You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2457 lines
87KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_MMAP
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
  124. [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
  125. [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
  126. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  127. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  128. [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
  129. [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
  130. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  131. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  134. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  141. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  151. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  152. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  153. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  154. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  155. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  156. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  157. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  158. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  159. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  161. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  164. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  165. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  166. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  168. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  169. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  170. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  177. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  178. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  179. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  180. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  181. [AV_PIX_FMT_YA8] = { 1, 1 },
  182. [AV_PIX_FMT_YA16BE] = { 1, 1 },
  183. [AV_PIX_FMT_YA16LE] = { 1, 1 },
  184. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  185. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  186. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  187. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  188. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  205. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  206. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  207. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  208. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  209. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  210. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  211. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  212. [AV_PIX_FMT_GBRP] = { 1, 1 },
  213. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  216. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  217. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  219. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  220. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  221. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  222. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  223. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  224. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  225. [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
  226. [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
  227. [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
  228. [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
  229. [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
  230. [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
  231. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  232. [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
  233. [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
  234. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  235. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  236. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  237. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  238. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  239. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  240. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  241. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  242. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  243. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  244. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  245. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  246. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  247. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  248. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  249. [AV_PIX_FMT_P010LE] = { 1, 1 },
  250. [AV_PIX_FMT_P010BE] = { 1, 1 },
  251. [AV_PIX_FMT_P016LE] = { 1, 1 },
  252. [AV_PIX_FMT_P016BE] = { 1, 1 },
  253. [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
  254. [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
  255. [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
  256. [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
  257. [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
  258. [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
  259. [AV_PIX_FMT_NV24] = { 1, 1 },
  260. [AV_PIX_FMT_NV42] = { 1, 1 },
  261. [AV_PIX_FMT_Y210LE] = { 1, 0 },
  262. [AV_PIX_FMT_X2RGB10LE] = { 1, 1 },
  263. };
  264. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  265. {
  266. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  267. format_entries[pix_fmt].is_supported_in : 0;
  268. }
  269. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  270. {
  271. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  272. format_entries[pix_fmt].is_supported_out : 0;
  273. }
  274. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  275. {
  276. return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
  277. format_entries[pix_fmt].is_supported_endianness : 0;
  278. }
  279. static double getSplineCoeff(double a, double b, double c, double d,
  280. double dist)
  281. {
  282. if (dist <= 1.0)
  283. return ((d * dist + c) * dist + b) * dist + a;
  284. else
  285. return getSplineCoeff(0.0,
  286. b + 2.0 * c + 3.0 * d,
  287. c + 3.0 * d,
  288. -b - 3.0 * c - 6.0 * d,
  289. dist - 1.0);
  290. }
  291. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  292. {
  293. if (pos == -1 || pos <= -513) {
  294. pos = (128 << chr_subsample) - 128;
  295. }
  296. pos += 128; // relative to ideal left edge
  297. return pos >> chr_subsample;
  298. }
  299. typedef struct {
  300. int flag; ///< flag associated to the algorithm
  301. const char *description; ///< human-readable description
  302. int size_factor; ///< size factor used when initing the filters
  303. } ScaleAlgorithm;
  304. static const ScaleAlgorithm scale_algorithms[] = {
  305. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  306. { SWS_BICUBIC, "bicubic", 4 },
  307. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  308. { SWS_BILINEAR, "bilinear", 2 },
  309. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  310. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  311. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  312. { SWS_POINT, "nearest neighbor / point", -1 },
  313. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  314. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  315. { SWS_X, "experimental", 8 },
  316. };
  317. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  318. int *outFilterSize, int xInc, int srcW,
  319. int dstW, int filterAlign, int one,
  320. int flags, int cpu_flags,
  321. SwsVector *srcFilter, SwsVector *dstFilter,
  322. double param[2], int srcPos, int dstPos)
  323. {
  324. int i;
  325. int filterSize;
  326. int filter2Size;
  327. int minFilterSize;
  328. int64_t *filter = NULL;
  329. int64_t *filter2 = NULL;
  330. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  331. int ret = -1;
  332. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  333. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  334. if (!FF_ALLOC_TYPED_ARRAY(*filterPos, dstW + 3))
  335. goto nomem;
  336. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  337. int i;
  338. filterSize = 1;
  339. if (!FF_ALLOCZ_TYPED_ARRAY(filter, dstW * filterSize))
  340. goto nomem;
  341. for (i = 0; i < dstW; i++) {
  342. filter[i * filterSize] = fone;
  343. (*filterPos)[i] = i;
  344. }
  345. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  346. int i;
  347. int64_t xDstInSrc;
  348. filterSize = 1;
  349. if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
  350. goto nomem;
  351. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  352. for (i = 0; i < dstW; i++) {
  353. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  354. (*filterPos)[i] = xx;
  355. filter[i] = fone;
  356. xDstInSrc += xInc;
  357. }
  358. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  359. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  360. int i;
  361. int64_t xDstInSrc;
  362. filterSize = 2;
  363. if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
  364. goto nomem;
  365. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  366. for (i = 0; i < dstW; i++) {
  367. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  368. int j;
  369. (*filterPos)[i] = xx;
  370. // bilinear upscale / linear interpolate / area averaging
  371. for (j = 0; j < filterSize; j++) {
  372. int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
  373. if (coeff < 0)
  374. coeff = 0;
  375. filter[i * filterSize + j] = coeff;
  376. xx++;
  377. }
  378. xDstInSrc += xInc;
  379. }
  380. } else {
  381. int64_t xDstInSrc;
  382. int sizeFactor = -1;
  383. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  384. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  385. sizeFactor = scale_algorithms[i].size_factor;
  386. break;
  387. }
  388. }
  389. if (flags & SWS_LANCZOS)
  390. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  391. av_assert0(sizeFactor > 0);
  392. if (xInc <= 1 << 16)
  393. filterSize = 1 + sizeFactor; // upscale
