "8B8" : "",
  6309. sps->crop_left, sps->crop_right,
  6310. sps->crop_top, sps->crop_bottom,
  6311. sps->vui_parameters_present_flag ? "VUI" : "",
  6312. ((const char*[]){"Gray","420","422","444"})[sps->chroma_format_idc]
  6313. );
  6314. }
  6315. av_free(h->sps_buffers[sps_id]);
  6316. h->sps_buffers[sps_id]= sps;
  6317. return 0;
  6318. fail:
  6319. av_free(sps);
  6320. return -1;
  6321. }
  6322. static void
  6323. build_qp_table(PPS *pps, int t, int index)
  6324. {
  6325. int i;
  6326. for(i = 0; i < 52; i++)
  6327. pps->chroma_qp_table[t][i] = chroma_qp[av_clip(i + index, 0, 51)];
  6328. }
  6329. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6330. MpegEncContext * const s = &h->s;
  6331. unsigned int pps_id= get_ue_golomb(&s->gb);
  6332. PPS *pps;
  6333. if(pps_id >= MAX_PPS_COUNT) {
  6334. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id (%d) out of range\n", pps_id);
  6335. return -1;
  6336. }
  6337. pps= av_mallocz(sizeof(PPS));
  6338. if(pps == NULL)
  6339. return -1;
  6340. pps->sps_id= get_ue_golomb(&s->gb);
  6341. if((unsigned)pps->sps_id>=MAX_SPS_COUNT || h->sps_buffers[pps->sps_id] == NULL){
  6342. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6343. goto fail;
  6344. }
  6345. pps->cabac= get_bits1(&s->gb);
  6346. pps->pic_order_present= get_bits1(&s->gb);
  6347. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6348. if(pps->slice_group_count > 1 ){
  6349. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6350. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6351. switch(pps->mb_slice_group_map_type){
  6352. case 0:
  6353. #if 0
  6354. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6355. | run_length[ i ] |1 |ue(v) |
  6356. #endif
  6357. break;
  6358. case 2:
  6359. #if 0
  6360. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6361. |{ | | |
  6362. | top_left_mb[ i ] |1 |ue(v) |
  6363. | bottom_right_mb[ i ] |1 |ue(v) |
  6364. | } | | |
  6365. #endif
  6366. break;
  6367. case 3:
  6368. case 4:
  6369. case 5:
  6370. #if 0
  6371. | slice_group_change_direction_flag |1 |u(1) |
  6372. | slice_group_change_rate_minus1 |1 |ue(v) |
  6373. #endif
  6374. break;
  6375. case 6:
  6376. #if 0
  6377. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6378. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6379. |) | | |
  6380. | slice_group_id[ i ] |1 |u(v) |
  6381. #endif
  6382. break;
  6383. }
  6384. }
  6385. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6386. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6387. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6388. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6389. goto fail;
  6390. }
  6391. pps->weighted_pred= get_bits1(&s->gb);
  6392. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6393. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6394. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6395. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6396. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6397. pps->constrained_intra_pred= get_bits1(&s->gb);
  6398. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6399. pps->transform_8x8_mode= 0;
  6400. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6401. memcpy(pps->scaling_matrix4, h->sps_buffers[pps->sps_id]->scaling_matrix4, sizeof(pps->scaling_matrix4));
  6402. memcpy(pps->scaling_matrix8, h->sps_buffers[pps->sps_id]->scaling_matrix8, sizeof(pps->scaling_matrix8));
  6403. if(get_bits_count(&s->gb) < bit_length){
  6404. pps->transform_8x8_mode= get_bits1(&s->gb);
  6405. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6406. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6407. } else {
  6408. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6409. }
  6410. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6411. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6412. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1])
  6413. h->pps.chroma_qp_diff= 1;
  6414. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6415. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6416. pps_id, pps->sps_id,
  6417. pps->cabac ? "CABAC" : "CAVLC",
  6418. pps->slice_group_count,
  6419. pps->ref_count[0], pps->ref_count[1],
  6420. pps->weighted_pred ? "weighted" : "",
  6421. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6422. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6423. pps->constrained_intra_pred ? "CONSTR" : "",
  6424. pps->redundant_pic_cnt_present ? "REDU" : "",
  6425. pps->transform_8x8_mode ? "8x8DCT" : ""
  6426. );
  6427. }
  6428. av_free(h->pps_buffers[pps_id]);
  6429. h->pps_buffers[pps_id]= pps;
  6430. return 0;
  6431. fail:
  6432. av_free(pps);
  6433. return -1;
  6434. }
  6435. /**
  6436. * Call decode_slice() for each context.
