You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1406 lines
50KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "profiles.h"
  36. #include "dnxhdenc.h"
  37. // The largest value that will not lead to overflow for 10-bit samples.
  38. #define DNX10BIT_QMAT_SHIFT 18
  39. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  40. #define LAMBDA_FRAC_BITS 10
  41. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  42. static const AVOption options[] = {
  43. { "nitris_compat", "encode with Avid Nitris compatibility",
  44. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
  45. { "ibias", "intra quant bias",
  46. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  47. { .i64 = 0 }, INT_MIN, INT_MAX, VE },
  48. { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
  49. { .i64 = FF_PROFILE_DNXHD },
  50. FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
  51. { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
  52. 0, 0, VE, "profile" },
  53. { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
  54. 0, 0, VE, "profile" },
  55. { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
  56. 0, 0, VE, "profile" },
  57. { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
  58. 0, 0, VE, "profile" },
  59. { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
  60. 0, 0, VE, "profile" },
  61. { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
  62. 0, 0, VE, "profile" },
  63. { NULL }
  64. };
  65. static const AVClass dnxhd_class = {
  66. .class_name = "dnxhd",
  67. .item_name = av_default_item_name,
  68. .option = options,
  69. .version = LIBAVUTIL_VERSION_INT,
  70. };
  71. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  72. const uint8_t *pixels,
  73. ptrdiff_t line_size)
  74. {
  75. int i;
  76. for (i = 0; i < 4; i++) {
  77. block[0] = pixels[0];
  78. block[1] = pixels[1];
  79. block[2] = pixels[2];
  80. block[3] = pixels[3];
  81. block[4] = pixels[4];
  82. block[5] = pixels[5];
  83. block[6] = pixels[6];
  84. block[7] = pixels[7];
  85. pixels += line_size;
  86. block += 8;
  87. }
  88. memcpy(block, block - 8, sizeof(*block) * 8);
  89. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  90. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  91. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  92. }
  93. static av_always_inline
  94. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  95. const uint8_t *pixels,
  96. ptrdiff_t line_size)
  97. {
  98. memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  99. memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  100. memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  101. memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  102. memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  103. memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  104. memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  105. memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  106. }
  107. static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
  108. int n, int qscale, int *overflow)
  109. {
  110. int i, j, level, last_non_zero, start_i;
  111. const int *qmat;
  112. const uint8_t *scantable= ctx->intra_scantable.scantable;
  113. int bias;
  114. int max = 0;
  115. unsigned int threshold1, threshold2;
  116. ctx->fdsp.fdct(block);
  117. block[0] = (block[0] + 2) >> 2;
  118. start_i = 1;
  119. last_non_zero = 0;
  120. qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  121. bias= ctx->intra_quant_bias * (1 << (16 - 8));
  122. threshold1 = (1 << 16) - bias - 1;
  123. threshold2 = (threshold1 << 1);
  124. for (i = 63; i >= start_i; i--) {
  125. j = scantable[i];
  126. level = block[j] * qmat[j];
  127. if (((unsigned)(level + threshold1)) > threshold2) {
  128. last_non_zero = i;
  129. break;
  130. } else{
  131. block[j]=0;
  132. }
  133. }
  134. for (i = start_i; i <= last_non_zero; i++) {
  135. j = scantable[i];
  136. level = block[j] * qmat[j];
  137. if (((unsigned)(level + threshold1)) > threshold2) {
  138. if (level > 0) {
  139. level = (bias + level) >> 16;
  140. block[j] = level;
  141. } else{
  142. level = (bias - level) >> 16;
  143. block[j] = -level;
  144. }
  145. max |= level;
  146. } else {
  147. block[j] = 0;
  148. }
  149. }
  150. *overflow = ctx->max_qcoeff < max; //overflow might have happened
  151. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  152. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  153. ff_block_permute(block, ctx->idsp.idct_permutation,
  154. scantable, last_non_zero);
  155. return last_non_zero;
  156. }
  157. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  158. int n, int qscale, int *overflow)
  159. {
  160. const uint8_t *scantable= ctx->intra_scantable.scantable;
  161. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  162. int last_non_zero = 0;
  163. int i;
  164. ctx->fdsp.fdct(block);
  165. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  166. block[0] = (block[0] + 2) >> 2;
  167. for (i = 1; i < 64; ++i) {
  168. int j = scantable[i];
  169. int sign = FF_SIGNBIT(block[j]);
  170. int level = (block[j] ^ sign) - sign;
  171. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  172. block[j] = (level ^ sign) - sign;
  173. if (level)
  174. last_non_zero = i;
  175. }
  176. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  177. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  178. ff_block_permute(block, ctx->idsp.idct_permutation,
  179. scantable, last_non_zero);
  180. return last_non_zero;
  181. }
  182. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  183. {