  394. else
  395. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  396. filterSize = FFMIN(filterSize, srcW - 2);
  397. filterSize = FFMAX(filterSize, 1);
  398. if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
  399. goto nomem;
  400. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  401. for (i = 0; i < dstW; i++) {
  402. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  403. int j;
  404. (*filterPos)[i] = xx;
  405. for (j = 0; j < filterSize; j++) {
  406. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  407. double floatd;
  408. int64_t coeff;
  409. if (xInc > 1 << 16)
  410. d = d * dstW / srcW;
  411. floatd = d * (1.0 / (1 << 30));
  412. if (flags & SWS_BICUBIC) {
  413. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  414. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  415. if (d >= 1LL << 31) {
  416. coeff = 0.0;
  417. } else {
  418. int64_t dd = (d * d) >> 30;
  419. int64_t ddd = (dd * d) >> 30;
  420. if (d < 1LL << 30)
  421. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  422. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  423. (6 * (1 << 24) - 2 * B) * (1 << 30);
  424. else
  425. coeff = (-B - 6 * C) * ddd +
  426. (6 * B + 30 * C) * dd +
  427. (-12 * B - 48 * C) * d +
  428. (8 * B + 24 * C) * (1 << 30);
  429. }
  430. coeff /= (1LL<<54)/fone;
  431. } else if (flags & SWS_X) {
  432. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  433. double c;
  434. if (floatd < 1.0)
  435. c = cos(floatd * M_PI);
  436. else
  437. c = -1.0;
  438. if (c < 0.0)
  439. c = -pow(-c, A);
  440. else
  441. c = pow(c, A);
  442. coeff = (c * 0.5 + 0.5) * fone;
  443. } else if (flags & SWS_AREA) {
  444. int64_t d2 = d - (1 << 29);
  445. if (d2 * xInc < -(1LL << (29 + 16)))
  446. coeff = 1.0 * (1LL << (30 + 16));
  447. else if (d2 * xInc < (1LL << (29 + 16)))
  448. coeff = -d2 * xInc + (1LL << (29 + 16));
  449. else
  450. coeff = 0.0;
  451. coeff *= fone >> (30 + 16);
  452. } else if (flags & SWS_GAUSS) {
  453. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  454. coeff = exp2(-p * floatd * floatd) * fone;
  455. } else if (flags & SWS_SINC) {
  456. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  457. } else if (flags & SWS_LANCZOS) {
  458. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  459. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  460. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  461. if (floatd > p)
  462. coeff = 0;
  463. } else if (flags & SWS_BILINEAR) {
  464. coeff = (1 << 30) - d;
  465. if (coeff < 0)
  466. coeff = 0;
  467. coeff *= fone >> 30;
  468. } else if (flags & SWS_SPLINE) {
  469. double p = -2.196152422706632;
  470. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  471. } else {
  472. av_assert0(0);
  473. }
  474. filter[i * filterSize + j] = coeff;
  475. xx++;
  476. }
  477. xDstInSrc += 2 * xInc;
  478. }
  479. }
  480. /* apply src & dst Filter to filter -> filter2
  481. * av_free(filter);
  482. */
  483. av_assert0(filterSize > 0);
  484. filter2Size = filterSize;
  485. if (srcFilter)
  486. filter2Size += srcFilter->length - 1;
  487. if (dstFilter)
  488. filter2Size += dstFilter->length - 1;
  489. av_assert0(filter2Size > 0);
  490. if (!FF_ALLOCZ_TYPED_ARRAY(filter2, dstW * filter2Size))
  491. goto nomem;
  492. for (i = 0; i < dstW; i++) {
  493. int j, k;
  494. if (srcFilter) {
  495. for (k = 0; k < srcFilter->length; k++) {
  496. for (j = 0; j < filterSize; j++)
  497. filter2[i * filter2Size + k + j] +=
  498. srcFilter->coeff[k] * filter[i * filterSize + j];
  499. }
  500. } else {
  501. for (j = 0; j < filterSize; j++)
  502. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  503. }
  504. // FIXME dstFilter
  505. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  506. }
  507. av_freep(&filter);
  508. /* try to reduce the filter-size (step1 find size and shift left) */
  509. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  510. minFilterSize = 0;
  511. for (i = dstW - 1; i >= 0; i--) {
  512. int min = filter2Size;
  513. int j;
  514. int64_t cutOff = 0.0;
  515. /* get rid of near zero elements on the left by shifting left */
  516. for (j = 0; j < filter2Size; j++) {
  517. int k;
  518. cutOff += FFABS(filter2[i * filter2Size]);
  519. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  520. break;
  521. /* preserve monotonicity because the core can't handle the
  522. * filter otherwise */
  523. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  524. break;
  525. // move filter coefficients left
  526. for (k = 1; k < filter2Size; k++)
  527. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  528. filter2[i * filter2Size + k - 1] = 0;
  529. (*filterPos)[i]++;
  530. }
  531. cutOff = 0;
  532. /* count near zeros on the right */
  533. for (j = filter2Size - 1; j > 0; j--) {
  534. cutOff += FFABS(filter2[i * filter2Size + j]);
  535. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  536. break;
  537. min--;
  538. }
  539. if (min > minFilterSize)
  540. minFilterSize = min;
  541. }
  542. if (PPC_ALTIVEC(cpu_flags)) {
  543. // we can handle the special case 4, so we don't want to go the full 8
  544. if (minFilterSize < 5)
  545. filterAlign = 4;
  546. /* We really don't want to waste our time doing useless computation, so
  547. * fall back on the scalar C code for very small filters.
  548. * Vectorizing is worth it only if you have a decent-sized vector. */
  549. if (minFilterSize < 3)
  550. filterAlign = 1;
  551. }
  552. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  553. // special case for unscaled vertical filtering
  554. if (minFilterSize == 1 && filterAlign == 2)
  555. filterAlign = 1;
  556. }
  557. av_assert0(minFilterSize > 0);
  558. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  559. av_assert0(filterSize > 0);
  560. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  561. if (!filter)
  562. goto nomem;
  563. if (filterSize >= MAX_FILTER_SIZE * 16 /
  564. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  565. ret = RETCODE_USE_CASCADE;
  566. goto fail;
  567. }
  568. *outFilterSize = filterSize;
  569. if (flags & SWS_PRINT_INFO)
  570. av_log(NULL, AV_LOG_VERBOSE,
  571. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  572. filter2Size, filterSize);
  573. /* try to reduce the filter-size (step2 reduce it) */
  574. for (i = 0; i < dstW; i++) {
  575. int j;
  576. for (j = 0; j < filterSize; j++) {
  577. if (j >= filter2Size)
  578. filter[i * filterSize + j] = 0;
  579. else
  580. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  581. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  582. filter[i * filterSize + j] = 0;
  583. }
  584. }
  585. // FIXME try to align filterPos if possible
  586. // fix borders
  587. for (i = 0; i < dstW; i++) {
  588. int j;
  589. if ((*filterPos)[i] < 0) {
  590. // move filter coefficients left to compensate for filterPos
  591. for (j = 1; j < filterSize; j++) {
  592. int left = FFMAX(j + (*filterPos)[i], 0);
  593. filter[i * filterSize + left] += filter[i * filterSize + j];
  594. filter[i * filterSize + j] = 0;
  595. }
  596. (*filterPos)[i]= 0;
  597. }
  598. if ((*filterPos)[i] + filterSize > srcW) {
  599. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  600. int64_t acc = 0;
  601. for (j = filterSize - 1; j >= 0; j--) {
  602. if ((*filterPos)[i] + j >= srcW) {
  603. acc += filter[i * filterSize + j];
  604. filter[i * filterSize + j] = 0;
  605. }
  606. }
  607. for (j = filterSize - 1; j >= 0; j--) {
  608. if (j < shift) {
  609. filter[i * filterSize + j] = 0;
  610. } else {
  611. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  612. }
  613. }
  614. (*filterPos)[i]-= shift;
  615. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  616. }
  617. av_assert0((*filterPos)[i] >= 0);
  618. av_assert0((*filterPos)[i] < srcW);
  619. if ((*filterPos)[i] + filterSize > srcW) {
  620. for (j = 0; j < filterSize; j++) {
  621. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  622. }
  623. }
  624. }
  625. // Note the +1 is for the MMX scaler which reads over the end
  626. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  627. if (!FF_ALLOCZ_TYPED_ARRAY(*outFilter, *outFilterSize * (dstW + 3)))
  628. goto nomem;
  629. /* normalize & store in outFilter */
  630. for (i = 0; i < dstW; i++) {
  631. int j;
  632. int64_t error = 0;
  633. int64_t sum = 0;
  634. for (j = 0; j < filterSize; j++) {
  635. sum += filter[i * filterSize + j];
  636. }
  637. sum = (sum + one / 2) / one;
  638. if (!sum) {
  639. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  640. sum = 1;
  641. }
  642. for (j = 0; j < *outFilterSize; j++) {
  643. int64_t v = filter[i * filterSize + j] + error;
  644. int intV = ROUNDED_DIV(v, sum);
  645. (*outFilter)[i * (*outFilterSize) + j] = intV;
  646. error = v - intV * sum;
  647. }
  648. }
  649. (*filterPos)[dstW + 0] =
  650. (*filterPos)[dstW + 1] =
  651. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  652. * read over the end */
  653. for (i = 0; i < *outFilterSize; i++) {
  654. int k = (dstW - 1) * (*outFilterSize) + i;
  655. (*outFilter)[k + 1 * (*outFilterSize)] =
  656. (*outFilter)[k + 2 * (*outFilterSize)] =
  657. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  658. }
  659. ret = 0;
  660. goto done;
  661. nomem:
  662. ret = AVERROR(ENOMEM);
  663. fail:
  664. if(ret < 0)
  665. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  666. done:
  667. av_free(filter);
  668. av_free(filter2);
  669. return ret;
  670. }
  671. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  672. {
  673. int64_t W, V, Z, Cy, Cu, Cv;
  674. int64_t vr = table[0];
  675. int64_t ub = table[1];
  676. int64_t ug = -table[2];
  677. int64_t vg = -table[3];
  678. int64_t ONE = 65536;
  679. int64_t cy = ONE;
  680. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  681. int i;
  682. static const int8_t map[] = {
