You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1545 lines
50KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * @author James Almer <jamrial@gmail.com>
  34. * Exif metadata
  35. *
  36. * Unimplemented:
  37. * - Animation
  38. * - ICC profile
  39. * - XMP metadata
  40. */
  41. #include "libavutil/imgutils.h"
  42. #define BITSTREAM_READER_LE
  43. #include "avcodec.h"
  44. #include "bytestream.h"
  45. #include "exif.h"
  46. #include "get_bits.h"
  47. #include "internal.h"
  48. #include "thread.h"
  49. #include "vp8.h"
  50. #define VP8X_FLAG_ANIMATION 0x02
  51. #define VP8X_FLAG_XMP_METADATA 0x04
  52. #define VP8X_FLAG_EXIF_METADATA 0x08
  53. #define VP8X_FLAG_ALPHA 0x10
  54. #define VP8X_FLAG_ICC 0x20
  55. #define MAX_PALETTE_SIZE 256
  56. #define MAX_CACHE_BITS 11
  57. #define NUM_CODE_LENGTH_CODES 19
  58. #define HUFFMAN_CODES_PER_META_CODE 5
  59. #define NUM_LITERAL_CODES 256
  60. #define NUM_LENGTH_CODES 24
  61. #define NUM_DISTANCE_CODES 40
  62. #define NUM_SHORT_DISTANCES 120
  63. #define MAX_HUFFMAN_CODE_LENGTH 15
  64. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  65. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  66. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  67. NUM_DISTANCE_CODES
  68. };
  69. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  70. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  71. };
  72. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  73. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  74. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  75. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  76. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  77. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  78. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  79. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  80. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  81. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  82. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  83. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  84. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  85. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  86. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  87. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  88. };
  89. enum AlphaCompression {
  90. ALPHA_COMPRESSION_NONE,
  91. ALPHA_COMPRESSION_VP8L,
  92. };
  93. enum AlphaFilter {
  94. ALPHA_FILTER_NONE,
  95. ALPHA_FILTER_HORIZONTAL,
  96. ALPHA_FILTER_VERTICAL,
  97. ALPHA_FILTER_GRADIENT,
  98. };
  99. enum TransformType {
  100. PREDICTOR_TRANSFORM = 0,
  101. COLOR_TRANSFORM = 1,
  102. SUBTRACT_GREEN = 2,
  103. COLOR_INDEXING_TRANSFORM = 3,
  104. };
  105. enum PredictionMode {
  106. PRED_MODE_BLACK,
  107. PRED_MODE_L,
  108. PRED_MODE_T,
  109. PRED_MODE_TR,
  110. PRED_MODE_TL,
  111. PRED_MODE_AVG_T_AVG_L_TR,
  112. PRED_MODE_AVG_L_TL,
  113. PRED_MODE_AVG_L_T,
  114. PRED_MODE_AVG_TL_T,
  115. PRED_MODE_AVG_T_TR,
  116. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  117. PRED_MODE_SELECT,
  118. PRED_MODE_ADD_SUBTRACT_FULL,
  119. PRED_MODE_ADD_SUBTRACT_HALF,
  120. };
  121. enum HuffmanIndex {
  122. HUFF_IDX_GREEN = 0,
  123. HUFF_IDX_RED = 1,
  124. HUFF_IDX_BLUE = 2,
  125. HUFF_IDX_ALPHA = 3,
  126. HUFF_IDX_DIST = 4
  127. };
  128. /* The structure of WebP lossless is an optional series of transformation data,
  129. * followed by the primary image. The primary image also optionally contains
  130. * an entropy group mapping if there are multiple entropy groups. There is a
  131. * basic image type called an "entropy coded image" that is used for all of
  132. * these. The type of each entropy coded image is referred to by the
  133. * specification as its role. */
  134. enum ImageRole {
  135. /* Primary Image: Stores the actual pixels of the image. */
  136. IMAGE_ROLE_ARGB,
  137. /* Entropy Image: Defines which Huffman group to use for different areas of
  138. * the primary image. */
  139. IMAGE_ROLE_ENTROPY,
  140. /* Predictors: Defines which predictor type to use for different areas of
  141. * the primary image. */
  142. IMAGE_ROLE_PREDICTOR,
  143. /* Color Transform Data: Defines the color transformation for different
  144. * areas of the primary image. */
  145. IMAGE_ROLE_COLOR_TRANSFORM,
  146. /* Color Index: Stored as an image of height == 1. */
  147. IMAGE_ROLE_COLOR_INDEXING,
  148. IMAGE_ROLE_NB,
  149. };
  150. typedef struct HuffReader {
  151. VLC vlc; /* Huffman decoder context */
  152. int simple; /* whether to use simple mode */
  153. int nb_symbols; /* number of coded symbols */
  154. uint16_t simple_symbols[2]; /* symbols for simple mode */
  155. } HuffReader;
  156. typedef struct ImageContext {
  157. enum ImageRole role; /* role of this image */
  158. AVFrame *frame; /* AVFrame for data */
  159. int color_cache_bits; /* color cache size, log2 */
  160. uint32_t *color_cache; /* color cache data */
  161. int nb_huffman_groups; /* number of huffman groups */
  162. HuffReader *huffman_groups; /* reader for each huffman group */
  163. int size_reduction; /* relative size compared to primary image, log2 */
  164. int is_alpha_primary;
  165. } ImageContext;
  166. typedef struct WebPContext {
  167. VP8Context v; /* VP8 Context used for lossy decoding */
  168. GetBitContext gb; /* bitstream reader for main image chunk */
  169. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  170. AVCodecContext *avctx; /* parent AVCodecContext */
  171. int initialized; /* set once the VP8 context is initialized */
  172. int has_alpha; /* has a separate alpha chunk */