  6437. *
  6438. * @param h h264 master context
  6439. * @param context_count number of contexts to execute
  6440. */
  6441. static void execute_decode_slices(H264Context *h, int context_count){
  6442. MpegEncContext * const s = &h->s;
  6443. AVCodecContext * const avctx= s->avctx;
  6444. H264Context *hx;
  6445. int i;
  6446. if(context_count == 1) {
  6447. decode_slice(avctx, &h);
  6448. } else {
  6449. for(i = 1; i < context_count; i++) {
  6450. hx = h->thread_context[i];
  6451. hx->s.error_recognition = avctx->error_recognition;
  6452. hx->s.error_count = 0;
  6453. }
  6454. avctx->execute(avctx, (void *)decode_slice,
  6455. (void **)h->thread_context, NULL, context_count, sizeof(void*));
  6456. /* pull back stuff from slices to master context */
  6457. hx = h->thread_context[context_count - 1];
  6458. s->mb_x = hx->s.mb_x;
  6459. s->mb_y = hx->s.mb_y;
  6460. s->dropable = hx->s.dropable;
  6461. s->picture_structure = hx->s.picture_structure;
  6462. for(i = 1; i < context_count; i++)
  6463. h->s.error_count += h->thread_context[i]->s.error_count;
  6464. }
  6465. }
  6466. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6467. MpegEncContext * const s = &h->s;
  6468. AVCodecContext * const avctx= s->avctx;
  6469. int buf_index=0;
  6470. H264Context *hx; ///< thread context
  6471. int context_count = 0;
  6472. h->max_contexts = avctx->thread_count;
  6473. #if 0
  6474. int i;
  6475. for(i=0; i<50; i++){
  6476. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6477. }
  6478. #endif
  6479. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6480. h->current_slice = 0;
  6481. if (!s->first_field)
  6482. s->current_picture_ptr= NULL;
  6483. }
  6484. for(;;){
  6485. int consumed;
  6486. int dst_length;
  6487. int bit_length;
  6488. const uint8_t *ptr;
  6489. int i, nalsize = 0;
  6490. int err;
  6491. if(h->is_avc) {
  6492. if(buf_index >= buf_size) break;
  6493. nalsize = 0;
  6494. for(i = 0; i < h->nal_length_size; i++)
  6495. nalsize = (nalsize << 8) | buf[buf_index++];
  6496. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6497. if(nalsize == 1){
  6498. buf_index++;
  6499. continue;
  6500. }else{
  6501. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6502. break;
  6503. }
  6504. }
  6505. } else {
  6506. // start code prefix search
  6507. for(; buf_index + 3 < buf_size; buf_index++){
  6508. // This should always succeed in the first iteration.