  683. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  684. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  685. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  686. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  687. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  688. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  689. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  690. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  691. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  692. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  693. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  694. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  695. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  696. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  697. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  698. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  699. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  700. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  701. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  702. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  703. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  704. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  705. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  706. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  707. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  708. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  709. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  710. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  711. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  712. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  713. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  714. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  715. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  716. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  717. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  718. };
  719. dstRange = 0; //FIXME range = 1 is handled elsewhere
  720. if (!dstRange) {
  721. cy = cy * 255 / 219;
  722. } else {
  723. vr = vr * 224 / 255;
  724. ub = ub * 224 / 255;
  725. ug = ug * 224 / 255;
  726. vg = vg * 224 / 255;
  727. }
  728. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  729. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  730. Z = ONE*ONE-W-V;
  731. Cy = ROUNDED_DIV(cy*Z, ONE);
  732. Cu = ROUNDED_DIV(ub*Z, ONE);
  733. Cv = ROUNDED_DIV(vr*Z, ONE);
  734. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  735. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  736. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  737. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  738. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  739. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  740. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  741. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  742. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  743. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  744. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  745. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  746. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  747. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  748. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  749. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  750. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  751. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  752. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  753. }
  754. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  755. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  756. }
  757. static void fill_xyztables(struct SwsContext *c)
  758. {
  759. int i;
  760. double xyzgamma = XYZ_GAMMA;
  761. double rgbgamma = 1.0 / RGB_GAMMA;
  762. double xyzgammainv = 1.0 / XYZ_GAMMA;
  763. double rgbgammainv = RGB_GAMMA;
  764. static const int16_t xyz2rgb_matrix[3][4] = {
  765. {13270, -6295, -2041},
  766. {-3969, 7682, 170},
  767. { 228, -835, 4329} };
  768. static const int16_t rgb2xyz_matrix[3][4] = {
  769. {1689, 1464, 739},
  770. { 871, 2929, 296},
  771. { 79, 488, 3891} };
  772. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  773. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  774. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  775. c->xyzgamma = xyzgamma_tab;
  776. c->rgbgamma = rgbgamma_tab;
  777. c->xyzgammainv = xyzgammainv_tab;
  778. c->rgbgammainv = rgbgammainv_tab;
  779. if (rgbgamma_tab[4095])
  780. return;
  781. /* set gamma vectors */
  782. for (i = 0; i < 4096; i++) {
  783. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  784. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  785. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  786. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  787. }
  788. }
  789. static int range_override_needed(enum AVPixelFormat format)
  790. {
  791. return !isYUV(format) && !isGray(format);
  792. }
  793. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  794. int srcRange, const int table[4], int dstRange,
  795. int brightness, int contrast, int saturation)
  796. {
  797. const AVPixFmtDescriptor *desc_dst;
  798. const AVPixFmtDescriptor *desc_src;
  799. int need_reinit = 0;
  800. handle_formats(c);
  801. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  802. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  803. if(range_override_needed(c->dstFormat))
  804. dstRange = 0;
  805. if(range_override_needed(c->srcFormat))
  806. srcRange = 0;
  807. if (c->srcRange != srcRange ||
  808. c->dstRange != dstRange ||
  809. c->brightness != brightness ||
  810. c->contrast != contrast ||
  811. c->saturation != saturation ||
  812. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  813. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  814. )
  815. need_reinit = 1;
  816. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  817. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  818. c->brightness = brightness;
  819. c->contrast = contrast;
  820. c->saturation = saturation;
  821. c->srcRange = srcRange;
  822. c->dstRange = dstRange;
  823. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  824. //and what we have in ticket 2939 looks better with this check
  825. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  826. ff_sws_init_range_convert(c);
  827. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  828. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  829. if (c->cascaded_context[c->cascaded_mainindex])
  830. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  831. if (!need_reinit)
  832. return 0;
  833. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  834. if (!c->cascaded_context[0] &&
  835. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  836. c->srcW && c->srcH && c->dstW && c->dstH) {
  837. enum AVPixelFormat tmp_format;
  838. int tmp_width, tmp_height;
  839. int srcW = c->srcW;
  840. int srcH = c->srcH;
  841. int dstW = c->dstW;
  842. int dstH = c->dstH;
  843. int ret;
  844. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  845. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  846. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  847. tmp_format = AV_PIX_FMT_BGRA64;
  848. } else {
  849. tmp_format = AV_PIX_FMT_BGR48;
  850. }
  851. } else {
  852. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  853. tmp_format = AV_PIX_FMT_BGRA;
  854. } else {
  855. tmp_format = AV_PIX_FMT_BGR24;
  856. }
  857. }
  858. if (srcW*srcH > dstW*dstH) {
  859. tmp_width = dstW;
  860. tmp_height = dstH;
  861. } else {
  862. tmp_width = srcW;
  863. tmp_height = srcH;
  864. }
  865. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  866. tmp_width, tmp_height, tmp_format, 64);
  867. if (ret < 0)
  868. return ret;
  869. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  870. tmp_width, tmp_height, tmp_format,
  871. c->flags, c->param);
  872. if (!c->cascaded_context[0])
  873. return -1;
  874. c->cascaded_context[0]->alphablend = c->alphablend;
  875. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  876. if (ret < 0)
  877. return ret;
  878. //we set both src and dst depending on that the RGB side will be ignored
  879. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  880. srcRange, table, dstRange,
  881. brightness, contrast, saturation);
  882. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  883. dstW, dstH, c->dstFormat,
  884. c->flags, NULL, NULL, c->param);
  885. if (!c->cascaded_context[1])
  886. return -1;
  887. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  888. srcRange, table, dstRange,
  889. 0, 1 << 16, 1 << 16);
  890. return 0;
  891. }
  892. return -1;
  893. }
  894. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  895. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  896. contrast, saturation);
  897. // FIXME factorize
  898. if (ARCH_PPC)
  899. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  900. contrast, saturation);
  901. }
  902. fill_rgb2yuv_table(c, table, dstRange);
  903. return 0;
  904. }
  905. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  906. int *srcRange, int **table, int *dstRange,
  907. int *brightness, int *contrast, int *saturation)
  908. {
  909. if (!c )
  910. return -1;
  911. *inv_table = c->srcColorspaceTable;
  912. *table = c->dstColorspaceTable;
  913. *srcRange = range_override_needed(c->srcFormat) ? 1 : c->srcRange;
  914. *dstRange = range_override_needed(c->dstFormat) ? 1 : c->dstRange;
  915. *brightness = c->brightness;
  916. *contrast = c->contrast;
  917. *saturation = c->saturation;
  918. return 0;
  919. }
  920. static int handle_jpeg(enum AVPixelFormat *format)
  921. {
  922. switch (*format) {
  923. case AV_PIX_FMT_YUVJ420P:
  924. *format = AV_PIX_FMT_YUV420P;
  925. return 1;
  926. case AV_PIX_FMT_YUVJ411P:
  927. *format = AV_PIX_FMT_YUV411P;
  928. return 1;
  929. case AV_PIX_FMT_YUVJ422P:
  930. *format = AV_PIX_FMT_YUV422P;
  931. return 1;
  932. case AV_PIX_FMT_YUVJ444P:
  933. *format = AV_PIX_FMT_YUV444P;
  934. return 1;
  935. case AV_PIX_FMT_YUVJ440P:
  936. *format = AV_PIX_FMT_YUV440P;
  937. return 1;
  938. case AV_PIX_FMT_GRAY8:
  939. case AV_PIX_FMT_YA8:
  940. case AV_PIX_FMT_GRAY9LE:
  941. case AV_PIX_FMT_GRAY9BE:
  942. case AV_PIX_FMT_GRAY10LE:
  943. case AV_PIX_FMT_GRAY10BE:
  944. case AV_PIX_FMT_GRAY12LE:
  945. case AV_PIX_FMT_GRAY12BE:
  946. case AV_PIX_FMT_GRAY14LE:
  947. case AV_PIX_FMT_GRAY14BE:
  948. case AV_PIX_FMT_GRAY16LE:
  949. case AV_PIX_FMT_GRAY16BE:
  950. case AV_PIX_FMT_YA16BE:
  951. case AV_PIX_FMT_YA16LE:
  952. return 1;
  953. default:
  954. return 0;
  955. }
  956. }
  957. static int handle_0alpha(enum AVPixelFormat *format)
  958. {
  959. switch (*format) {
  960. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  961. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  962. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  963. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  964. default: return 0;
  965. }
  966. }
  967. static int handle_xyz(enum AVPixelFormat *format)
  968. {
  969. switch (*format) {
  970. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  971. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  972. default: return 0;
  973. }
  974. }
  975. static void handle_formats(SwsContext *c)
  976. {
  977. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  978. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  979. c->srcXYZ |= handle_xyz(&c->srcFormat);
  980. c->dstXYZ |= handle_xyz(&c->dstFormat);
  981. if (c->srcXYZ || c->dstXYZ)
  982. fill_xyztables(c);
  983. }
  984. SwsContext *sws_alloc_context(void)
  985. {
  986. SwsContext *c = av_mallocz(sizeof(SwsContext));
  987. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  988. if (c) {
  989. c->av_class = &ff_sws_context_class;
  990. av_opt_set_defaults(c);
  991. }
  992. return c;
  993. }
  994. static uint16_t * alloc_gamma_tbl(double e)
  995. {
  996. int i = 0;
  997. uint16_t * tbl;
  998. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  999. if (!tbl)
  1000. return NULL;
  1001. for (i = 0; i < 65536; ++i) {
  1002. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  1003. }
  1004. return tbl;
  1005. }
  1006. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  1007. {
  1008. switch(fmt) {
  1009. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  1010. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  1011. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  1012. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  1013. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  1014. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  1015. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  1016. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  1017. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  1018. case AV_PIX_FMT_GBRAP10LE: return AV_PIX_FMT_GBRP10;
  1019. case AV_PIX_FMT_GBRAP10BE: return AV_PIX_FMT_GBRP10;
  1020. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  1021. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  1022. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  1023. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  1024. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  1025. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  1026. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  1027. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  1028. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  1029. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  1030. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  1031. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  1032. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  1033. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  1034. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  1035. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  1036. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  1037. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1038. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1039. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1040. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1041. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1042. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1043. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1044. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1045. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1046. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1047. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1048. // case AV_PIX_FMT_AYUV64LE:
  1049. // case AV_PIX_FMT_AYUV64BE:
  1050. // case AV_PIX_FMT_PAL8:
  1051. default: return AV_PIX_FMT_NONE;
  1052. }
  1053. }
  1054. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1055. SwsFilter *dstFilter)
  1056. {
  1057. int i;
  1058. int usesVFilter, usesHFilter;
  1059. int unscaled;
  1060. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1061. int srcW = c->srcW;
  1062. int srcH = c->srcH;
  1063. int dstW = c->dstW;
  1064. int dstH = c->dstH;
  1065. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1066. int flags, cpu_flags;
  1067. enum AVPixelFormat srcFormat = c->srcFormat;
  1068. enum AVPixelFormat dstFormat = c->dstFormat;
  1069. const AVPixFmtDescriptor *desc_src;
  1070. const AVPixFmtDescriptor *desc_dst;
  1071. int ret = 0;
  1072. enum AVPixelFormat tmpFmt;
  1073. static const float float_mult = 1.0f / 255.0f;
  1074. cpu_flags = av_get_cpu_flags();
  1075. flags = c->flags;
  1076. emms_c();
  1077. if (!rgb15to16)
  1078. ff_sws_rgb2rgb_init();
  1079. unscaled = (srcW == dstW && srcH == dstH);
  1080. c->srcRange |= handle_jpeg(&c->srcFormat);
  1081. c->dstRange |= handle_jpeg(&c->dstFormat);
  1082. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1083. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1084. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1085. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1086. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1087. c->dstRange, 0, 1 << 16, 1 << 16);
  1088. handle_formats(c);
  1089. srcFormat = c->srcFormat;
  1090. dstFormat = c->dstFormat;
  1091. desc_src = av_pix_fmt_desc_get(srcFormat);
  1092. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1093. // If the source has no alpha then disable alpha blendaway
  1094. if (c->src0Alpha)
  1095. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1096. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1097. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1098. if (!sws_isSupportedInput(srcFormat)) {
  1099. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1100. av_get_pix_fmt_name(srcFormat));
  1101. return AVERROR(EINVAL);
  1102. }
  1103. if (!sws_isSupportedOutput(dstFormat)) {
  1104. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1105. av_get_pix_fmt_name(dstFormat));
  1106. return AVERROR(EINVAL);
  1107. }
  1108. }
  1109. av_assert2(desc_src && desc_dst);
  1110. i = flags & (SWS_POINT |
  1111. SWS_AREA |
  1112. SWS_BILINEAR |
  1113. SWS_FAST_BILINEAR |
  1114. SWS_BICUBIC |
  1115. SWS_X |
  1116. SWS_GAUSS |
  1117. SWS_LANCZOS |
  1118. SWS_SINC |
  1119. SWS_SPLINE |
  1120. SWS_BICUBLIN);
  1121. /* provide a default scaler if not set by caller */
  1122. if (!i) {
  1123. if (dstW < srcW && dstH < srcH)
  1124. flags |= SWS_BICUBIC;
  1125. else if (dstW > srcW && dstH > srcH)
  1126. flags |= SWS_BICUBIC;
  1127. else
  1128. flags |= SWS_BICUBIC;
  1129. c->flags = flags;
  1130. } else if (i & (i - 1)) {
  1131. av_log(c, AV_LOG_ERROR,
  1132. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1133. return AVERROR(EINVAL);
  1134. }
  1135. /* sanity check */
  1136. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1137. /* FIXME check if these are enough and try to lower them after
  1138. * fixing the relevant parts of the code */
  1139. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1140. srcW, srcH, dstW, dstH);
  1141. return AVERROR(EINVAL);
  1142. }
  1143. if (flags & SWS_FAST_BILINEAR) {
  1144. if (srcW < 8 || dstW < 8) {
  1145. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1146. c->flags = flags;
  1147. }
  1148. }
  1149. if (!dstFilter)
  1150. dstFilter = &dummyFilter;
  1151. if (!srcFilter)
  1152. srcFilter = &dummyFilter;
  1153. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1154. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1155. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1156. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1157. c->vRounder = 4 * 0x0001000100010001ULL;
  1158. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1159. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1160. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1161. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1162. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1163. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1164. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1165. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1166. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1167. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1168. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1169. if (dstW&1) {
  1170. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1171. flags |= SWS_FULL_CHR_H_INT;
  1172. c->flags = flags;
  1173. }
  1174. if ( c->chrSrcHSubSample == 0
  1175. && c->chrSrcVSubSample == 0
  1176. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1177. && !(c->flags & SWS_FAST_BILINEAR)
  1178. ) {
  1179. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1180. flags |= SWS_FULL_CHR_H_INT;
  1181. c->flags = flags;
  1182. }
  1183. }
  1184. if (c->dither == SWS_DITHER_AUTO) {
  1185. if (flags & SWS_ERROR_DIFFUSION)
  1186. c->dither = SWS_DITHER_ED;
  1187. }
  1188. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1189. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1190. dstFormat == AV_PIX_FMT_BGR8 ||
  1191. dstFormat == AV_PIX_FMT_RGB8) {
  1192. if (c->dither == SWS_DITHER_AUTO)
  1193. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1194. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1195. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1196. av_log(c, AV_LOG_DEBUG,