  184. int i, j, level, run;
  185. int max_level = 1 << (ctx->bit_depth + 2);
  186. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_codes,
  187. max_level, 4 * sizeof(*ctx->orig_vlc_codes), fail);
  188. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_bits,
  189. max_level, 4 * sizeof(*ctx->orig_vlc_bits), fail);
  190. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  191. 63 * 2, fail);
  192. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  193. 63, fail);
  194. ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
  195. ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
  196. for (level = -max_level; level < max_level; level++) {
  197. for (run = 0; run < 2; run++) {
  198. int index = (level << 1) | run;
  199. int sign, offset = 0, alevel = level;
  200. MASK_ABS(sign, alevel);
  201. if (alevel > 64) {
  202. offset = (alevel - 1) >> 6;
  203. alevel -= offset << 6;
  204. }
  205. for (j = 0; j < 257; j++) {
  206. if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
  207. (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
  208. (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
  209. av_assert1(!ctx->vlc_codes[index]);
  210. if (alevel) {
  211. ctx->vlc_codes[index] =
  212. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  213. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  214. } else {
  215. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  216. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  217. }
  218. break;
  219. }
  220. }
  221. av_assert0(!alevel || j < 257);
  222. if (offset) {
  223. ctx->vlc_codes[index] =
  224. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  225. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  226. }
  227. }
  228. }
  229. for (i = 0; i < 62; i++) {
  230. int run = ctx->cid_table->run[i];
  231. av_assert0(run < 63);
  232. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  233. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  234. }
  235. return 0;
  236. fail:
  237. return AVERROR(ENOMEM);
  238. }
  239. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  240. {
  241. // init first elem to 1 to avoid div by 0 in convert_matrix
  242. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  243. int qscale, i;
  244. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  245. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  246. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  247. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  248. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  249. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  250. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  251. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  252. fail);
  253. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  254. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  255. fail);
  256. if (ctx->bit_depth == 8) {
  257. for (i = 1; i < 64; i++) {
  258. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  259. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  260. }
  261. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  262. weight_matrix, ctx->intra_quant_bias, 1,
  263. ctx->m.avctx->qmax, 1);
  264. for (i = 1; i < 64; i++) {
  265. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  266. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  267. }
  268. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  269. weight_matrix, ctx->intra_quant_bias, 1,
  270. ctx->m.avctx->qmax, 1);
  271. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  272. for (i = 0; i < 64; i++) {
  273. ctx->qmatrix_l[qscale][i] <<= 2;
  274. ctx->qmatrix_c[qscale][i] <<= 2;
  275. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  276. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  277. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  278. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  279. }
  280. }
  281. } else {
  282. // 10-bit
  283. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  284. for (i = 1; i < 64; i++) {
  285. int j = ff_zigzag_direct[i];
  286. /* The quantization formula from the VC-3 standard is:
  287. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  288. * (qscale * weight_table[i]))
  289. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  290. * The s factor compensates scaling of DCT coefficients done by
  291. * the DCT routines, and therefore is not present in standard.
  292. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  293. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  294. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  295. * (qscale * weight_table[i])
  296. * For 10-bit samples, p / s == 2 */
  297. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  298. (qscale * luma_weight_table[i]);
  299. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  300. (qscale * chroma_weight_table[i]);
  301. }
  302. }
  303. }
  304. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  305. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  306. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  307. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  308. return 0;
  309. fail:
  310. return AVERROR(ENOMEM);
  311. }
  312. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  313. {
  314. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1),
  315. ctx->m.mb_num * sizeof(RCEntry), fail);
  316. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
  317. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  318. ctx->m.mb_num, sizeof(RCCMPEntry), fail);