  6509. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6510. break;
  6511. }
  6512. if(buf_index+3 >= buf_size) break;
  6513. buf_index+=3;
  6514. }
  6515. hx = h->thread_context[context_count];
  6516. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6517. if (ptr==NULL || dst_length < 0){
  6518. return -1;
  6519. }
  6520. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6521. dst_length--;
  6522. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6523. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6524. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6525. }
  6526. if (h->is_avc && (nalsize != consumed)){
  6527. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6528. consumed= nalsize;
  6529. }
  6530. buf_index += consumed;
  6531. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6532. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6533. continue;
  6534. again:
  6535. err = 0;
  6536. switch(hx->nal_unit_type){
  6537. case NAL_IDR_SLICE:
  6538. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6539. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6540. return -1;
  6541. }
  6542. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6543. case NAL_SLICE:
  6544. init_get_bits(&hx->s.gb, ptr, bit_length);
  6545. hx->intra_gb_ptr=
  6546. hx->inter_gb_ptr= &hx->s.gb;
  6547. hx->s.data_partitioning = 0;
  6548. if((err = decode_slice_header(hx, h)))
  6549. break;
  6550. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6551. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6552. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6553. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6554. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6555. && avctx->skip_frame < AVDISCARD_ALL)
  6556. context_count++;
  6557. break;
  6558. case NAL_DPA:
  6559. init_get_bits(&hx->s.gb, ptr, bit_length);
  6560. hx->intra_gb_ptr=
  6561. hx->inter_gb_ptr= NULL;
  6562. hx->s.data_partitioning = 1;
  6563. err = decode_slice_header(hx, h);
  6564. break;
  6565. case NAL_DPB:
  6566. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6567. hx->intra_gb_ptr= &hx->intra_gb;
  6568. break;
  6569. case NAL_DPC:
  6570. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6571. hx->inter_gb_ptr= &hx->inter_gb;
  6572. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6573. && s->context_initialized
  6574. && s->hurry_up < 5
  6575. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6576. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6577. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6578. && avctx->skip_frame < AVDISCARD_ALL)
  6579. context_count++;
  6580. break;
  6581. case NAL_SEI:
  6582. init_get_bits(&s->gb, ptr, bit_length);
  6583. decode_sei(h);
  6584. break;
  6585. case NAL_SPS:
  6586. init_get_bits(&s->gb, ptr, bit_length);
  6587. decode_seq_parameter_set(h);
  6588. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6589. s->low_delay=1;
  6590. if(avctx->has_b_frames < 2)
  6591. avctx->has_b_frames= !s->low_delay;
  6592. break;
  6593. case NAL_PPS:
  6594. init_get_bits(&s->gb, ptr, bit_length);
  6595. decode_picture_parameter_set(h, bit_length);
  6596. break;
  6597. case NAL_AUD:
  6598. case NAL_END_SEQUENCE:
  6599. case NAL_END_STREAM:
  6600. case NAL_FILLER_DATA:
  6601. case NAL_SPS_EXT:
  6602. case NAL_AUXILIARY_SLICE:
  6603. break;
  6604. default:
  6605. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6606. }
  6607. if(context_count == h->max_contexts) {
  6608. execute_decode_slices(h, context_count);
  6609. context_count = 0;
  6610. }
  6611. if (err < 0)
  6612. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6613. else if(err == 1) {
  6614. /* Slice could not be decoded in parallel mode, copy down
  6615. * NAL unit stuff to context 0 and restart. Note that
  6616. * rbsp_buffer is not transferred, but since we no longer
  6617. * run in parallel mode this should not be an issue. */
  6618. h->nal_unit_type = hx->nal_unit_type;
  6619. h->nal_ref_idc = hx->nal_ref_idc;
  6620. hx = h;
  6621. goto again;
  6622. }
  6623. }
  6624. if(context_count)
  6625. execute_decode_slices(h, context_count);
  6626. return buf_index;
  6627. }
  6628. /**
  6629. * returns the number of bytes consumed for building the current frame