  1197. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1198. av_get_pix_fmt_name(dstFormat));
  1199. flags |= SWS_FULL_CHR_H_INT;
  1200. c->flags = flags;
  1201. }
  1202. }
  1203. if (flags & SWS_FULL_CHR_H_INT) {
  1204. if (c->dither == SWS_DITHER_BAYER) {
  1205. av_log(c, AV_LOG_DEBUG,
  1206. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1207. av_get_pix_fmt_name(dstFormat));
  1208. c->dither = SWS_DITHER_ED;
  1209. }
  1210. }
  1211. }
  1212. if (isPlanarRGB(dstFormat)) {
  1213. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1214. av_log(c, AV_LOG_DEBUG,
  1215. "%s output is not supported with half chroma resolution, switching to full\n",
  1216. av_get_pix_fmt_name(dstFormat));
  1217. flags |= SWS_FULL_CHR_H_INT;
  1218. c->flags = flags;
  1219. }
  1220. }
  1221. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1222. * chroma interpolation */
  1223. if (flags & SWS_FULL_CHR_H_INT &&
  1224. isAnyRGB(dstFormat) &&
  1225. !isPlanarRGB(dstFormat) &&
  1226. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1227. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1228. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1229. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1230. dstFormat != AV_PIX_FMT_RGB48LE &&
  1231. dstFormat != AV_PIX_FMT_RGB48BE &&
  1232. dstFormat != AV_PIX_FMT_BGR48LE &&
  1233. dstFormat != AV_PIX_FMT_BGR48BE &&
  1234. dstFormat != AV_PIX_FMT_RGBA &&
  1235. dstFormat != AV_PIX_FMT_ARGB &&
  1236. dstFormat != AV_PIX_FMT_BGRA &&
  1237. dstFormat != AV_PIX_FMT_ABGR &&
  1238. dstFormat != AV_PIX_FMT_RGB24 &&
  1239. dstFormat != AV_PIX_FMT_BGR24 &&
  1240. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1241. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1242. dstFormat != AV_PIX_FMT_BGR8 &&
  1243. dstFormat != AV_PIX_FMT_RGB8
  1244. ) {
  1245. av_log(c, AV_LOG_WARNING,
  1246. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1247. av_get_pix_fmt_name(dstFormat));
  1248. flags &= ~SWS_FULL_CHR_H_INT;
  1249. c->flags = flags;
  1250. }
  1251. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1252. c->chrDstHSubSample = 1;
  1253. // drop some chroma lines if the user wants it
  1254. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1255. SWS_SRC_V_CHR_DROP_SHIFT;
  1256. c->chrSrcVSubSample += c->vChrDrop;
  1257. /* drop every other pixel for chroma calculation unless user
  1258. * wants full chroma */
  1259. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1260. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1261. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1262. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1263. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1264. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1265. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  1266. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1267. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1268. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1269. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1270. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1271. srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
  1272. srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
  1273. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1274. (flags & SWS_FAST_BILINEAR)))
  1275. c->chrSrcHSubSample = 1;
  1276. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1277. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1278. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1279. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1280. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1281. if (!FF_ALLOCZ_TYPED_ARRAY(c->formatConvBuffer, FFALIGN(srcW * 2 + 78, 16) * 2))
  1282. goto nomem;
  1283. c->srcBpc = desc_src->comp[0].depth;
  1284. if (c->srcBpc < 8)
  1285. c->srcBpc = 8;
  1286. c->dstBpc = desc_dst->comp[0].depth;
  1287. if (c->dstBpc < 8)
  1288. c->dstBpc = 8;
  1289. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1290. c->srcBpc = 16;
  1291. if (c->dstBpc == 16)
  1292. dst_stride <<= 1;
  1293. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1294. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1295. c->chrDstW >= c->chrSrcW &&
  1296. (srcW & 15) == 0;
  1297. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1298. && (flags & SWS_FAST_BILINEAR)) {
  1299. if (flags & SWS_PRINT_INFO)
  1300. av_log(c, AV_LOG_INFO,
  1301. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1302. }
  1303. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1304. c->canMMXEXTBeUsed = 0;
  1305. } else
  1306. c->canMMXEXTBeUsed = 0;
  1307. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1308. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1309. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1310. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1311. * correct scaling.
  1312. * n-2 is the last chrominance sample available.
  1313. * This is not perfect, but no one should notice the difference, the more
  1314. * correct variant would be like the vertical one, but that would require
  1315. * some special code for the first and last pixel */
  1316. if (flags & SWS_FAST_BILINEAR) {
  1317. if (c->canMMXEXTBeUsed) {
  1318. c->lumXInc += 20;
  1319. c->chrXInc += 20;
  1320. }
  1321. // we don't use the x86 asm scaler if MMX is available
  1322. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1323. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1324. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1325. }
  1326. }
  1327. // hardcoded for now
  1328. c->gamma_value = 2.2;
  1329. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1330. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1331. SwsContext *c2;
  1332. c->cascaded_context[0] = NULL;
  1333. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1334. srcW, srcH, tmpFmt, 64);
  1335. if (ret < 0)
  1336. return ret;
  1337. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1338. srcW, srcH, tmpFmt,
  1339. flags, NULL, NULL, c->param);
  1340. if (!c->cascaded_context[0]) {
  1341. return AVERROR(ENOMEM);
  1342. }
  1343. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1344. dstW, dstH, tmpFmt,
  1345. flags, srcFilter, dstFilter, c->param);
  1346. if (!c->cascaded_context[1])
  1347. return AVERROR(ENOMEM);
  1348. c2 = c->cascaded_context[1];
  1349. c2->is_internal_gamma = 1;
  1350. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1351. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1352. if (!c2->gamma || !c2->inv_gamma)
  1353. return AVERROR(ENOMEM);
  1354. // is_internal_flag is set after creating the context
  1355. // to properly create the gamma convert FilterDescriptor
  1356. // we have to re-initialize it
  1357. ff_free_filters(c2);
  1358. if ((ret = ff_init_filters(c2)) < 0) {
  1359. sws_freeContext(c2);
  1360. c->cascaded_context[1] = NULL;
  1361. return ret;
  1362. }
  1363. c->cascaded_context[2] = NULL;
  1364. if (dstFormat != tmpFmt) {
  1365. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1366. dstW, dstH, tmpFmt, 64);
  1367. if (ret < 0)
  1368. return ret;
  1369. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1370. dstW, dstH, dstFormat,
  1371. flags, NULL, NULL, c->param);
  1372. if (!c->cascaded_context[2])
  1373. return AVERROR(ENOMEM);
  1374. }
  1375. return 0;
  1376. }
  1377. if (isBayer(srcFormat)) {
  1378. if (!unscaled ||
  1379. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P &&
  1380. dstFormat != AV_PIX_FMT_RGB48)) {
  1381. enum AVPixelFormat tmpFormat = isBayer16BPS(srcFormat) ? AV_PIX_FMT_RGB48 : AV_PIX_FMT_RGB24;
  1382. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1383. srcW, srcH, tmpFormat, 64);
  1384. if (ret < 0)
  1385. return ret;
  1386. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1387. srcW, srcH, tmpFormat,
  1388. flags, srcFilter, NULL, c->param);
  1389. if (!c->cascaded_context[0])
  1390. return AVERROR(ENOMEM);
  1391. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1392. dstW, dstH, dstFormat,
  1393. flags, NULL, dstFilter, c->param);
  1394. if (!c->cascaded_context[1])
  1395. return AVERROR(ENOMEM);
  1396. return 0;
  1397. }
  1398. }
  1399. if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
  1400. for (i = 0; i < 256; ++i){
  1401. c->uint2float_lut[i] = (float)i * float_mult;
  1402. }
  1403. }
  1404. // float will be converted to uint16_t
  1405. if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
  1406. (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
  1407. dstFormat != AV_PIX_FMT_GRAY8))){
  1408. c->srcBpc = 16;
  1409. }
  1410. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1411. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1412. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE) {
  1413. if (!unscaled ||
  1414. dstFormat != tmpFormat ||
  1415. usesHFilter || usesVFilter ||
  1416. c->srcRange != c->dstRange
  1417. ) {
  1418. c->cascaded_mainindex = 1;
  1419. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1420. srcW, srcH, tmpFormat, 64);
  1421. if (ret < 0)
  1422. return ret;
  1423. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1424. srcW, srcH, tmpFormat,
  1425. flags, c->param);
  1426. if (!c->cascaded_context[0])
  1427. return AVERROR(EINVAL);
  1428. c->cascaded_context[0]->alphablend = c->alphablend;
  1429. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1430. if (ret < 0)
  1431. return ret;
  1432. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1433. dstW, dstH, dstFormat,
  1434. flags, c->param);
  1435. if (!c->cascaded_context[1])
  1436. return AVERROR(EINVAL);
  1437. c->cascaded_context[1]->srcRange = c->srcRange;
  1438. c->cascaded_context[1]->dstRange = c->dstRange;
  1439. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1440. if (ret < 0)
  1441. return ret;
  1442. return 0;
  1443. }
  1444. }
  1445. }
  1446. #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
  1447. #define USE_MMAP 1
  1448. #else
  1449. #define USE_MMAP 0
  1450. #endif
  1451. /* precalculate horizontal scaler filter coefficients */
  1452. {
  1453. #if HAVE_MMXEXT_INLINE
  1454. // can't downscale !!!