  173. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  174. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  175. uint8_t *alpha_data; /* alpha chunk data */
  176. int alpha_data_size; /* alpha chunk data size */
  177. int has_exif; /* set after an EXIF chunk has been processed */
  178. int width; /* image width */
  179. int height; /* image height */
  180. int lossless; /* indicates lossless or lossy */
  181. int nb_transforms; /* number of transforms */
  182. enum TransformType transforms[4]; /* transformations used in the image, in order */
  183. int reduced_width; /* reduced width for index image, if applicable */
  184. int nb_huffman_groups; /* number of huffman groups in the primary image */
  185. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  186. } WebPContext;
  187. #define GET_PIXEL(frame, x, y) \
  188. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  189. #define GET_PIXEL_COMP(frame, x, y, c) \
  190. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  191. static void image_ctx_free(ImageContext *img)
  192. {
  193. int i, j;
  194. av_free(img->color_cache);
  195. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  196. av_frame_free(&img->frame);
  197. if (img->huffman_groups) {
  198. for (i = 0; i < img->nb_huffman_groups; i++) {
  199. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  200. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  201. }
  202. av_free(img->huffman_groups);
  203. }
  204. memset(img, 0, sizeof(*img));
  205. }
  206. /* Differs from get_vlc2() in the following ways:
  207. * - codes are bit-reversed
  208. * - assumes 8-bit table to make reversal simpler
  209. * - assumes max depth of 2 since the max code length for WebP is 15
  210. */
  211. static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
  212. {
  213. int n, nb_bits;
  214. unsigned int index;
  215. int code;
  216. OPEN_READER(re, gb);
  217. UPDATE_CACHE(re, gb);
  218. index = SHOW_UBITS(re, gb, 8);
  219. index = ff_reverse[index];
  220. code = table[index][0];
  221. n = table[index][1];
  222. if (n < 0) {
  223. LAST_SKIP_BITS(re, gb, 8);
  224. UPDATE_CACHE(re, gb);
  225. nb_bits = -n;
  226. index = SHOW_UBITS(re, gb, nb_bits);
  227. index = (ff_reverse[index] >> (8 - nb_bits)) + code;
  228. code = table[index][0];
  229. n = table[index][1];
  230. }
  231. SKIP_BITS(re, gb, n);
  232. CLOSE_READER(re, gb);
  233. return code;
  234. }
  235. static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
  236. {
  237. if (r->simple) {
  238. if (r->nb_symbols == 1)
  239. return r->simple_symbols[0];
  240. else
  241. return r->simple_symbols[get_bits1(gb)];
  242. } else
  243. return webp_get_vlc(gb, r->vlc.table);
  244. }
  245. static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
  246. int alphabet_size)
  247. {
  248. int len = 0, sym, code = 0, ret;
  249. int max_code_length = 0;
  250. uint16_t *codes;
  251. /* special-case 1 symbol since the vlc reader cannot handle it */
  252. for (sym = 0; sym < alphabet_size; sym++) {
  253. if (code_lengths[sym] > 0) {
  254. len++;
  255. code = sym;
  256. if (len > 1)
  257. break;
  258. }
  259. }
  260. if (len == 1) {
  261. r->nb_symbols = 1;
  262. r->simple_symbols[0] = code;
  263. r->simple = 1;
  264. return 0;
  265. }
  266. for (sym = 0; sym < alphabet_size; sym++)
  267. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  268. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  269. return AVERROR(EINVAL);
  270. codes = av_malloc_array(alphabet_size, sizeof(*codes));
  271. if (!codes)
  272. return AVERROR(ENOMEM);
  273. code = 0;
  274. r->nb_symbols = 0;
  275. for (len = 1; len <= max_code_length; len++) {
  276. for (sym = 0; sym < alphabet_size; sym++) {
  277. if (code_lengths[sym] != len)
  278. continue;
  279. codes[sym] = code++;
  280. r->nb_symbols++;
  281. }
  282. code <<= 1;
  283. }
  284. if (!r->nb_symbols) {
  285. av_free(codes);
  286. return AVERROR_INVALIDDATA;
  287. }
  288. ret = init_vlc(&r->vlc, 8, alphabet_size,
  289. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  290. codes, sizeof(*codes), sizeof(*codes), 0);
  291. if (ret < 0) {
  292. av_free(codes);
  293. return ret;
  294. }
  295. r->simple = 0;
  296. av_free(codes);
  297. return 0;
  298. }
  299. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  300. {
  301. hc->nb_symbols = get_bits1(&s->gb) + 1;
  302. if (get_bits1(&s->gb))
  303. hc->simple_symbols[0] = get_bits(&s->gb, 8);
  304. else
  305. hc->simple_symbols[0] = get_bits1(&s->gb);
  306. if (hc->nb_symbols == 2)
  307. hc->simple_symbols[1] = get_bits(&s->gb, 8);
  308. hc->simple = 1;
  309. }
  310. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  311. int alphabet_size)
  312. {
  313. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  314. int *code_lengths = NULL;
  315. int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  316. int i, symbol, max_symbol, prev_code_len, ret;
  317. int num_codes = 4 + get_bits(&s->gb, 4);
  318. if (num_codes > NUM_CODE_LENGTH_CODES)
  319. return AVERROR_INVALIDDATA;
  320. for (i = 0; i < num_codes; i++)
  321. code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
  322. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  323. NUM_CODE_LENGTH_CODES);
  324. if (ret < 0)
  325. goto finish;
  326. code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
  327. if (!code_lengths) {
  328. ret = AVERROR(ENOMEM);
  329. goto finish;
  330. }
  331. if (get_bits1(&s->gb)) {
  332. int bits = 2 + 2 * get_bits(&s->gb, 3);
  333. max_symbol = 2 + get_bits(&s->gb, bits);
  334. if (max_symbol > alphabet_size) {