  6630. */
  6631. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6632. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6633. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6634. return pos;
  6635. }
  6636. static int decode_frame(AVCodecContext *avctx,
  6637. void *data, int *data_size,
  6638. const uint8_t *buf, int buf_size)
  6639. {
  6640. H264Context *h = avctx->priv_data;
  6641. MpegEncContext *s = &h->s;
  6642. AVFrame *pict = data;
  6643. int buf_index;
  6644. s->flags= avctx->flags;
  6645. s->flags2= avctx->flags2;
  6646. /* end of stream, output what is still in the buffers */
  6647. if (buf_size == 0) {
  6648. Picture *out;
  6649. int i, out_idx;
  6650. //FIXME factorize this with the output code below
  6651. out = h->delayed_pic[0];
  6652. out_idx = 0;
  6653. for(i=1; h->delayed_pic[i] && (h->delayed_pic[i]->poc && !h->delayed_pic[i]->key_frame); i++)
  6654. if(h->delayed_pic[i]->poc < out->poc){
  6655. out = h->delayed_pic[i];
  6656. out_idx = i;
  6657. }
  6658. for(i=out_idx; h->delayed_pic[i]; i++)
  6659. h->delayed_pic[i] = h->delayed_pic[i+1];
  6660. if(out){
  6661. *data_size = sizeof(AVFrame);
  6662. *pict= *(AVFrame*)out;
  6663. }
  6664. return 0;
  6665. }
  6666. if(h->is_avc && !h->got_avcC) {
  6667. int i, cnt, nalsize;
  6668. unsigned char *p = avctx->extradata;
  6669. if(avctx->extradata_size < 7) {
  6670. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6671. return -1;
  6672. }
  6673. if(*p != 1) {
  6674. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6675. return -1;
  6676. }
  6677. /* sps and pps in the avcC always have length coded with 2 bytes,
  6678. so put a fake nal_length_size = 2 while parsing them */
  6679. h->nal_length_size = 2;
  6680. // Decode sps from avcC
  6681. cnt = *(p+5) & 0x1f; // Number of sps
  6682. p += 6;
  6683. for (i = 0; i < cnt; i++) {
  6684. nalsize = AV_RB16(p) + 2;
  6685. if(decode_nal_units(h, p, nalsize) < 0) {
  6686. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6687. return -1;
  6688. }
  6689. p += nalsize;
  6690. }
  6691. // Decode pps from avcC
  6692. cnt = *(p++); // Number of pps
  6693. for (i = 0; i < cnt; i++) {
  6694. nalsize = AV_RB16(p) + 2;
  6695. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6696. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6697. return -1;
  6698. }
  6699. p += nalsize;
  6700. }
  6701. // Now store right nal length size, that will be use to parse all other nals
  6702. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6703. // Do not reparse avcC
  6704. h->got_avcC = 1;
  6705. }
  6706. if(!h->got_avcC && !h->is_avc && s->avctx->extradata_size){
  6707. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6708. return -1;
  6709. h->got_avcC = 1;
  6710. }
  6711. buf_index=decode_nal_units(h, buf, buf_size);
  6712. if(buf_index < 0)
  6713. return -1;
  6714. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6715. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6716. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6717. return -1;
  6718. }
  6719. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6720. Picture *out = s->current_picture_ptr;
  6721. Picture *cur = s->current_picture_ptr;
  6722. int i, pics, cross_idr, out_of_order, out_idx;
  6723. s->mb_y= 0;
  6724. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6725. s->current_picture_ptr->pict_type= s->pict_type;
  6726. if(!s->dropable) {
  6727. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6728. h->prev_poc_msb= h->poc_msb;
  6729. h->prev_poc_lsb= h->poc_lsb;
  6730. }
  6731. h->prev_frame_num_offset= h->frame_num_offset;
  6732. h->prev_frame_num= h->frame_num;
  6733. /*
  6734. * FIXME: Error handling code does not seem to support interlaced
  6735. * when slices span multiple rows
  6736. * The ff_er_add_slice calls don't work right for bottom
  6737. * fields; they cause massive erroneous error concealing
  6738. * Error marking covers both fields (top and bottom).
  6739. * This causes a mismatched s->error_count
  6740. * and a bad error table. Further, the error count goes to
  6741. * INT_MAX when called for bottom field, because mb_y is
  6742. * past end by one (callers fault) and resync_mb_y != 0
  6743. * causes problems for the first MB line, too.