  319. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp_tmp,
  320. ctx->m.mb_num, sizeof(RCCMPEntry), fail);
  321. }
  322. ctx->frame_bits = (ctx->coding_unit_size -
  323. ctx->data_offset - 4 - ctx->min_padding) * 8;
  324. ctx->qscale = 1;
  325. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  326. return 0;
  327. fail:
  328. return AVERROR(ENOMEM);
  329. }
  330. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  331. {
  332. DNXHDEncContext *ctx = avctx->priv_data;
  333. int i, index, ret;
  334. switch (avctx->pix_fmt) {
  335. case AV_PIX_FMT_YUV422P:
  336. ctx->bit_depth = 8;
  337. break;
  338. case AV_PIX_FMT_YUV422P10:
  339. case AV_PIX_FMT_YUV444P10:
  340. case AV_PIX_FMT_GBRP10:
  341. ctx->bit_depth = 10;
  342. break;
  343. default:
  344. av_log(avctx, AV_LOG_ERROR,
  345. "pixel format is incompatible with DNxHD\n");
  346. return AVERROR(EINVAL);
  347. }
  348. if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
  349. avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
  350. (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
  351. avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
  352. av_log(avctx, AV_LOG_ERROR,
  353. "pixel format is incompatible with DNxHD profile\n");
  354. return AVERROR(EINVAL);
  355. }
  356. if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
  357. av_log(avctx, AV_LOG_ERROR,
  358. "pixel format is incompatible with DNxHR HQX profile\n");
  359. return AVERROR(EINVAL);
  360. }
  361. if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
  362. ctx->profile == FF_PROFILE_DNXHR_SQ ||
  363. ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  364. av_log(avctx, AV_LOG_ERROR,
  365. "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
  366. return AVERROR(EINVAL);
  367. }
  368. ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
  369. avctx->profile = ctx->profile;
  370. ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
  371. if (!ctx->cid) {
  372. av_log(avctx, AV_LOG_ERROR,
  373. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  374. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  375. return AVERROR(EINVAL);
  376. }
  377. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  378. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  379. avctx->codec_tag = MKTAG('A','V','d','h');
  380. if (avctx->width < 256 || avctx->height < 120) {
  381. av_log(avctx, AV_LOG_ERROR,
  382. "Input dimensions too small, input must be at least 256x120\n");
  383. return AVERROR(EINVAL);
  384. }
  385. index = ff_dnxhd_get_cid_table(ctx->cid);
  386. av_assert0(index >= 0);
  387. ctx->cid_table = &ff_dnxhd_cid_table[index];
  388. ctx->m.avctx = avctx;
  389. ctx->m.mb_intra = 1;
  390. ctx->m.h263_aic = 1;
  391. avctx->bits_per_raw_sample = ctx->bit_depth;
  392. ff_blockdsp_init(&ctx->bdsp, avctx);
  393. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  394. ff_mpv_idct_init(&ctx->m);
  395. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  396. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  397. ff_dct_encode_init(&ctx->m);
  398. if (ctx->profile != FF_PROFILE_DNXHD)
  399. ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
  400. if (!ctx->m.dct_quantize)
  401. ctx->m.dct_quantize = ff_dct_quantize_c;
  402. if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
  403. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
  404. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  405. ctx->block_width_l2 = 4;
  406. } else if (ctx->bit_depth == 10) {
  407. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  408. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  409. ctx->block_width_l2 = 4;
  410. } else {
  411. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  412. ctx->block_width_l2 = 3;
  413. }
  414. if (ARCH_X86)
  415. ff_dnxhdenc_init_x86(ctx);
  416. ctx->m.mb_height = (avctx->height + 15) / 16;
  417. ctx->m.mb_width = (avctx->width + 15) / 16;
  418. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  419. ctx->interlaced = 1;
  420. ctx->m.mb_height /= 2;
  421. }
  422. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  423. if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
  424. ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
  425. avctx->width, avctx->height);
  426. av_assert0(ctx->frame_size >= 0);
  427. ctx->coding_unit_size = ctx->frame_size;
  428. } else {
  429. ctx->frame_size = ctx->cid_table->frame_size;
  430. ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
  431. }
  432. if (ctx->m.mb_height > 68)
  433. ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
  434. else
  435. ctx->data_offset = 0x280;
  436. // XXX tune lbias/cbias
  437. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  438. return ret;
  439. /* Avid Nitris hardware decoder requires a minimum amount of padding
  440. * in the coding unit payload */
  441. if (ctx->nitris_compat)
  442. ctx->min_padding = 1600;
  443. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  444. return ret;
  445. if ((ret = dnxhd_init_rc(ctx)) < 0)
  446. return ret;
  447. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  448. ctx->m.mb_height * sizeof(uint32_t), fail);
  449. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  450. ctx->m.mb_height * sizeof(uint32_t), fail);
  451. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  452. ctx->m.mb_num * sizeof(uint16_t), fail);
  453. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  454. ctx->m.mb_num * sizeof(uint8_t), fail);
  455. #if FF_API_CODED_FRAME
  456. FF_DISABLE_DEPRECATION_WARNINGS
  457. avctx->coded_frame->key_frame = 1;