  335. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  336. max_symbol, alphabet_size);
  337. ret = AVERROR_INVALIDDATA;
  338. goto finish;
  339. }
  340. } else {
  341. max_symbol = alphabet_size;
  342. }
  343. prev_code_len = 8;
  344. symbol = 0;
  345. while (symbol < alphabet_size) {
  346. int code_len;
  347. if (!max_symbol--)
  348. break;
  349. code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
  350. if (code_len < 16) {
  351. /* Code length code [0..15] indicates literal code lengths. */
  352. code_lengths[symbol++] = code_len;
  353. if (code_len)
  354. prev_code_len = code_len;
  355. } else {
  356. int repeat = 0, length = 0;
  357. switch (code_len) {
  358. case 16:
  359. /* Code 16 repeats the previous non-zero value [3..6] times,
  360. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  361. * non-zero value has been emitted, a value of 8 is repeated. */
  362. repeat = 3 + get_bits(&s->gb, 2);
  363. length = prev_code_len;
  364. break;
  365. case 17:
  366. /* Code 17 emits a streak of zeros [3..10], i.e.,
  367. * 3 + ReadBits(3) times. */
  368. repeat = 3 + get_bits(&s->gb, 3);
  369. break;
  370. case 18:
  371. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  372. * 11 + ReadBits(7) times. */
  373. repeat = 11 + get_bits(&s->gb, 7);
  374. break;
  375. }
  376. if (symbol + repeat > alphabet_size) {
  377. av_log(s->avctx, AV_LOG_ERROR,
  378. "invalid symbol %d + repeat %d > alphabet size %d\n",
  379. symbol, repeat, alphabet_size);
  380. ret = AVERROR_INVALIDDATA;
  381. goto finish;
  382. }
  383. while (repeat-- > 0)
  384. code_lengths[symbol++] = length;
  385. }
  386. }
  387. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  388. finish:
  389. ff_free_vlc(&code_len_hc.vlc);
  390. av_free(code_lengths);
  391. return ret;
  392. }
  393. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  394. int w, int h);
  395. #define PARSE_BLOCK_SIZE(w, h) do { \
  396. block_bits = get_bits(&s->gb, 3) + 2; \
  397. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  398. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  399. } while (0)
  400. static int decode_entropy_image(WebPContext *s)
  401. {
  402. ImageContext *img;
  403. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  404. width = s->width;
  405. if (s->reduced_width > 0)
  406. width = s->reduced_width;
  407. PARSE_BLOCK_SIZE(width, s->height);
  408. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  409. if (ret < 0)
  410. return ret;
  411. img = &s->image[IMAGE_ROLE_ENTROPY];
  412. img->size_reduction = block_bits;
  413. /* the number of huffman groups is determined by the maximum group number
  414. * coded in the entropy image */
  415. max = 0;
  416. for (y = 0; y < img->frame->height; y++) {
  417. for (x = 0; x < img->frame->width; x++) {
  418. int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
  419. int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
  420. int p = p0 << 8 | p1;
  421. max = FFMAX(max, p);
  422. }
  423. }
  424. s->nb_huffman_groups = max + 1;
  425. return 0;
  426. }
  427. static int parse_transform_predictor(WebPContext *s)
  428. {
  429. int block_bits, blocks_w, blocks_h, ret;
  430. PARSE_BLOCK_SIZE(s->width, s->height);
  431. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  432. blocks_h);
  433. if (ret < 0)
  434. return ret;
  435. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  436. return 0;
  437. }
  438. static int parse_transform_color(WebPContext *s)
  439. {
  440. int block_bits, blocks_w, blocks_h, ret;
  441. PARSE_BLOCK_SIZE(s->width, s->height);
  442. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  443. blocks_h);
  444. if (ret < 0)
  445. return ret;
  446. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  447. return 0;
  448. }
  449. static int parse_transform_color_indexing(WebPContext *s)
  450. {
  451. ImageContext *img;
  452. int width_bits, index_size, ret, x;
  453. uint8_t *ct;
  454. index_size = get_bits(&s->gb, 8) + 1;
  455. if (index_size <= 2)
  456. width_bits = 3;
  457. else if (index_size <= 4)
  458. width_bits = 2;
  459. else if (index_size <= 16)
  460. width_bits = 1;
  461. else
  462. width_bits = 0;
  463. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  464. index_size, 1);
  465. if (ret < 0)
  466. return ret;
  467. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  468. img->size_reduction = width_bits;
  469. if (width_bits > 0)
  470. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  471. /* color index values are delta-coded */
  472. ct = img->frame->data[0] + 4;
  473. for (x = 4; x < img->frame->width * 4; x++, ct++)
  474. ct[0] += ct[-4];
  475. return 0;
  476. }
  477. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  478. int x, int y)
  479. {
  480. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  481. int group = 0;
  482. if (gimg->size_reduction > 0) {
  483. int group_x = x >> gimg->size_reduction;
  484. int group_y = y >> gimg->size_reduction;
  485. int g0 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
  486. int g1 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  487. group = g0 << 8 | g1;
  488. }
  489. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  490. }
  491. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  492. {
  493. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  494. img->color_cache[cache_idx] = c;
  495. }
  496. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  497. int w, int h)
  498. {
  499. ImageContext *img;
  500. HuffReader *hg;
  501. int i, j, ret, x, y, width;
  502. img = &s->image[role];
  503. img->role = role;