  1455. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1456. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1457. NULL, NULL, 8);
  1458. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1459. NULL, NULL, NULL, 4);
  1460. #if USE_MMAP
  1461. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1462. PROT_READ | PROT_WRITE,
  1463. MAP_PRIVATE | MAP_ANONYMOUS,
  1464. -1, 0);
  1465. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1466. PROT_READ | PROT_WRITE,
  1467. MAP_PRIVATE | MAP_ANONYMOUS,
  1468. -1, 0);
  1469. #elif HAVE_VIRTUALALLOC
  1470. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1471. c->lumMmxextFilterCodeSize,
  1472. MEM_COMMIT,
  1473. PAGE_EXECUTE_READWRITE);
  1474. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1475. c->chrMmxextFilterCodeSize,
  1476. MEM_COMMIT,
  1477. PAGE_EXECUTE_READWRITE);
  1478. #else
  1479. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1480. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1481. #endif
  1482. #ifdef MAP_ANONYMOUS
  1483. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1484. #else
  1485. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1486. #endif
  1487. {
  1488. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1489. return AVERROR(ENOMEM);
  1490. }
  1491. if (!FF_ALLOCZ_TYPED_ARRAY(c->hLumFilter, dstW / 8 + 8) ||
  1492. !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilter, c->chrDstW / 4 + 8) ||
  1493. !FF_ALLOCZ_TYPED_ARRAY(c->hLumFilterPos, dstW / 2 / 8 + 8) ||
  1494. !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilterPos, c->chrDstW / 2 / 4 + 8))
  1495. goto nomem;
  1496. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1497. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1498. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1499. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1500. #if USE_MMAP
  1501. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1502. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1503. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1504. ret = AVERROR(EINVAL);
  1505. goto fail;
  1506. }
  1507. #endif
  1508. } else
  1509. #endif /* HAVE_MMXEXT_INLINE */
  1510. {
  1511. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1512. PPC_ALTIVEC(cpu_flags) ? 8 :
  1513. have_neon(cpu_flags) ? 8 : 1;
  1514. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1515. &c->hLumFilterSize, c->lumXInc,
  1516. srcW, dstW, filterAlign, 1 << 14,
  1517. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1518. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1519. c->param,
  1520. get_local_pos(c, 0, 0, 0),
  1521. get_local_pos(c, 0, 0, 0))) < 0)
  1522. goto fail;
  1523. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1524. &c->hChrFilterSize, c->chrXInc,
  1525. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1526. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1527. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1528. c->param,
  1529. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1530. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1531. goto fail;
  1532. }
  1533. } // initialize horizontal stuff
  1534. /* precalculate vertical scaler filter coefficients */
  1535. {
  1536. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1537. PPC_ALTIVEC(cpu_flags) ? 8 :
  1538. have_neon(cpu_flags) ? 2 : 1;
  1539. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1540. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1541. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1542. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1543. c->param,
  1544. get_local_pos(c, 0, 0, 1),
  1545. get_local_pos(c, 0, 0, 1))) < 0)
  1546. goto fail;
  1547. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1548. c->chrYInc, c->chrSrcH, c->chrDstH,
  1549. filterAlign, (1 << 12),
  1550. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1551. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1552. c->param,
  1553. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1554. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1555. goto fail;
  1556. #if HAVE_ALTIVEC
  1557. if (!FF_ALLOC_TYPED_ARRAY(c->vYCoeffsBank, c->vLumFilterSize * c->dstH) ||
  1558. !FF_ALLOC_TYPED_ARRAY(c->vCCoeffsBank, c->vChrFilterSize * c->chrDstH))
  1559. goto nomem;
  1560. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1561. int j;
  1562. short *p = (short *)&c->vYCoeffsBank[i];
  1563. for (j = 0; j < 8; j++)
  1564. p[j] = c->vLumFilter[i];
  1565. }
  1566. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1567. int j;
  1568. short *p = (short *)&c->vCCoeffsBank[i];
  1569. for (j = 0; j < 8; j++)
  1570. p[j] = c->vChrFilter[i];
  1571. }
  1572. #endif
  1573. }
  1574. for (i = 0; i < 4; i++)
  1575. if (!FF_ALLOCZ_TYPED_ARRAY(c->dither_error[i], c->dstW + 2))
  1576. goto nomem;
  1577. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1578. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1579. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1580. c->uv_offx2 = dst_stride + 16;
  1581. av_assert0(c->chrDstH <= dstH);
  1582. if (flags & SWS_PRINT_INFO) {
  1583. const char *scaler = NULL, *cpucaps;
  1584. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1585. if (flags & scale_algorithms[i].flag) {
  1586. scaler = scale_algorithms[i].description;
  1587. break;
  1588. }
  1589. }
  1590. if (!scaler)
  1591. scaler = "ehh flags invalid?!";
  1592. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1593. scaler,
  1594. av_get_pix_fmt_name(srcFormat),
  1595. #ifdef DITHER1XBPP
  1596. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1597. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1598. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1599. "dithered " : "",
  1600. #else
  1601. "",
  1602. #endif
  1603. av_get_pix_fmt_name(dstFormat));
  1604. if (INLINE_MMXEXT(cpu_flags))
  1605. cpucaps = "MMXEXT";
  1606. else if (INLINE_AMD3DNOW(cpu_flags))
  1607. cpucaps = "3DNOW";
  1608. else if (INLINE_MMX(cpu_flags))
  1609. cpucaps = "MMX";
  1610. else if (PPC_ALTIVEC(cpu_flags))
  1611. cpucaps = "AltiVec";
  1612. else
  1613. cpucaps = "C";
  1614. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1615. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1616. av_log(c, AV_LOG_DEBUG,
  1617. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1618. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1619. av_log(c, AV_LOG_DEBUG,
  1620. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1621. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1622. c->chrXInc, c->chrYInc);
  1623. }
  1624. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1625. if (unscaled && !usesHFilter && !usesVFilter &&
  1626. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1627. isALPHA(srcFormat) &&
  1628. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1629. alphaless_fmt(srcFormat) == dstFormat
  1630. ) {
  1631. c->swscale = ff_sws_alphablendaway;
  1632. if (flags & SWS_PRINT_INFO)
  1633. av_log(c, AV_LOG_INFO,
  1634. "using alpha blendaway %s -> %s special converter\n",