  458. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  459. FF_ENABLE_DEPRECATION_WARNINGS
  460. #endif
  461. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  462. if (avctx->thread_count > MAX_THREADS) {
  463. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  464. return AVERROR(EINVAL);
  465. }
  466. }
  467. if (avctx->qmax <= 1) {
  468. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  469. return AVERROR(EINVAL);
  470. }
  471. ctx->thread[0] = ctx;
  472. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  473. for (i = 1; i < avctx->thread_count; i++) {
  474. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  475. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  476. }
  477. }
  478. return 0;
  479. fail: // for FF_ALLOCZ_OR_GOTO
  480. return AVERROR(ENOMEM);
  481. }
  482. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  483. {
  484. DNXHDEncContext *ctx = avctx->priv_data;
  485. memset(buf, 0, ctx->data_offset);
  486. // * write prefix */
  487. AV_WB16(buf + 0x02, ctx->data_offset);
  488. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  489. buf[4] = 0x03;
  490. else
  491. buf[4] = 0x01;
  492. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  493. buf[6] = 0x80; // crc flag off
  494. buf[7] = 0xa0; // reserved
  495. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  496. AV_WB16(buf + 0x1a, avctx->width); // SPL
  497. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  498. buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
  499. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  500. AV_WB32(buf + 0x28, ctx->cid); // CID
  501. buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  502. buf[0x5f] = 0x01; // UDL
  503. buf[0x167] = 0x02; // reserved
  504. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  505. AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
  506. buf[0x16f] = 0x10; // reserved
  507. ctx->msip = buf + 0x170;
  508. return 0;
  509. }
  510. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  511. {
  512. int nbits;
  513. if (diff < 0) {
  514. nbits = av_log2_16bit(-2 * diff);
  515. diff--;
  516. } else {
  517. nbits = av_log2_16bit(2 * diff);
  518. }
  519. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  520. (ctx->cid_table->dc_codes[nbits] << nbits) +
  521. av_mod_uintp2(diff, nbits));
  522. }
  523. static av_always_inline
  524. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  525. int last_index, int n)
  526. {
  527. int last_non_zero = 0;
  528. int slevel, i, j;
  529. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  530. ctx->m.last_dc[n] = block[0];
  531. for (i = 1; i <= last_index; i++) {
  532. j = ctx->m.intra_scantable.permutated[i];
  533. slevel = block[j];
  534. if (slevel) {
  535. int run_level = i - last_non_zero - 1;
  536. int rlevel = (slevel << 1) | !!run_level;
  537. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  538. if (run_level)
  539. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  540. ctx->run_codes[run_level]);
  541. last_non_zero = i;
  542. }
  543. }
  544. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  545. }
  546. static av_always_inline
  547. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  548. int qscale, int last_index)
  549. {
  550. const uint8_t *weight_matrix;
  551. int level;
  552. int i;
  553. if (ctx->is_444) {
  554. weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
  555. : ctx->cid_table->chroma_weight;
  556. } else {
  557. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  558. : ctx->cid_table->luma_weight;
  559. }
  560. for (i = 1; i <= last_index; i++) {
  561. int j = ctx->m.intra_scantable.permutated[i];
  562. level = block[j];
  563. if (level) {
  564. if (level < 0) {
  565. level = (1 - 2 * level) * qscale * weight_matrix[i];
  566. if (ctx->bit_depth == 10) {
  567. if (weight_matrix[i] != 8)
  568. level += 8;
  569. level >>= 4;
  570. } else {
  571. if (weight_matrix[i] != 32)
  572. level += 32;
  573. level >>= 6;
  574. }
  575. level = -level;
  576. } else {
  577. level = (2 * level + 1) * qscale * weight_matrix[i];
  578. if (ctx->bit_depth == 10) {
  579. if (weight_matrix[i] != 8)
  580. level += 8;
  581. level >>= 4;
  582. } else {
  583. if (weight_matrix[i] != 32)
  584. level += 32;
  585. level >>= 6;
  586. }
  587. }
  588. block[j] = level;
  589. }
  590. }
  591. }
  592. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  593. {
  594. int score = 0;
  595. int i;
  596. for (i = 0; i < 64; i++)
  597. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  598. return score;
  599. }
  600. static av_always_inline
  601. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  602. {
  603. int last_non_zero = 0;
  604. int bits = 0;
  605. int i, j, level;
  606. for (i = 1; i <= last_index; i++) {
  607. j = ctx->m.intra_scantable.permutated[i];
  608. level = block[j];
  609. if (level) {
  610. int run_level = i - last_non_zero - 1;
  611. bits += ctx->vlc_bits[(level << 1) |
  612. !!run_level] + ctx->run_bits[run_level];
  613. last_non_zero = i;
  614. }
  615. }
  616. return bits;
  617. }
  618. static av_always_inline
  619. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  620. {
  621. const int bs = ctx->block_width_l2;
  622. const int bw = 1 << bs;
  623. int dct_y_offset = ctx->dct_y_offset;
  624. int dct_uv_offset = ctx->dct_uv_offset;
  625. int linesize = ctx->m.linesize;
  626. int uvlinesize = ctx->m.uvlinesize;