  504. if (!img->frame) {
  505. img->frame = av_frame_alloc();
  506. if (!img->frame)
  507. return AVERROR(ENOMEM);
  508. }
  509. img->frame->format = AV_PIX_FMT_ARGB;
  510. img->frame->width = w;
  511. img->frame->height = h;
  512. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  513. ThreadFrame pt = { .f = img->frame };
  514. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  515. } else
  516. ret = av_frame_get_buffer(img->frame, 1);
  517. if (ret < 0)
  518. return ret;
  519. if (get_bits1(&s->gb)) {
  520. img->color_cache_bits = get_bits(&s->gb, 4);
  521. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  522. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  523. img->color_cache_bits);
  524. return AVERROR_INVALIDDATA;
  525. }
  526. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  527. sizeof(*img->color_cache));
  528. if (!img->color_cache)
  529. return AVERROR(ENOMEM);
  530. } else {
  531. img->color_cache_bits = 0;
  532. }
  533. img->nb_huffman_groups = 1;
  534. if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
  535. ret = decode_entropy_image(s);
  536. if (ret < 0)
  537. return ret;
  538. img->nb_huffman_groups = s->nb_huffman_groups;
  539. }
  540. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  541. HUFFMAN_CODES_PER_META_CODE,
  542. sizeof(*img->huffman_groups));
  543. if (!img->huffman_groups)
  544. return AVERROR(ENOMEM);
  545. for (i = 0; i < img->nb_huffman_groups; i++) {
  546. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  547. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  548. int alphabet_size = alphabet_sizes[j];
  549. if (!j && img->color_cache_bits > 0)
  550. alphabet_size += 1 << img->color_cache_bits;
  551. if (get_bits1(&s->gb)) {
  552. read_huffman_code_simple(s, &hg[j]);
  553. } else {
  554. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  555. if (ret < 0)
  556. return ret;
  557. }
  558. }
  559. }
  560. width = img->frame->width;
  561. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  562. width = s->reduced_width;
  563. x = 0; y = 0;
  564. while (y < img->frame->height) {
  565. int v;
  566. hg = get_huffman_group(s, img, x, y);
  567. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
  568. if (v < NUM_LITERAL_CODES) {
  569. /* literal pixel values */
  570. uint8_t *p = GET_PIXEL(img->frame, x, y);
  571. p[2] = v;
  572. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->gb);
  573. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->gb);
  574. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
  575. if (img->color_cache_bits)
  576. color_cache_put(img, AV_RB32(p));
  577. x++;
  578. if (x == width) {
  579. x = 0;
  580. y++;
  581. }
  582. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  583. /* LZ77 backwards mapping */
  584. int prefix_code, length, distance, ref_x, ref_y;
  585. /* parse length and distance */
  586. prefix_code = v - NUM_LITERAL_CODES;
  587. if (prefix_code < 4) {
  588. length = prefix_code + 1;
  589. } else {
  590. int extra_bits = (prefix_code - 2) >> 1;
  591. int offset = 2 + (prefix_code & 1) << extra_bits;
  592. length = offset + get_bits(&s->gb, extra_bits) + 1;
  593. }
  594. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
  595. if (prefix_code > 39) {
  596. av_log(s->avctx, AV_LOG_ERROR,
  597. "distance prefix code too large: %d\n", prefix_code);
  598. return AVERROR_INVALIDDATA;
  599. }
  600. if (prefix_code < 4) {
  601. distance = prefix_code + 1;
  602. } else {
  603. int extra_bits = prefix_code - 2 >> 1;
  604. int offset = 2 + (prefix_code & 1) << extra_bits;
  605. distance = offset + get_bits(&s->gb, extra_bits) + 1;
  606. }
  607. /* find reference location */
  608. if (distance <= NUM_SHORT_DISTANCES) {
  609. int xi = lz77_distance_offsets[distance - 1][0];
  610. int yi = lz77_distance_offsets[distance - 1][1];
  611. distance = FFMAX(1, xi + yi * width);
  612. } else {
  613. distance -= NUM_SHORT_DISTANCES;
  614. }
  615. ref_x = x;
  616. ref_y = y;
  617. if (distance <= x) {
  618. ref_x -= distance;
  619. distance = 0;
  620. } else {
  621. ref_x = 0;
  622. distance -= x;
  623. }
  624. while (distance >= width) {
  625. ref_y--;
  626. distance -= width;
  627. }
  628. if (distance > 0) {
  629. ref_x = width - distance;
  630. ref_y--;
  631. }
  632. ref_x = FFMAX(0, ref_x);
  633. ref_y = FFMAX(0, ref_y);
  634. /* copy pixels
  635. * source and dest regions can overlap and wrap lines, so just
  636. * copy per-pixel */
  637. for (i = 0; i < length; i++) {
  638. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  639. uint8_t *p = GET_PIXEL(img->frame, x, y);
  640. AV_COPY32(p, p_ref);
  641. if (img->color_cache_bits)
  642. color_cache_put(img, AV_RB32(p));
  643. x++;
  644. ref_x++;
  645. if (x == width) {
  646. x = 0;
  647. y++;
  648. }
  649. if (ref_x == width) {
  650. ref_x = 0;
  651. ref_y++;
  652. }
  653. if (y == img->frame->height || ref_y == img->frame->height)
  654. break;
  655. }
  656. } else {
  657. /* read from color cache */
  658. uint8_t *p = GET_PIXEL(img->frame, x, y);
  659. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  660. if (!img->color_cache_bits) {
  661. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  662. return AVERROR_INVALIDDATA;
  663. }
  664. if (cache_idx >= 1 << img->color_cache_bits) {
  665. av_log(s->avctx, AV_LOG_ERROR,
  666. "color cache index out-of-bounds\n");
  667. return AVERROR_INVALIDDATA;
  668. }
  669. AV_WB32(p, img->color_cache[cache_idx]);
  670. x++;
  671. if (x == width) {
  672. x = 0;
  673. y++;
  674. }
  675. }
  676. }
  677. return 0;
  678. }