  1635. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1636. return 0;
  1637. }
  1638. /* unscaled special cases */
  1639. if (unscaled && !usesHFilter && !usesVFilter &&
  1640. (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
  1641. isFloat(srcFormat) || isFloat(dstFormat))){
  1642. ff_get_unscaled_swscale(c);
  1643. if (c->swscale) {
  1644. if (flags & SWS_PRINT_INFO)
  1645. av_log(c, AV_LOG_INFO,
  1646. "using unscaled %s -> %s special converter\n",
  1647. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1648. return 0;
  1649. }
  1650. }
  1651. c->swscale = ff_getSwsFunc(c);
  1652. return ff_init_filters(c);
  1653. nomem:
  1654. ret = AVERROR(ENOMEM);
  1655. fail: // FIXME replace things by appropriate error codes
  1656. if (ret == RETCODE_USE_CASCADE) {
  1657. int tmpW = sqrt(srcW * (int64_t)dstW);
  1658. int tmpH = sqrt(srcH * (int64_t)dstH);
  1659. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1660. if (isALPHA(srcFormat))
  1661. tmpFormat = AV_PIX_FMT_YUVA420P;
  1662. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1663. return AVERROR(EINVAL);
  1664. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1665. tmpW, tmpH, tmpFormat, 64);
  1666. if (ret < 0)
  1667. return ret;
  1668. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1669. tmpW, tmpH, tmpFormat,
  1670. flags, srcFilter, NULL, c->param);
  1671. if (!c->cascaded_context[0])
  1672. return AVERROR(ENOMEM);
  1673. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1674. dstW, dstH, dstFormat,
  1675. flags, NULL, dstFilter, c->param);
  1676. if (!c->cascaded_context[1])
  1677. return AVERROR(ENOMEM);
  1678. return 0;
  1679. }
  1680. return ret;
  1681. }
  1682. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1683. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1684. int flags, const double *param)
  1685. {
  1686. SwsContext *c;
  1687. if (!(c = sws_alloc_context()))
  1688. return NULL;
  1689. c->flags = flags;
  1690. c->srcW = srcW;
  1691. c->srcH = srcH;
  1692. c->dstW = dstW;
  1693. c->dstH = dstH;
  1694. c->srcFormat = srcFormat;
  1695. c->dstFormat = dstFormat;
  1696. if (param) {
  1697. c->param[0] = param[0];
  1698. c->param[1] = param[1];
  1699. }
  1700. return c;
  1701. }
  1702. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1703. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1704. int flags, SwsFilter *srcFilter,
  1705. SwsFilter *dstFilter, const double *param)
  1706. {
  1707. SwsContext *c;
  1708. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1709. dstW, dstH, dstFormat,
  1710. flags, param);
  1711. if (!c)
  1712. return NULL;
  1713. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1714. sws_freeContext(c);
  1715. return NULL;
  1716. }
  1717. return c;
  1718. }
  1719. static int isnan_vec(SwsVector *a)
  1720. {
  1721. int i;
  1722. for (i=0; i<a->length; i++)
  1723. if (isnan(a->coeff[i]))
  1724. return 1;
  1725. return 0;
  1726. }
  1727. static void makenan_vec(SwsVector *a)
  1728. {
  1729. int i;
  1730. for (i=0; i<a->length; i++)
  1731. a->coeff[i] = NAN;
  1732. }
  1733. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1734. float lumaSharpen, float chromaSharpen,
  1735. float chromaHShift, float chromaVShift,
  1736. int verbose)
  1737. {
  1738. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1739. if (!filter)
  1740. return NULL;
  1741. if (lumaGBlur != 0.0) {
  1742. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1743. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1744. } else {
  1745. filter->lumH = sws_getIdentityVec();
  1746. filter->lumV = sws_getIdentityVec();
  1747. }
  1748. if (chromaGBlur != 0.0) {
  1749. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1750. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1751. } else {
  1752. filter->chrH = sws_getIdentityVec();
  1753. filter->chrV = sws_getIdentityVec();
  1754. }
  1755. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1756. goto fail;
  1757. if (chromaSharpen != 0.0) {
  1758. SwsVector *id = sws_getIdentityVec();
  1759. if (!id)
  1760. goto fail;
  1761. sws_scaleVec(filter->chrH, -chromaSharpen);
  1762. sws_scaleVec(filter->chrV, -chromaSharpen);
  1763. sws_addVec(filter->chrH, id);
  1764. sws_addVec(filter->chrV, id);
  1765. sws_freeVec(id);
  1766. }
  1767. if (lumaSharpen != 0.0) {
  1768. SwsVector *id = sws_getIdentityVec();
  1769. if (!id)
  1770. goto fail;
  1771. sws_scaleVec(filter->lumH, -lumaSharpen);
  1772. sws_scaleVec(filter->lumV, -lumaSharpen);
  1773. sws_addVec(filter->lumH, id);
  1774. sws_addVec(filter->lumV, id);
  1775. sws_freeVec(id);
  1776. }
  1777. if (chromaHShift != 0.0)
  1778. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1779. if (chromaVShift != 0.0)
  1780. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1781. sws_normalizeVec(filter->chrH, 1.0);
  1782. sws_normalizeVec(filter->chrV, 1.0);
  1783. sws_normalizeVec(filter->lumH, 1.0);
  1784. sws_normalizeVec(filter->lumV, 1.0);
  1785. if (isnan_vec(filter->chrH) ||
  1786. isnan_vec(filter->chrV) ||
  1787. isnan_vec(filter->lumH) ||
  1788. isnan_vec(filter->lumV))
  1789. goto fail;
  1790. if (verbose)
  1791. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1792. if (verbose)
  1793. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1794. return filter;
  1795. fail:
  1796. sws_freeVec(filter->lumH);
  1797. sws_freeVec(filter->lumV);
  1798. sws_freeVec(filter->chrH);
  1799. sws_freeVec(filter->chrV);
  1800. av_freep(&filter);
  1801. return NULL;
  1802. }
  1803. SwsVector *sws_allocVec(int length)
  1804. {
  1805. SwsVector *vec;
  1806. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1807. return NULL;
  1808. vec = av_malloc(sizeof(SwsVector));
  1809. if (!vec)
  1810. return NULL;
  1811. vec->length = length;
  1812. vec->coeff = av_malloc(sizeof(double) * length);
  1813. if (!vec->coeff)
  1814. av_freep(&vec);
  1815. return vec;
  1816. }
  1817. SwsVector *sws_getGaussianVec(double variance, double quality)
  1818. {
  1819. const int length = (int)(variance * quality + 0.5) | 1;
  1820. int i;
  1821. double middle = (length - 1) * 0.5;
  1822. SwsVector *vec;
  1823. if(variance < 0 || quality < 0)
  1824. return NULL;
  1825. vec = sws_allocVec(length);
  1826. if (!vec)
  1827. return NULL;
  1828. for (i = 0; i < length; i++) {
  1829. double dist = i - middle;
  1830. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1831. sqrt(2 * variance * M_PI);
  1832. }
  1833. sws_normalizeVec(vec, 1.0);
  1834. return vec;
  1835. }
  1836. /**
  1837. * Allocate and return a vector with length coefficients, all
  1838. * with the same value c.
  1839. */
  1840. #if !FF_API_SWS_VECTOR
  1841. static
  1842. #endif
  1843. SwsVector *sws_getConstVec(double c, int length)
  1844. {
  1845. int i;
  1846. SwsVector *vec = sws_allocVec(length);
  1847. if (!vec)
  1848. return NULL;
  1849. for (i = 0; i < length; i++)
  1850. vec->coeff[i] = c;
  1851. return vec;
  1852. }
  1853. /**
  1854. * Allocate and return a vector with just one coefficient, with
  1855. * value 1.0.