  627. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  628. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  629. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  630. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  631. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  632. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  633. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  634. VideoDSPContext *vdsp = &ctx->m.vdsp;
  635. if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  636. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  637. int y_w = ctx->m.avctx->width - (mb_x << 4);
  638. int y_h = ctx->m.avctx->height - (mb_y << 4);
  639. int uv_w = (y_w + 1) / 2;
  640. int uv_h = y_h;
  641. linesize = 16;
  642. uvlinesize = 8;
  643. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  644. linesize, ctx->m.linesize,
  645. linesize, 16,
  646. 0, 0, y_w, y_h);
  647. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  648. uvlinesize, ctx->m.uvlinesize,
  649. uvlinesize, 16,
  650. 0, 0, uv_w, uv_h);
  651. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  652. uvlinesize, ctx->m.uvlinesize,
  653. uvlinesize, 16,
  654. 0, 0, uv_w, uv_h);
  655. dct_y_offset = bw * linesize;
  656. dct_uv_offset = bw * uvlinesize;
  657. ptr_y = &ctx->edge_buf_y[0];
  658. ptr_u = &ctx->edge_buf_uv[0][0];
  659. ptr_v = &ctx->edge_buf_uv[1][0];
  660. } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  661. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  662. int y_w = ctx->m.avctx->width - (mb_x << 4);
  663. int y_h = ctx->m.avctx->height - (mb_y << 4);
  664. int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
  665. int uv_h = y_h;
  666. linesize = 32;
  667. uvlinesize = 16 + 16 * ctx->is_444;
  668. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  669. linesize, ctx->m.linesize,
  670. linesize / 2, 16,
  671. 0, 0, y_w, y_h);
  672. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  673. uvlinesize, ctx->m.uvlinesize,
  674. uvlinesize / 2, 16,
  675. 0, 0, uv_w, uv_h);
  676. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  677. uvlinesize, ctx->m.uvlinesize,
  678. uvlinesize / 2, 16,
  679. 0, 0, uv_w, uv_h);
  680. dct_y_offset = bw * linesize / 2;
  681. dct_uv_offset = bw * uvlinesize / 2;
  682. ptr_y = &ctx->edge_buf_y[0];
  683. ptr_u = &ctx->edge_buf_uv[0][0];
  684. ptr_v = &ctx->edge_buf_uv[1][0];
  685. }
  686. if (!ctx->is_444) {
  687. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  688. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  689. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  690. pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
  691. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  692. if (ctx->interlaced) {
  693. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  694. ptr_y + dct_y_offset,
  695. linesize);
  696. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  697. ptr_y + dct_y_offset + bw,
  698. linesize);
  699. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  700. ptr_u + dct_uv_offset,
  701. uvlinesize);
  702. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  703. ptr_v + dct_uv_offset,
  704. uvlinesize);
  705. } else {
  706. ctx->bdsp.clear_block(ctx->blocks[4]);
  707. ctx->bdsp.clear_block(ctx->blocks[5]);
  708. ctx->bdsp.clear_block(ctx->blocks[6]);
  709. ctx->bdsp.clear_block(ctx->blocks[7]);
  710. }
  711. } else {
  712. pdsp->get_pixels(ctx->blocks[4],
  713. ptr_y + dct_y_offset, linesize);
  714. pdsp->get_pixels(ctx->blocks[5],
  715. ptr_y + dct_y_offset + bw, linesize);
  716. pdsp->get_pixels(ctx->blocks[6],
  717. ptr_u + dct_uv_offset, uvlinesize);
  718. pdsp->get_pixels(ctx->blocks[7],
  719. ptr_v + dct_uv_offset, uvlinesize);
  720. }
  721. } else {
  722. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  723. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  724. pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
  725. pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
  726. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  727. pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
  728. pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
  729. pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
  730. pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
  731. pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
  732. pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
  733. pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
  734. }
  735. }
  736. static av_always_inline
  737. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  738. {
  739. int x;
  740. if (ctx->is_444) {
  741. x = (i >> 1) % 3;
  742. } else {
  743. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  744. x = component[i];
  745. }
  746. return x;
  747. }
  748. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  749. int jobnr, int threadnr)
  750. {
  751. DNXHDEncContext *ctx = avctx->priv_data;
  752. int mb_y = jobnr, mb_x;
  753. int qscale = ctx->qscale;
  754. LOCAL_ALIGNED_16(int16_t, block, [64]);
  755. ctx = ctx->thread[threadnr];
  756. ctx->m.last_dc[0] =
  757. ctx->m.last_dc[1] =
  758. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  759. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  760. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  761. int ssd = 0;
  762. int ac_bits = 0;
  763. int dc_bits = 0;
  764. int i;
  765. dnxhd_get_blocks(ctx, mb_x, mb_y);
  766. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  767. int16_t *src_block = ctx->blocks[i];
  768. int overflow, nbits, diff, last_index;
  769. int n = dnxhd_switch_matrix(ctx, i);
  770. memcpy(block, src_block, 64 * sizeof(*block));