  679. /* PRED_MODE_BLACK */
  680. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  681. const uint8_t *p_t, const uint8_t *p_tr)
  682. {
  683. AV_WB32(p, 0xFF000000);
  684. }
  685. /* PRED_MODE_L */
  686. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  687. const uint8_t *p_t, const uint8_t *p_tr)
  688. {
  689. AV_COPY32(p, p_l);
  690. }
  691. /* PRED_MODE_T */
  692. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  693. const uint8_t *p_t, const uint8_t *p_tr)
  694. {
  695. AV_COPY32(p, p_t);
  696. }
  697. /* PRED_MODE_TR */
  698. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  699. const uint8_t *p_t, const uint8_t *p_tr)
  700. {
  701. AV_COPY32(p, p_tr);
  702. }
  703. /* PRED_MODE_TL */
  704. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  705. const uint8_t *p_t, const uint8_t *p_tr)
  706. {
  707. AV_COPY32(p, p_tl);
  708. }
  709. /* PRED_MODE_AVG_T_AVG_L_TR */
  710. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  711. const uint8_t *p_t, const uint8_t *p_tr)
  712. {
  713. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  714. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  715. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  716. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  717. }
  718. /* PRED_MODE_AVG_L_TL */
  719. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  720. const uint8_t *p_t, const uint8_t *p_tr)
  721. {
  722. p[0] = p_l[0] + p_tl[0] >> 1;
  723. p[1] = p_l[1] + p_tl[1] >> 1;
  724. p[2] = p_l[2] + p_tl[2] >> 1;
  725. p[3] = p_l[3] + p_tl[3] >> 1;
  726. }
  727. /* PRED_MODE_AVG_L_T */
  728. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  729. const uint8_t *p_t, const uint8_t *p_tr)
  730. {
  731. p[0] = p_l[0] + p_t[0] >> 1;
  732. p[1] = p_l[1] + p_t[1] >> 1;
  733. p[2] = p_l[2] + p_t[2] >> 1;
  734. p[3] = p_l[3] + p_t[3] >> 1;
  735. }
  736. /* PRED_MODE_AVG_TL_T */
  737. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  738. const uint8_t *p_t, const uint8_t *p_tr)
  739. {
  740. p[0] = p_tl[0] + p_t[0] >> 1;
  741. p[1] = p_tl[1] + p_t[1] >> 1;
  742. p[2] = p_tl[2] + p_t[2] >> 1;
  743. p[3] = p_tl[3] + p_t[3] >> 1;
  744. }
  745. /* PRED_MODE_AVG_T_TR */
  746. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  747. const uint8_t *p_t, const uint8_t *p_tr)
  748. {
  749. p[0] = p_t[0] + p_tr[0] >> 1;
  750. p[1] = p_t[1] + p_tr[1] >> 1;
  751. p[2] = p_t[2] + p_tr[2] >> 1;
  752. p[3] = p_t[3] + p_tr[3] >> 1;
  753. }
  754. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  755. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  756. const uint8_t *p_t, const uint8_t *p_tr)
  757. {
  758. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  759. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  760. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  761. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  762. }
  763. /* PRED_MODE_SELECT */
  764. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  765. const uint8_t *p_t, const uint8_t *p_tr)
  766. {
  767. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  768. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  769. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  770. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  771. if (diff <= 0)
  772. AV_COPY32(p, p_t);
  773. else
  774. AV_COPY32(p, p_l);
  775. }
  776. /* PRED_MODE_ADD_SUBTRACT_FULL */
  777. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  778. const uint8_t *p_t, const uint8_t *p_tr)
  779. {
  780. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  781. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  782. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  783. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  784. }
  785. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  786. {
  787. int d = a + b >> 1;
  788. return av_clip_uint8(d + (d - c) / 2);
  789. }
  790. /* PRED_MODE_ADD_SUBTRACT_HALF */
  791. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  792. const uint8_t *p_t, const uint8_t *p_tr)
  793. {
  794. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  795. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  796. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  797. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  798. }
  799. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  800. const uint8_t *p_tl, const uint8_t *p_t,
  801. const uint8_t *p_tr);
  802. static const inv_predict_func inverse_predict[14] = {
  803. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  804. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  805. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  806. inv_predict_12, inv_predict_13,
  807. };
  808. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  809. {
  810. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  811. uint8_t p[4];
  812. dec = GET_PIXEL(frame, x, y);
  813. p_l = GET_PIXEL(frame, x - 1, y);
  814. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  815. p_t = GET_PIXEL(frame, x, y - 1);
  816. if (x == frame->width - 1)
  817. p_tr = GET_PIXEL(frame, 0, y);
  818. else
  819. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  820. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  821. dec[0] += p[0];
  822. dec[1] += p[1];
  823. dec[2] += p[2];
  824. dec[3] += p[3];
  825. }
  826. static int apply_predictor_transform(WebPContext *s)
  827. {
  828. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  829. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  830. int x, y;
  831. for (y = 0; y < img->frame->height; y++) {
  832. for (x = 0; x < img->frame->width; x++) {