  1856. */
  1857. #if !FF_API_SWS_VECTOR
  1858. static
  1859. #endif
  1860. SwsVector *sws_getIdentityVec(void)
  1861. {
  1862. return sws_getConstVec(1.0, 1);
  1863. }
  1864. static double sws_dcVec(SwsVector *a)
  1865. {
  1866. int i;
  1867. double sum = 0;
  1868. for (i = 0; i < a->length; i++)
  1869. sum += a->coeff[i];
  1870. return sum;
  1871. }
  1872. void sws_scaleVec(SwsVector *a, double scalar)
  1873. {
  1874. int i;
  1875. for (i = 0; i < a->length; i++)
  1876. a->coeff[i] *= scalar;
  1877. }
  1878. void sws_normalizeVec(SwsVector *a, double height)
  1879. {
  1880. sws_scaleVec(a, height / sws_dcVec(a));
  1881. }
  1882. #if FF_API_SWS_VECTOR
  1883. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1884. {
  1885. int length = a->length + b->length - 1;
  1886. int i, j;
  1887. SwsVector *vec = sws_getConstVec(0.0, length);
  1888. if (!vec)
  1889. return NULL;
  1890. for (i = 0; i < a->length; i++) {
  1891. for (j = 0; j < b->length; j++) {
  1892. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1893. }
  1894. }
  1895. return vec;
  1896. }
  1897. #endif
  1898. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1899. {
  1900. int length = FFMAX(a->length, b->length);
  1901. int i;
  1902. SwsVector *vec = sws_getConstVec(0.0, length);
  1903. if (!vec)
  1904. return NULL;
  1905. for (i = 0; i < a->length; i++)
  1906. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1907. for (i = 0; i < b->length; i++)
  1908. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1909. return vec;
  1910. }
  1911. #if FF_API_SWS_VECTOR
  1912. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1913. {
  1914. int length = FFMAX(a->length, b->length);
  1915. int i;
  1916. SwsVector *vec = sws_getConstVec(0.0, length);
  1917. if (!vec)
  1918. return NULL;
  1919. for (i = 0; i < a->length; i++)
  1920. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1921. for (i = 0; i < b->length; i++)
  1922. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1923. return vec;
  1924. }
  1925. #endif
  1926. /* shift left / or right if "shift" is negative */
  1927. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1928. {
  1929. int length = a->length + FFABS(shift) * 2;
  1930. int i;
  1931. SwsVector *vec = sws_getConstVec(0.0, length);
  1932. if (!vec)
  1933. return NULL;
  1934. for (i = 0; i < a->length; i++) {
  1935. vec->coeff[i + (length - 1) / 2 -
  1936. (a->length - 1) / 2 - shift] = a->coeff[i];
  1937. }
  1938. return vec;
  1939. }
  1940. #if !FF_API_SWS_VECTOR
  1941. static
  1942. #endif
  1943. void sws_shiftVec(SwsVector *a, int shift)
  1944. {
  1945. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1946. if (!shifted) {
  1947. makenan_vec(a);
  1948. return;
  1949. }
  1950. av_free(a->coeff);
  1951. a->coeff = shifted->coeff;
  1952. a->length = shifted->length;
  1953. av_free(shifted);
  1954. }
  1955. #if !FF_API_SWS_VECTOR
  1956. static
  1957. #endif
  1958. void sws_addVec(SwsVector *a, SwsVector *b)
  1959. {
  1960. SwsVector *sum = sws_sumVec(a, b);
  1961. if (!sum) {
  1962. makenan_vec(a);
  1963. return;
  1964. }
  1965. av_free(a->coeff);
  1966. a->coeff = sum->coeff;
  1967. a->length = sum->length;
  1968. av_free(sum);
  1969. }
  1970. #if FF_API_SWS_VECTOR
  1971. void sws_subVec(SwsVector *a, SwsVector *b)
  1972. {
  1973. SwsVector *diff = sws_diffVec(a, b);
  1974. if (!diff) {
  1975. makenan_vec(a);
  1976. return;
  1977. }
  1978. av_free(a->coeff);
  1979. a->coeff = diff->coeff;
  1980. a->length = diff->length;
  1981. av_free(diff);
  1982. }
  1983. void sws_convVec(SwsVector *a, SwsVector *b)
  1984. {
  1985. SwsVector *conv = sws_getConvVec(a, b);
  1986. if (!conv) {
  1987. makenan_vec(a);
  1988. return;
  1989. }
  1990. av_free(a->coeff);
  1991. a->coeff = conv->coeff;
  1992. a->length = conv->length;
  1993. av_free(conv);
  1994. }
  1995. SwsVector *sws_cloneVec(SwsVector *a)
  1996. {
  1997. SwsVector *vec = sws_allocVec(a->length);
  1998. if (!vec)
  1999. return NULL;
  2000. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  2001. return vec;
  2002. }
  2003. #endif
  2004. /**
  2005. * Print with av_log() a textual representation of the vector a
  2006. * if log_level <= av_log_level.
  2007. */
  2008. #if !FF_API_SWS_VECTOR
  2009. static
  2010. #endif
  2011. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  2012. {
  2013. int i;
  2014. double max = 0;
  2015. double min = 0;
  2016. double range;
  2017. for (i = 0; i < a->length; i++)
  2018. if (a->coeff[i] > max)
  2019. max = a->coeff[i];
  2020. for (i = 0; i < a->length; i++)
  2021. if (a->coeff[i] < min)
  2022. min = a->coeff[i];
  2023. range = max - min;
  2024. for (i = 0; i < a->length; i++) {
  2025. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  2026. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2027. for (; x > 0; x--)
  2028. av_log(log_ctx, log_level, " ");
  2029. av_log(log_ctx, log_level, "|\n");
  2030. }
  2031. }
  2032. void sws_freeVec(SwsVector *a)
  2033. {
  2034. if (!a)
  2035. return;
  2036. av_freep(&a->coeff);
  2037. a->length = 0;
  2038. av_free(a);
  2039. }
  2040. void sws_freeFilter(SwsFilter *filter)
  2041. {
  2042. if (!filter)
  2043. return;
  2044. sws_freeVec(filter->lumH);
  2045. sws_freeVec(filter->lumV);
  2046. sws_freeVec(filter->chrH);
  2047. sws_freeVec(filter->chrV);
  2048. av_free(filter);
  2049. }
  2050. void sws_freeContext(SwsContext *c)
  2051. {
  2052. int i;
  2053. if (!c)
  2054. return;
  2055. for (i = 0; i < 4; i++)
  2056. av_freep(&c->dither_error[i]);
  2057. av_freep(&c->vLumFilter);
  2058. av_freep(&c->vChrFilter);
  2059. av_freep(&c->hLumFilter);
  2060. av_freep(&c->hChrFilter);
  2061. #if HAVE_ALTIVEC
  2062. av_freep(&c->vYCoeffsBank);
  2063. av_freep(&c->vCCoeffsBank);
  2064. #endif
  2065. av_freep(&c->vLumFilterPos);
  2066. av_freep(&c->vChrFilterPos);
  2067. av_freep(&c->hLumFilterPos);
  2068. av_freep(&c->hChrFilterPos);
  2069. #if HAVE_MMX_INLINE
  2070. #if USE_MMAP
  2071. if (c->lumMmxextFilterCode)
  2072. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2073. if (c->chrMmxextFilterCode)
  2074. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2075. #elif HAVE_VIRTUALALLOC
  2076. if (c->lumMmxextFilterCode)
  2077. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2078. if (c->chrMmxextFilterCode)
  2079. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2080. #else
  2081. av_free(c->lumMmxextFilterCode);
  2082. av_free(c->chrMmxextFilterCode);
  2083. #endif
  2084. c->lumMmxextFilterCode = NULL;
  2085. c->chrMmxextFilterCode = NULL;
  2086. #endif /* HAVE_MMX_INLINE */
  2087. av_freep(&c->yuvTable);
  2088. av_freep(&c->formatConvBuffer);
  2089. sws_freeContext(c->cascaded_context[0]);
  2090. sws_freeContext(c->cascaded_context[1]);
  2091. sws_freeContext(c->cascaded_context[2]);
  2092. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2093. av_freep(&c->cascaded_tmp[0]);
  2094. av_freep(&c->cascaded1_tmp[0]);
  2095. av_freep(&c->gamma);
  2096. av_freep(&c->inv_gamma);
  2097. ff_free_filters(c);
  2098. av_free(c);
  2099. }
  2100. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2101. int srcH, enum AVPixelFormat srcFormat,
  2102. int dstW, int dstH,
  2103. enum AVPixelFormat dstFormat, int flags,
  2104. SwsFilter *srcFilter,
  2105. SwsFilter *dstFilter,
  2106. const double *param)
  2107. {
  2108. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2109. SWS_PARAM_DEFAULT };
  2110. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2111. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2112. if (!param)
  2113. param = default_param;
  2114. if (context &&
  2115. (context->srcW != srcW ||
  2116. context->srcH != srcH ||
  2117. context->srcFormat != srcFormat ||
  2118. context->dstW != dstW ||
  2119. context->dstH != dstH ||
  2120. context->dstFormat != dstFormat ||
  2121. context->flags != flags ||
  2122. context->param[0] != param[0] ||
  2123. context->param[1] != param[1])) {
  2124. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2125. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2126. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2127. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2128. sws_freeContext(context);
  2129. context = NULL;
  2130. }
  2131. if (!context) {
  2132. if (!(context = sws_alloc_context()))
  2133. return NULL;
  2134. context->srcW = srcW;
  2135. context->srcH = srcH;
  2136. context->srcFormat = srcFormat;
  2137. context->dstW = dstW;
  2138. context->dstH = dstH;
  2139. context->dstFormat = dstFormat;
  2140. context->flags = flags;
  2141. context->param[0] = param[0];
  2142. context->param[1] = param[1];
  2143. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2144. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2145. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2146. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2147. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2148. sws_freeContext(context);
  2149. return NULL;
  2150. }
  2151. }
  2152. return context;
  2153. }