  6744. */
  6745. if (!FIELD_PICTURE)
  6746. ff_er_frame_end(s);
  6747. MPV_frame_end(s);
  6748. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  6749. /* Wait for second field. */
  6750. *data_size = 0;
  6751. } else {
  6752. cur->repeat_pict = 0;
  6753. /* Signal interlacing information externally. */
  6754. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  6755. if(h->sps.pic_struct_present_flag){
  6756. switch (h->sei_pic_struct)
  6757. {
  6758. case SEI_PIC_STRUCT_FRAME:
  6759. cur->interlaced_frame = 0;
  6760. break;
  6761. case SEI_PIC_STRUCT_TOP_FIELD:
  6762. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  6763. case SEI_PIC_STRUCT_TOP_BOTTOM:
  6764. case SEI_PIC_STRUCT_BOTTOM_TOP:
  6765. cur->interlaced_frame = 1;
  6766. break;
  6767. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  6768. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  6769. // Signal the possibility of telecined film externally (pic_struct 5,6)
  6770. // From these hints, let the applications decide if they apply deinterlacing.
  6771. cur->repeat_pict = 1;
  6772. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6773. break;
  6774. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  6775. // Force progressive here, as doubling interlaced frame is a bad idea.
  6776. cur->interlaced_frame = 0;
  6777. cur->repeat_pict = 2;
  6778. break;
  6779. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  6780. cur->interlaced_frame = 0;
  6781. cur->repeat_pict = 4;
  6782. break;
  6783. }
  6784. }else{
  6785. /* Derive interlacing flag from used decoding process. */
  6786. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6787. }
  6788. if (cur->field_poc[0] != cur->field_poc[1]){
  6789. /* Derive top_field_first from field pocs. */
  6790. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6791. }else{
  6792. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  6793. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  6794. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  6795. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  6796. cur->top_field_first = 1;
  6797. else
  6798. cur->top_field_first = 0;
  6799. }else{
  6800. /* Most likely progressive */
  6801. cur->top_field_first = 0;
  6802. }
  6803. }
  6804. //FIXME do something with unavailable reference frames
  6805. /* Sort B-frames into display order */
  6806. if(h->sps.bitstream_restriction_flag
  6807. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6808. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6809. s->low_delay = 0;
  6810. }
  6811. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  6812. && !h->sps.bitstream_restriction_flag){
  6813. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  6814. s->low_delay= 0;
  6815. }
  6816. pics = 0;
  6817. while(h->delayed_pic[pics]) pics++;
  6818. assert(pics <= MAX_DELAYED_PIC_COUNT);
  6819. h->delayed_pic[pics++] = cur;
  6820. if(cur->reference == 0)
  6821. cur->reference = DELAYED_PIC_REF;
  6822. out = h->delayed_pic[0];
  6823. out_idx = 0;
  6824. for(i=1; h->delayed_pic[i] && (h->delayed_pic[i]->poc && !h->delayed_pic[i]->key_frame); i++)
  6825. if(h->delayed_pic[i]->poc < out->poc){
  6826. out = h->delayed_pic[i];
  6827. out_idx = i;
  6828. }
  6829. cross_idr = !h->delayed_pic[0]->poc || !!h->delayed_pic[i] || h->delayed_pic[0]->key_frame;
  6830. out_of_order = !cross_idr && out->poc < h->outputed_poc;
  6831. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6832. { }
  6833. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  6834. || (s->low_delay &&
  6835. ((!cross_idr && out->poc > h->outputed_poc + 2)
  6836. || cur->pict_type == FF_B_TYPE)))
  6837. {
  6838. s->low_delay = 0;
  6839. s->avctx->has_b_frames++;
  6840. }
  6841. if(out_of_order || pics > s->avctx->has_b_frames){
  6842. out->reference &= ~DELAYED_PIC_REF;
  6843. for(i=out_idx; h->delayed_pic[i]; i++)
  6844. h->delayed_pic[i] = h->delayed_pic[i+1];
  6845. }
  6846. if(!out_of_order && pics > s->avctx->has_b_frames){
  6847. *data_size = sizeof(AVFrame);
  6848. h->outputed_poc = out->poc;
  6849. *pict= *(AVFrame*)out;
  6850. }else{
  6851. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6852. }
  6853. }
  6854. }
  6855. assert(pict->data[0] || !*data_size);
  6856. ff_print_debug_info(s, pict);
  6857. //printf("out %d\n", (int)pict->data[0]);
  6858. #if 0 //?