  833. int tx = x >> pimg->size_reduction;
  834. int ty = y >> pimg->size_reduction;
  835. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  836. if (x == 0) {
  837. if (y == 0)
  838. m = PRED_MODE_BLACK;
  839. else
  840. m = PRED_MODE_T;
  841. } else if (y == 0)
  842. m = PRED_MODE_L;
  843. if (m > 13) {
  844. av_log(s->avctx, AV_LOG_ERROR,
  845. "invalid predictor mode: %d\n", m);
  846. return AVERROR_INVALIDDATA;
  847. }
  848. inverse_prediction(img->frame, m, x, y);
  849. }
  850. }
  851. return 0;
  852. }
  853. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  854. uint8_t color)
  855. {
  856. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  857. }
  858. static int apply_color_transform(WebPContext *s)
  859. {
  860. ImageContext *img, *cimg;
  861. int x, y, cx, cy;
  862. uint8_t *p, *cp;
  863. img = &s->image[IMAGE_ROLE_ARGB];
  864. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  865. for (y = 0; y < img->frame->height; y++) {
  866. for (x = 0; x < img->frame->width; x++) {
  867. cx = x >> cimg->size_reduction;
  868. cy = y >> cimg->size_reduction;
  869. cp = GET_PIXEL(cimg->frame, cx, cy);
  870. p = GET_PIXEL(img->frame, x, y);
  871. p[1] += color_transform_delta(cp[3], p[2]);
  872. p[3] += color_transform_delta(cp[2], p[2]) +
  873. color_transform_delta(cp[1], p[1]);
  874. }
  875. }
  876. return 0;
  877. }
  878. static int apply_subtract_green_transform(WebPContext *s)
  879. {
  880. int x, y;
  881. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  882. for (y = 0; y < img->frame->height; y++) {
  883. for (x = 0; x < img->frame->width; x++) {
  884. uint8_t *p = GET_PIXEL(img->frame, x, y);
  885. p[1] += p[2];
  886. p[3] += p[2];
  887. }
  888. }
  889. return 0;
  890. }
  891. static int apply_color_indexing_transform(WebPContext *s)
  892. {
  893. ImageContext *img;
  894. ImageContext *pal;
  895. int i, x, y;
  896. uint8_t *p;
  897. img = &s->image[IMAGE_ROLE_ARGB];
  898. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  899. if (pal->size_reduction > 0) {
  900. GetBitContext gb_g;
  901. uint8_t *line;
  902. int pixel_bits = 8 >> pal->size_reduction;
  903. line = av_malloc(img->frame->linesize[0]);
  904. if (!line)
  905. return AVERROR(ENOMEM);
  906. for (y = 0; y < img->frame->height; y++) {
  907. p = GET_PIXEL(img->frame, 0, y);
  908. memcpy(line, p, img->frame->linesize[0]);
  909. init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
  910. skip_bits(&gb_g, 16);
  911. i = 0;
  912. for (x = 0; x < img->frame->width; x++) {
  913. p = GET_PIXEL(img->frame, x, y);
  914. p[2] = get_bits(&gb_g, pixel_bits);
  915. i++;
  916. if (i == 1 << pal->size_reduction) {
  917. skip_bits(&gb_g, 24);
  918. i = 0;
  919. }
  920. }
  921. }
  922. av_free(line);
  923. }
  924. // switch to local palette if it's worth initializing it
  925. if (img->frame->height * img->frame->width > 300) {
  926. uint8_t palette[256 * 4];
  927. const int size = pal->frame->width * 4;
  928. av_assert0(size <= 1024U);
  929. memcpy(palette, GET_PIXEL(pal->frame, 0, 0), size); // copy palette
  930. // set extra entries to transparent black
  931. memset(palette + size, 0, 256 * 4 - size);
  932. for (y = 0; y < img->frame->height; y++) {
  933. for (x = 0; x < img->frame->width; x++) {
  934. p = GET_PIXEL(img->frame, x, y);
  935. i = p[2];
  936. AV_COPY32(p, &palette[i * 4]);
  937. }
  938. }
  939. } else {
  940. for (y = 0; y < img->frame->height; y++) {
  941. for (x = 0; x < img->frame->width; x++) {
  942. p = GET_PIXEL(img->frame, x, y);
  943. i = p[2];
  944. if (i >= pal->frame->width) {
  945. AV_WB32(p, 0x00000000);
  946. } else {
  947. const uint8_t *pi = GET_PIXEL(pal->frame, i, 0);
  948. AV_COPY32(p, pi);
  949. }
  950. }
  951. }
  952. }
  953. return 0;
  954. }
  955. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  956. int *got_frame, uint8_t *data_start,
  957. unsigned int data_size, int is_alpha_chunk)
  958. {
  959. WebPContext *s = avctx->priv_data;
  960. int w, h, ret, i, used;
  961. if (!is_alpha_chunk) {
  962. s->lossless = 1;
  963. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  964. }
  965. ret = init_get_bits8(&s->gb, data_start, data_size);
  966. if (ret < 0)
  967. return ret;
  968. if (!is_alpha_chunk) {
  969. if (get_bits(&s->gb, 8) != 0x2F) {
  970. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  971. return AVERROR_INVALIDDATA;
  972. }
  973. w = get_bits(&s->gb, 14) + 1;
  974. h = get_bits(&s->gb, 14) + 1;
  975. if (s->width && s->width != w) {
  976. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  977. s->width, w);
  978. }
  979. s->width = w;
  980. if (s->height && s->height != h) {
  981. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  982. s->width, w);
  983. }
  984. s->height = h;
  985. ret = ff_set_dimensions(avctx, s->width, s->height);
  986. if (ret < 0)
  987. return ret;
  988. s->has_alpha = get_bits1(&s->gb);
  989. if (get_bits(&s->gb, 3) != 0x0) {
  990. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  991. return AVERROR_INVALIDDATA;
  992. }
  993. } else {
  994. if (!s->width || !s->height)
  995. return AVERROR_BUG;
  996. w = s->width;
  997. h = s->height;
  998. }
  999. /* parse transformations */
  1000. s->nb_transforms = 0;
  1001. s->reduced_width = 0;
  1002. used = 0;
  1003. while (get_bits1(&s->gb)) {
  1004. enum TransformType transform = get_bits(&s->gb, 2);
  1005. if (used & (1 << transform)) {
  1006. av_log(avctx, AV_LOG_ERROR, "Transform %d used more than once\n",
  1007. transform);
  1008. ret = AVERROR_INVALIDDATA;
  1009. goto free_and_return;