  771. last_index = ctx->m.dct_quantize(&ctx->m, block,
  772. ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
  773. qscale, &overflow);
  774. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  775. diff = block[0] - ctx->m.last_dc[n];
  776. if (diff < 0)
  777. nbits = av_log2_16bit(-2 * diff);
  778. else
  779. nbits = av_log2_16bit(2 * diff);
  780. av_assert1(nbits < ctx->bit_depth + 4);
  781. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  782. ctx->m.last_dc[n] = block[0];
  783. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  784. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  785. ctx->m.idsp.idct(block);
  786. ssd += dnxhd_ssd_block(block, src_block);
  787. }
  788. }
  789. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
  790. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
  791. (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
  792. }
  793. return 0;
  794. }
  795. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  796. int jobnr, int threadnr)
  797. {
  798. DNXHDEncContext *ctx = avctx->priv_data;
  799. int mb_y = jobnr, mb_x;
  800. ctx = ctx->thread[threadnr];
  801. init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
  802. ctx->slice_size[jobnr]);
  803. ctx->m.last_dc[0] =
  804. ctx->m.last_dc[1] =
  805. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  806. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  807. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  808. int qscale = ctx->mb_qscale[mb];
  809. int i;
  810. put_bits(&ctx->m.pb, 11, qscale);
  811. put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  812. dnxhd_get_blocks(ctx, mb_x, mb_y);
  813. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  814. int16_t *block = ctx->blocks[i];
  815. int overflow, n = dnxhd_switch_matrix(ctx, i);
  816. int last_index = ctx->m.dct_quantize(&ctx->m, block,
  817. ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
  818. qscale, &overflow);
  819. // START_TIMER;
  820. dnxhd_encode_block(ctx, block, last_index, n);
  821. // STOP_TIMER("encode_block");
  822. }
  823. }
  824. if (put_bits_count(&ctx->m.pb) & 31)
  825. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  826. flush_put_bits(&ctx->m.pb);
  827. return 0;
  828. }
  829. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  830. {
  831. int mb_y, mb_x;
  832. int offset = 0;
  833. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  834. int thread_size;
  835. ctx->slice_offs[mb_y] = offset;
  836. ctx->slice_size[mb_y] = 0;
  837. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  838. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  839. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  840. }
  841. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  842. ctx->slice_size[mb_y] >>= 3;
  843. thread_size = ctx->slice_size[mb_y];
  844. offset += thread_size;
  845. }
  846. }
  847. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  848. int jobnr, int threadnr)
  849. {
  850. DNXHDEncContext *ctx = avctx->priv_data;
  851. int mb_y = jobnr, mb_x, x, y;
  852. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  853. ((avctx->height >> ctx->interlaced) & 0xF);
  854. ctx = ctx->thread[threadnr];
  855. if (ctx->bit_depth == 8) {
  856. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  857. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  858. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  859. int sum;
  860. int varc;
  861. if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
  862. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  863. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  864. } else {
  865. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  866. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  867. sum = varc = 0;
  868. for (y = 0; y < bh; y++) {
  869. for (x = 0; x < bw; x++) {
  870. uint8_t val = pix[x + y * ctx->m.linesize];
  871. sum += val;
  872. varc += val * val;
  873. }
  874. }
  875. }
  876. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  877. ctx->mb_cmp[mb].value = varc;
  878. ctx->mb_cmp[mb].mb = mb;
  879. }
  880. } else { // 10-bit
  881. const int linesize = ctx->m.linesize >> 1;
  882. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  883. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  884. ((mb_y << 4) * linesize) + (mb_x << 4);
  885. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  886. int sum = 0;
  887. int sqsum = 0;
  888. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  889. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  890. int mean, sqmean;
  891. int i, j;
  892. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  893. for (i = 0; i < bh; ++i) {
  894. for (j = 0; j < bw; ++j) {
  895. // Turn 16-bit pixels into 10-bit ones.
  896. const int sample = (unsigned) pix[j] >> 6;
  897. sum += sample;
  898. sqsum += sample * sample;
  899. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  900. }
  901. pix += linesize;
  902. }
  903. mean = sum >> 8; // 16*16 == 2^8
  904. sqmean = sqsum >> 8;
  905. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  906. ctx->mb_cmp[mb].mb = mb;
  907. }
  908. }
  909. return 0;
  910. }
  911. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  912. {
  913. int lambda, up_step, down_step;
  914. int last_lower = INT_MAX, last_higher = 0;
  915. int x, y, q;
  916. for (q = 1; q < avctx->qmax; q++) {
  917. ctx->qscale = q;
  918. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  919. NULL, NULL, ctx->m.mb_height);
  920. }