  6859. /* Return the Picture timestamp as the frame number */
  6860. /* we subtract 1 because it is added on utils.c */
  6861. avctx->frame_number = s->picture_number - 1;
  6862. #endif
  6863. return get_consumed_bytes(s, buf_index, buf_size);
  6864. }
  6865. #if 0
  6866. static inline void fill_mb_avail(H264Context *h){
  6867. MpegEncContext * const s = &h->s;
  6868. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6869. if(s->mb_y){
  6870. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6871. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6872. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6873. }else{
  6874. h->mb_avail[0]=
  6875. h->mb_avail[1]=
  6876. h->mb_avail[2]= 0;
  6877. }
  6878. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  6879. h->mb_avail[4]= 1; //FIXME move out
  6880. h->mb_avail[5]= 0; //FIXME move out
  6881. }
  6882. #endif
  6883. #ifdef TEST
  6884. #undef printf
  6885. #undef random
  6886. #define COUNT 8000
  6887. #define SIZE (COUNT*40)
  6888. int main(void){
  6889. int i;
  6890. uint8_t temp[SIZE];
  6891. PutBitContext pb;
  6892. GetBitContext gb;
  6893. // int int_temp[10000];
  6894. DSPContext dsp;
  6895. AVCodecContext avctx;
  6896. dsputil_init(&dsp, &avctx);
  6897. init_put_bits(&pb, temp, SIZE);
  6898. printf("testing unsigned exp golomb\n");
  6899. for(i=0; i<COUNT; i++){
  6900. START_TIMER
  6901. set_ue_golomb(&pb, i);
  6902. STOP_TIMER("set_ue_golomb");
  6903. }
  6904. flush_put_bits(&pb);
  6905. init_get_bits(&gb, temp, 8*SIZE);
  6906. for(i=0; i<COUNT; i++){
  6907. int j, s;
  6908. s= show_bits(&gb, 24);
  6909. START_TIMER
  6910. j= get_ue_golomb(&gb);
  6911. if(j != i){
  6912. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6913. // return -1;
  6914. }
  6915. STOP_TIMER("get_ue_golomb");
  6916. }
  6917. init_put_bits(&pb, temp, SIZE);
  6918. printf("testing signed exp golomb\n");
  6919. for(i=0; i<COUNT; i++){
  6920. START_TIMER
  6921. set_se_golomb(&pb, i - COUNT/2);
  6922. STOP_TIMER("set_se_golomb");
  6923. }
  6924. flush_put_bits(&pb);
  6925. init_get_bits(&gb, temp, 8*SIZE);
  6926. for(i=0; i<COUNT; i++){
  6927. int j, s;
  6928. s= show_bits(&gb, 24);
  6929. START_TIMER
  6930. j= get_se_golomb(&gb);
  6931. if(j != i - COUNT/2){
  6932. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6933. // return -1;
  6934. }
  6935. STOP_TIMER("get_se_golomb");
  6936. }
  6937. #if 0
  6938. printf("testing 4x4 (I)DCT\n");
  6939. DCTELEM block[16];
  6940. uint8_t src[16], ref[16];
  6941. uint64_t error= 0, max_error=0;
  6942. for(i=0; i<COUNT; i++){
  6943. int j;
  6944. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  6945. for(j=0; j<16; j++){
  6946. ref[j]= random()%255;
  6947. src[j]= random()%255;
  6948. }
  6949. h264_diff_dct_c(block, src, ref, 4);
  6950. //normalize
  6951. for(j=0; j<16; j++){
  6952. // printf("%d ", block[j]);