  1010. }
  1011. used |= (1 << transform);
  1012. s->transforms[s->nb_transforms++] = transform;
  1013. switch (transform) {
  1014. case PREDICTOR_TRANSFORM:
  1015. ret = parse_transform_predictor(s);
  1016. break;
  1017. case COLOR_TRANSFORM:
  1018. ret = parse_transform_color(s);
  1019. break;
  1020. case COLOR_INDEXING_TRANSFORM:
  1021. ret = parse_transform_color_indexing(s);
  1022. break;
  1023. }
  1024. if (ret < 0)
  1025. goto free_and_return;
  1026. }
  1027. /* decode primary image */
  1028. s->image[IMAGE_ROLE_ARGB].frame = p;
  1029. if (is_alpha_chunk)
  1030. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  1031. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  1032. if (ret < 0)
  1033. goto free_and_return;
  1034. /* apply transformations */
  1035. for (i = s->nb_transforms - 1; i >= 0; i--) {
  1036. switch (s->transforms[i]) {
  1037. case PREDICTOR_TRANSFORM:
  1038. ret = apply_predictor_transform(s);
  1039. break;
  1040. case COLOR_TRANSFORM:
  1041. ret = apply_color_transform(s);
  1042. break;
  1043. case SUBTRACT_GREEN:
  1044. ret = apply_subtract_green_transform(s);
  1045. break;
  1046. case COLOR_INDEXING_TRANSFORM:
  1047. ret = apply_color_indexing_transform(s);
  1048. break;
  1049. }
  1050. if (ret < 0)
  1051. goto free_and_return;
  1052. }
  1053. *got_frame = 1;
  1054. p->pict_type = AV_PICTURE_TYPE_I;
  1055. p->key_frame = 1;
  1056. ret = data_size;
  1057. free_and_return:
  1058. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1059. image_ctx_free(&s->image[i]);
  1060. return ret;
  1061. }
  1062. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1063. {
  1064. int x, y, ls;
  1065. uint8_t *dec;
  1066. ls = frame->linesize[3];
  1067. /* filter first row using horizontal filter */
  1068. dec = frame->data[3] + 1;
  1069. for (x = 1; x < frame->width; x++, dec++)
  1070. *dec += *(dec - 1);
  1071. /* filter first column using vertical filter */
  1072. dec = frame->data[3] + ls;
  1073. for (y = 1; y < frame->height; y++, dec += ls)
  1074. *dec += *(dec - ls);
  1075. /* filter the rest using the specified filter */
  1076. switch (m) {
  1077. case ALPHA_FILTER_HORIZONTAL:
  1078. for (y = 1; y < frame->height; y++) {
  1079. dec = frame->data[3] + y * ls + 1;
  1080. for (x = 1; x < frame->width; x++, dec++)
  1081. *dec += *(dec - 1);
  1082. }
  1083. break;
  1084. case ALPHA_FILTER_VERTICAL:
  1085. for (y = 1; y < frame->height; y++) {
  1086. dec = frame->data[3] + y * ls + 1;
  1087. for (x = 1; x < frame->width; x++, dec++)
  1088. *dec += *(dec - ls);
  1089. }
  1090. break;
  1091. case ALPHA_FILTER_GRADIENT:
  1092. for (y = 1; y < frame->height; y++) {
  1093. dec = frame->data[3] + y * ls + 1;
  1094. for (x = 1; x < frame->width; x++, dec++)
  1095. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1096. }
  1097. break;
  1098. }
  1099. }
  1100. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1101. uint8_t *data_start,
  1102. unsigned int data_size)
  1103. {
  1104. WebPContext *s = avctx->priv_data;
  1105. int x, y, ret;
  1106. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1107. GetByteContext gb;
  1108. bytestream2_init(&gb, data_start, data_size);
  1109. for (y = 0; y < s->height; y++)
  1110. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1111. s->width);
  1112. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1113. uint8_t *ap, *pp;
  1114. int alpha_got_frame = 0;
  1115. s->alpha_frame = av_frame_alloc();
  1116. if (!s->alpha_frame)
  1117. return AVERROR(ENOMEM);
  1118. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1119. data_start, data_size, 1);
  1120. if (ret < 0) {
  1121. av_frame_free(&s->alpha_frame);
  1122. return ret;
  1123. }
  1124. if (!alpha_got_frame) {
  1125. av_frame_free(&s->alpha_frame);
  1126. return AVERROR_INVALIDDATA;
  1127. }
  1128. /* copy green component of alpha image to alpha plane of primary image */
  1129. for (y = 0; y < s->height; y++) {
  1130. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1131. pp = p->data[3] + p->linesize[3] * y;
  1132. for (x = 0; x < s->width; x++) {
  1133. *pp = *ap;
  1134. pp++;
  1135. ap += 4;
  1136. }
  1137. }
  1138. av_frame_free(&s->alpha_frame);
  1139. }
  1140. /* apply alpha filtering */
  1141. if (s->alpha_filter)
  1142. alpha_inverse_prediction(p, s->alpha_filter);
  1143. return 0;
  1144. }
  1145. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1146. int *got_frame, uint8_t *data_start,
  1147. unsigned int data_size)
  1148. {
  1149. WebPContext *s = avctx->priv_data;
  1150. AVPacket pkt;
  1151. int ret;
  1152. if (!s->initialized) {
  1153. ff_vp8_decode_init(avctx);
  1154. s->initialized = 1;
  1155. if (s->has_alpha)
  1156. avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
  1157. }
  1158. s->lossless = 0;
  1159. if (data_size > INT_MAX) {
  1160. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1161. return AVERROR_PATCHWELCOME;
  1162. }
  1163. av_init_packet(&pkt);
  1164. pkt.data = data_start;
  1165. pkt.size = data_size;
  1166. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1167. if (s->has_alpha) {
  1168. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1169. s->alpha_data_size);
  1170. if (ret < 0)
  1171. return ret;
  1172. }
  1173. return ret;
  1174. }
  1175. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1176. AVPacket *avpkt)
  1177. {
  1178. AVFrame * const p = data;
  1179. WebPContext *s = avctx->priv_data;
  1180. GetByteContext gb;
  1181. int ret;
  1182. uint32_t chunk_type, chunk_size;
  1183. int vp8x_flags = 0;
  1184. s->avctx = avctx;
  1185. s->width = 0;
  1186. s->height = 0;