  921. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  922. lambda = ctx->lambda;
  923. for (;;) {
  924. int bits = 0;
  925. int end = 0;
  926. if (lambda == last_higher) {
  927. lambda++;
  928. end = 1; // need to set final qscales/bits
  929. }
  930. for (y = 0; y < ctx->m.mb_height; y++) {
  931. for (x = 0; x < ctx->m.mb_width; x++) {
  932. unsigned min = UINT_MAX;
  933. int qscale = 1;
  934. int mb = y * ctx->m.mb_width + x;
  935. int rc = 0;
  936. for (q = 1; q < avctx->qmax; q++) {
  937. int i = (q*ctx->m.mb_num) + mb;
  938. unsigned score = ctx->mb_rc[i].bits * lambda +
  939. ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
  940. if (score < min) {
  941. min = score;
  942. qscale = q;
  943. rc = i;
  944. }
  945. }
  946. bits += ctx->mb_rc[rc].bits;
  947. ctx->mb_qscale[mb] = qscale;
  948. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  949. }
  950. bits = (bits + 31) & ~31; // padding
  951. if (bits > ctx->frame_bits)
  952. break;
  953. }
  954. if (end) {
  955. if (bits > ctx->frame_bits)
  956. return AVERROR(EINVAL);
  957. break;
  958. }
  959. if (bits < ctx->frame_bits) {
  960. last_lower = FFMIN(lambda, last_lower);
  961. if (last_higher != 0)
  962. lambda = (lambda+last_higher)>>1;
  963. else
  964. lambda -= down_step;
  965. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  966. up_step = 1<<LAMBDA_FRAC_BITS;
  967. lambda = FFMAX(1, lambda);
  968. if (lambda == last_lower)
  969. break;
  970. } else {
  971. last_higher = FFMAX(lambda, last_higher);
  972. if (last_lower != INT_MAX)
  973. lambda = (lambda+last_lower)>>1;
  974. else if ((int64_t)lambda + up_step > INT_MAX)
  975. return AVERROR(EINVAL);
  976. else
  977. lambda += up_step;
  978. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  979. down_step = 1<<LAMBDA_FRAC_BITS;
  980. }
  981. }
  982. ctx->lambda = lambda;
  983. return 0;
  984. }
  985. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  986. {
  987. int bits = 0;
  988. int up_step = 1;
  989. int down_step = 1;
  990. int last_higher = 0;
  991. int last_lower = INT_MAX;
  992. int qscale;
  993. int x, y;
  994. qscale = ctx->qscale;
  995. for (;;) {
  996. bits = 0;
  997. ctx->qscale = qscale;
  998. // XXX avoid recalculating bits
  999. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  1000. NULL, NULL, ctx->m.mb_height);
  1001. for (y = 0; y < ctx->m.mb_height; y++) {
  1002. for (x = 0; x < ctx->m.mb_width; x++)
  1003. bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
  1004. bits = (bits+31)&~31; // padding
  1005. if (bits > ctx->frame_bits)
  1006. break;
  1007. }
  1008. if (bits < ctx->frame_bits) {
  1009. if (qscale == 1)
  1010. return 1;
  1011. if (last_higher == qscale - 1) {
  1012. qscale = last_higher;
  1013. break;
  1014. }
  1015. last_lower = FFMIN(qscale, last_lower);
  1016. if (last_higher != 0)
  1017. qscale = (qscale + last_higher) >> 1;
  1018. else
  1019. qscale -= down_step++;
  1020. if (qscale < 1)
  1021. qscale = 1;
  1022. up_step = 1;
  1023. } else {
  1024. if (last_lower == qscale + 1)
  1025. break;
  1026. last_higher = FFMAX(qscale, last_higher);
  1027. if (last_lower != INT_MAX)
  1028. qscale = (qscale + last_lower) >> 1;
  1029. else
  1030. qscale += up_step++;
  1031. down_step = 1;
  1032. if (qscale >= ctx->m.avctx->qmax)
  1033. return AVERROR(EINVAL);
  1034. }
  1035. }
  1036. ctx->qscale = qscale;
  1037. return 0;
  1038. }
  1039. #define BUCKET_BITS 8
  1040. #define RADIX_PASSES 4
  1041. #define NBUCKETS (1 << BUCKET_BITS)
  1042. static inline int get_bucket(int value, int shift)
  1043. {
  1044. value >>= shift;
  1045. value &= NBUCKETS - 1;
  1046. return NBUCKETS - 1 - value;
  1047. }
  1048. static void radix_count(const RCCMPEntry *data, int size,
  1049. int buckets[RADIX_PASSES][NBUCKETS])
  1050. {
  1051. int i, j;
  1052. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  1053. for (i = 0; i < size; i++) {
  1054. int v = data[i].value;
  1055. for (j = 0; j < RADIX_PASSES; j++) {
  1056. buckets[j][get_bucket(v, 0)]++;
  1057. v >>= BUCKET_BITS;
  1058. }
  1059. av_assert1(!v);
  1060. }
  1061. for (j = 0; j < RADIX_PASSES; j++) {
  1062. int offset = size;
  1063. for (i = NBUCKETS - 1; i >= 0; i--)
  1064. buckets[j][i] = offset -= buckets[j][i];
  1065. av_assert1(!buckets[j][0]);
  1066. }
  1067. }
  1068. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  1069. int size, int buckets[NBUCKETS], int pass)
  1070. {
  1071. int shift = pass * BUCKET_BITS;
  1072. int i;
  1073. for (i = 0; i < size; i++) {
  1074. int v = get_bucket(data[i].value, shift);
  1075. int pos = buckets[v]++;
  1076. dst[pos] = data[i];
  1077. }
  1078. }
  1079. static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
  1080. {
  1081. int buckets[RADIX_PASSES][NBUCKETS];
  1082. radix_count(data, size, buckets);
  1083. radix_sort_pass(tmp, data, size, buckets[0], 0);
  1084. radix_sort_pass(data, tmp, size, buckets[1], 1);
  1085. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  1086. radix_sort_pass(tmp, data, size, buckets[2], 2);
  1087. radix_sort_pass(data, tmp, size, buckets[3], 3);
  1088. }
  1089. }
  1090. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  1091. {
  1092. int max_bits = 0;
  1093. int ret, x, y;
  1094. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  1095. return ret;
  1096. for (y = 0; y < ctx->m.mb_height; y++) {
  1097. for (x = 0; x < ctx->m.mb_width; x++) {
  1098. int mb = y * ctx->m.mb_width + x;
  1099. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1100. int delta_bits;
  1101. ctx->mb_qscale[mb] = ctx->qscale;