  6953. block[j]= block[j]*4;
  6954. if(j&1) block[j]= (block[j]*4 + 2)/5;
  6955. if(j&4) block[j]= (block[j]*4 + 2)/5;
  6956. }
  6957. // printf("\n");
  6958. s->dsp.h264_idct_add(ref, block, 4);
  6959. /* for(j=0; j<16; j++){
  6960. printf("%d ", ref[j]);
  6961. }
  6962. printf("\n");*/
  6963. for(j=0; j<16; j++){
  6964. int diff= FFABS(src[j] - ref[j]);
  6965. error+= diff*diff;
  6966. max_error= FFMAX(max_error, diff);
  6967. }
  6968. }
  6969. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  6970. printf("testing quantizer\n");
  6971. for(qp=0; qp<52; qp++){
  6972. for(i=0; i<16; i++)
  6973. src1_block[i]= src2_block[i]= random()%255;
  6974. }
  6975. printf("Testing NAL layer\n");
  6976. uint8_t bitstream[COUNT];
  6977. uint8_t nal[COUNT*2];
  6978. H264Context h;
  6979. memset(&h, 0, sizeof(H264Context));
  6980. for(i=0; i<COUNT; i++){
  6981. int zeros= i;
  6982. int nal_length;
  6983. int consumed;
  6984. int out_length;
  6985. uint8_t *out;
  6986. int j;
  6987. for(j=0; j<COUNT; j++){
  6988. bitstream[j]= (random() % 255) + 1;
  6989. }
  6990. for(j=0; j<zeros; j++){
  6991. int pos= random() % COUNT;
  6992. while(bitstream[pos] == 0){
  6993. pos++;
  6994. pos %= COUNT;
  6995. }
  6996. bitstream[pos]=0;
  6997. }
  6998. START_TIMER
  6999. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7000. if(nal_length<0){
  7001. printf("encoding failed\n");
  7002. return -1;
  7003. }
  7004. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7005. STOP_TIMER("NAL")
  7006. if(out_length != COUNT){
  7007. printf("incorrect length %d %d\n", out_length, COUNT);
  7008. return -1;
  7009. }
  7010. if(consumed != nal_length){
  7011. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7012. return -1;
  7013. }
  7014. if(memcmp(bitstream, out, COUNT)){
  7015. printf("mismatch\n");
  7016. return -1;
  7017. }
  7018. }
  7019. #endif
  7020. printf("Testing RBSP\n");
  7021. return 0;
  7022. }
  7023. #endif /* TEST */
  7024. static av_cold int decode_end(AVCodecContext *avctx)
  7025. {
  7026. H264Context *h = avctx->priv_data;
  7027. MpegEncContext *s = &h->s;
  7028. int i;
  7029. av_freep(&h->rbsp_buffer[0]);
  7030. av_freep(&h->rbsp_buffer[1]);
  7031. free_tables(h); //FIXME cleanup init stuff perhaps
  7032. for(i = 0; i < MAX_SPS_COUNT; i++)
  7033. av_freep(h->sps_buffers + i);
  7034. for(i = 0; i < MAX_PPS_COUNT; i++)
  7035. av_freep(h->pps_buffers + i);
  7036. MPV_common_end(s);
  7037. // memset(h, 0, sizeof(H264Context));
  7038. return 0;
  7039. }
  7040. AVCodec h264_decoder = {
  7041. "h264",
  7042. CODEC_TYPE_VIDEO,
  7043. CODEC_ID_H264,
  7044. sizeof(H264Context),
  7045. decode_init,
  7046. NULL,
  7047. decode_end,
  7048. decode_frame,
  7049. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  7050. .flush= flush_dpb,
  7051. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  7052. };
  7053. #include "svq3.c"