  1187. *got_frame = 0;
  1188. s->has_alpha = 0;
  1189. s->has_exif = 0;
  1190. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1191. if (bytestream2_get_bytes_left(&gb) < 12)
  1192. return AVERROR_INVALIDDATA;
  1193. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1194. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1195. return AVERROR_INVALIDDATA;
  1196. }
  1197. chunk_size = bytestream2_get_le32(&gb);
  1198. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1199. return AVERROR_INVALIDDATA;
  1200. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1201. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1202. return AVERROR_INVALIDDATA;
  1203. }
  1204. while (bytestream2_get_bytes_left(&gb) > 8) {
  1205. char chunk_str[5] = { 0 };
  1206. chunk_type = bytestream2_get_le32(&gb);
  1207. chunk_size = bytestream2_get_le32(&gb);
  1208. if (chunk_size == UINT32_MAX)
  1209. return AVERROR_INVALIDDATA;
  1210. chunk_size += chunk_size & 1;
  1211. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1212. return AVERROR_INVALIDDATA;
  1213. switch (chunk_type) {
  1214. case MKTAG('V', 'P', '8', ' '):
  1215. if (!*got_frame) {
  1216. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1217. avpkt->data + bytestream2_tell(&gb),
  1218. chunk_size);
  1219. if (ret < 0)
  1220. return ret;
  1221. }
  1222. bytestream2_skip(&gb, chunk_size);
  1223. break;
  1224. case MKTAG('V', 'P', '8', 'L'):
  1225. if (!*got_frame) {
  1226. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1227. avpkt->data + bytestream2_tell(&gb),
  1228. chunk_size, 0);
  1229. if (ret < 0)
  1230. return ret;
  1231. avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
  1232. }
  1233. bytestream2_skip(&gb, chunk_size);
  1234. break;
  1235. case MKTAG('V', 'P', '8', 'X'):
  1236. vp8x_flags = bytestream2_get_byte(&gb);
  1237. bytestream2_skip(&gb, 3);
  1238. s->width = bytestream2_get_le24(&gb) + 1;
  1239. s->height = bytestream2_get_le24(&gb) + 1;
  1240. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1241. if (ret < 0)
  1242. return ret;
  1243. break;
  1244. case MKTAG('A', 'L', 'P', 'H'): {
  1245. int alpha_header, filter_m, compression;
  1246. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1247. av_log(avctx, AV_LOG_WARNING,
  1248. "ALPHA chunk present, but alpha bit not set in the "
  1249. "VP8X header\n");
  1250. }
  1251. if (chunk_size == 0) {
  1252. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1253. return AVERROR_INVALIDDATA;
  1254. }
  1255. alpha_header = bytestream2_get_byte(&gb);
  1256. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1257. s->alpha_data_size = chunk_size - 1;
  1258. bytestream2_skip(&gb, s->alpha_data_size);
  1259. filter_m = (alpha_header >> 2) & 0x03;
  1260. compression = alpha_header & 0x03;
  1261. if (compression > ALPHA_COMPRESSION_VP8L) {
  1262. av_log(avctx, AV_LOG_VERBOSE,
  1263. "skipping unsupported ALPHA chunk\n");
  1264. } else {
  1265. s->has_alpha = 1;
  1266. s->alpha_compression = compression;
  1267. s->alpha_filter = filter_m;
  1268. }
  1269. break;
  1270. }
  1271. case MKTAG('E', 'X', 'I', 'F'): {
  1272. int le, ifd_offset, exif_offset = bytestream2_tell(&gb);
  1273. AVDictionary *exif_metadata = NULL;
  1274. GetByteContext exif_gb;
  1275. if (s->has_exif) {
  1276. av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra EXIF chunk\n");
  1277. goto exif_end;
  1278. }
  1279. if (!(vp8x_flags & VP8X_FLAG_EXIF_METADATA))
  1280. av_log(avctx, AV_LOG_WARNING,
  1281. "EXIF chunk present, but Exif bit not set in the "
  1282. "VP8X header\n");
  1283. s->has_exif = 1;
  1284. bytestream2_init(&exif_gb, avpkt->data + exif_offset,
  1285. avpkt->size - exif_offset);
  1286. if (ff_tdecode_header(&exif_gb, &le, &ifd_offset) < 0) {
  1287. av_log(avctx, AV_LOG_ERROR, "invalid TIFF header "
  1288. "in Exif data\n");
  1289. goto exif_end;
  1290. }
  1291. bytestream2_seek(&exif_gb, ifd_offset, SEEK_SET);
  1292. if (avpriv_exif_decode_ifd(avctx, &exif_gb, le, 0, &exif_metadata) < 0) {
  1293. av_log(avctx, AV_LOG_ERROR, "error decoding Exif data\n");
  1294. goto exif_end;
  1295. }
  1296. av_dict_copy(avpriv_frame_get_metadatap(data), exif_metadata, 0);
  1297. exif_end:
  1298. av_dict_free(&exif_metadata);
  1299. bytestream2_skip(&gb, chunk_size);
  1300. break;
  1301. }
  1302. case MKTAG('I', 'C', 'C', 'P'):
  1303. case MKTAG('A', 'N', 'I', 'M'):
  1304. case MKTAG('A', 'N', 'M', 'F'):
  1305. case MKTAG('X', 'M', 'P', ' '):
  1306. AV_WL32(chunk_str, chunk_type);
  1307. av_log(avctx, AV_LOG_WARNING, "skipping unsupported chunk: %s\n",
  1308. chunk_str);
  1309. bytestream2_skip(&gb, chunk_size);
  1310. break;
  1311. default:
  1312. AV_WL32(chunk_str, chunk_type);
  1313. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1314. chunk_str);
  1315. bytestream2_skip(&gb, chunk_size);
  1316. break;
  1317. }
  1318. }
  1319. if (!*got_frame) {
  1320. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1321. return AVERROR_INVALIDDATA;
  1322. }
  1323. return avpkt->size;
  1324. }
  1325. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1326. {
  1327. WebPContext *s = avctx->priv_data;
  1328. if (s->initialized)
  1329. return ff_vp8_decode_free(avctx);
  1330. return 0;
  1331. }
  1332. AVCodec ff_webp_decoder = {
  1333. .name = "webp",
  1334. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1335. .type = AVMEDIA_TYPE_VIDEO,
  1336. .id = AV_CODEC_ID_WEBP,
  1337. .priv_data_size = sizeof(WebPContext),
  1338. .decode = webp_decode_frame,
  1339. .close = webp_decode_close,
  1340. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  1341. };