  1102. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  1103. max_bits += ctx->mb_rc[rc].bits;
  1104. if (!RC_VARIANCE) {
  1105. delta_bits = ctx->mb_rc[rc].bits -
  1106. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1107. ctx->mb_cmp[mb].mb = mb;
  1108. ctx->mb_cmp[mb].value =
  1109. delta_bits ? ((ctx->mb_rc[rc].ssd -
  1110. ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
  1111. delta_bits
  1112. : INT_MIN; // avoid increasing qscale
  1113. }
  1114. }
  1115. max_bits += 31; // worst padding
  1116. }
  1117. if (!ret) {
  1118. if (RC_VARIANCE)
  1119. avctx->execute2(avctx, dnxhd_mb_var_thread,
  1120. NULL, NULL, ctx->m.mb_height);
  1121. radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
  1122. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  1123. int mb = ctx->mb_cmp[x].mb;
  1124. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1125. max_bits -= ctx->mb_rc[rc].bits -
  1126. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1127. ctx->mb_qscale[mb] = ctx->qscale + 1;
  1128. ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1129. }
  1130. }
  1131. return 0;
  1132. }
  1133. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  1134. {
  1135. int i;
  1136. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  1137. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  1138. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  1139. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  1140. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  1141. }
  1142. #if FF_API_CODED_FRAME
  1143. FF_DISABLE_DEPRECATION_WARNINGS
  1144. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  1145. FF_ENABLE_DEPRECATION_WARNINGS
  1146. #endif
  1147. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  1148. }
  1149. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  1150. const AVFrame *frame, int *got_packet)
  1151. {
  1152. DNXHDEncContext *ctx = avctx->priv_data;
  1153. int first_field = 1;
  1154. int offset, i, ret;
  1155. uint8_t *buf;
  1156. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
  1157. return ret;
  1158. buf = pkt->data;
  1159. dnxhd_load_picture(ctx, frame);
  1160. encode_coding_unit:
  1161. for (i = 0; i < 3; i++) {
  1162. ctx->src[i] = frame->data[i];
  1163. if (ctx->interlaced && ctx->cur_field)
  1164. ctx->src[i] += frame->linesize[i];
  1165. }
  1166. dnxhd_write_header(avctx, buf);
  1167. if (avctx->mb_decision == FF_MB_DECISION_RD)
  1168. ret = dnxhd_encode_rdo(avctx, ctx);
  1169. else
  1170. ret = dnxhd_encode_fast(avctx, ctx);
  1171. if (ret < 0) {
  1172. av_log(avctx, AV_LOG_ERROR,
  1173. "picture could not fit ratecontrol constraints, increase qmax\n");
  1174. return ret;
  1175. }
  1176. dnxhd_setup_threads_slices(ctx);
  1177. offset = 0;
  1178. for (i = 0; i < ctx->m.mb_height; i++) {
  1179. AV_WB32(ctx->msip + i * 4, offset);
  1180. offset += ctx->slice_size[i];
  1181. av_assert1(!(ctx->slice_size[i] & 3));
  1182. }
  1183. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  1184. av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
  1185. memset(buf + ctx->data_offset + offset, 0,
  1186. ctx->coding_unit_size - 4 - offset - ctx->data_offset);
  1187. AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
  1188. if (ctx->interlaced && first_field) {
  1189. first_field = 0;
  1190. ctx->cur_field ^= 1;
  1191. buf += ctx->coding_unit_size;
  1192. goto encode_coding_unit;
  1193. }
  1194. #if FF_API_CODED_FRAME
  1195. FF_DISABLE_DEPRECATION_WARNINGS
  1196. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  1197. FF_ENABLE_DEPRECATION_WARNINGS
  1198. #endif
  1199. ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
  1200. pkt->flags |= AV_PKT_FLAG_KEY;
  1201. *got_packet = 1;
  1202. return 0;
  1203. }
  1204. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1205. {
  1206. DNXHDEncContext *ctx = avctx->priv_data;
  1207. int i;
  1208. av_freep(&ctx->orig_vlc_codes);
  1209. av_freep(&ctx->orig_vlc_bits);
  1210. av_freep(&ctx->run_codes);
  1211. av_freep(&ctx->run_bits);
  1212. av_freep(&ctx->mb_bits);
  1213. av_freep(&ctx->mb_qscale);
  1214. av_freep(&ctx->mb_rc);
  1215. av_freep(&ctx->mb_cmp);
  1216. av_freep(&ctx->mb_cmp_tmp);
  1217. av_freep(&ctx->slice_size);
  1218. av_freep(&ctx->slice_offs);
  1219. av_freep(&ctx->qmatrix_c);
  1220. av_freep(&ctx->qmatrix_l);
  1221. av_freep(&ctx->qmatrix_c16);
  1222. av_freep(&ctx->qmatrix_l16);
  1223. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  1224. for (i = 1; i < avctx->thread_count; i++)
  1225. av_freep(&ctx->thread[i]);
  1226. }
  1227. return 0;
  1228. }
  1229. static const AVCodecDefault dnxhd_defaults[] = {
  1230. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1231. { NULL },
  1232. };
  1233. AVCodec ff_dnxhd_encoder = {
  1234. .name = "dnxhd",
  1235. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1236. .type = AVMEDIA_TYPE_VIDEO,
  1237. .id = AV_CODEC_ID_DNXHD,
  1238. .priv_data_size = sizeof(DNXHDEncContext),
  1239. .init = dnxhd_encode_init,
  1240. .encode2 = dnxhd_encode_picture,
  1241. .close = dnxhd_encode_end,
  1242. .capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
  1243. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1244. .pix_fmts = (const enum AVPixelFormat[]) {
  1245. AV_PIX_FMT_YUV422P,
  1246. AV_PIX_FMT_YUV422P10,
  1247. AV_PIX_FMT_YUV444P10,
  1248. AV_PIX_FMT_GBRP10,
  1249. AV_PIX_FMT_NONE
  1250. },
  1251. .priv_class = &dnxhd_class,
  1252. .defaults = dnxhd_defaults,
  1253. .profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
  1254. };