| 
							- /*
 -  * Copyright (c) 2018 Sergey Lavrushkin
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  * Filter implementing image super-resolution using deep convolutional networks.
 -  * https://arxiv.org/abs/1501.00092
 -  */
 - 
 - #include "avfilter.h"
 - #include "formats.h"
 - #include "internal.h"
 - #include "libavutil/opt.h"
 - #include "libavformat/avio.h"
 - #include "dnn_interface.h"
 - 
 - typedef struct SRCNNContext {
 -     const AVClass *class;
 - 
 -     char* model_filename;
 -     float* input_output_buf;
 -     DNNBackendType backend_type;
 -     DNNModule* dnn_module;
 -     DNNModel* model;
 -     DNNData input_output;
 - } SRCNNContext;
 - 
 - #define OFFSET(x) offsetof(SRCNNContext, x)
 - #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
 - static const AVOption srcnn_options[] = {
 -     { "dnn_backend", "DNN backend used for model execution", OFFSET(backend_type), AV_OPT_TYPE_FLAGS, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
 -     { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
 - #if (CONFIG_LIBTENSORFLOW == 1)
 -     { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
 - #endif
 -     { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
 -     { NULL }
 - };
 - 
 - AVFILTER_DEFINE_CLASS(srcnn);
 - 
 - static av_cold int init(AVFilterContext* context)
 - {
 -     SRCNNContext* srcnn_context = context->priv;
 - 
 -     srcnn_context->dnn_module = ff_get_dnn_module(srcnn_context->backend_type);
 -     if (!srcnn_context->dnn_module){
 -         av_log(context, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
 -         return AVERROR(ENOMEM);
 -     }
 -     if (!srcnn_context->model_filename){
 -         av_log(context, AV_LOG_VERBOSE, "model file for network was not specified, using default network for x2 upsampling\n");
 -         srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN);
 -     }
 -     else{
 -         srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename);
 -     }
 -     if (!srcnn_context->model){
 -         av_log(context, AV_LOG_ERROR, "could not load DNN model\n");
 -         return AVERROR(EIO);
 -     }
 - 
 -     return 0;
 - }
 - 
 - static int query_formats(AVFilterContext* context)
 - {
 -     const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
 -                                                 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
 -                                                 AV_PIX_FMT_NONE};
 -     AVFilterFormats* formats_list;
 - 
 -     formats_list = ff_make_format_list(pixel_formats);
 -     if (!formats_list){
 -         av_log(context, AV_LOG_ERROR, "could not create formats list\n");
 -         return AVERROR(ENOMEM);
 -     }
 -     return ff_set_common_formats(context, formats_list);
 - }
 - 
 - static int config_props(AVFilterLink* inlink)
 - {
 -     AVFilterContext* context = inlink->dst;
 -     SRCNNContext* srcnn_context = context->priv;
 -     DNNReturnType result;
 - 
 -     srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float));
 -     if (!srcnn_context->input_output_buf){
 -         av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n");
 -         return AVERROR(ENOMEM);
 -     }
 - 
 -     srcnn_context->input_output.data = srcnn_context->input_output_buf;
 -     srcnn_context->input_output.width = inlink->w;
 -     srcnn_context->input_output.height = inlink->h;
 -     srcnn_context->input_output.channels = 1;
 - 
 -     result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output);
 -     if (result != DNN_SUCCESS){
 -         av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
 -         return AVERROR(EIO);
 -     }
 -     else{
 -         return 0;
 -     }
 - }
 - 
 - typedef struct ThreadData{
 -     uint8_t* out;
 -     int out_linesize, height, width;
 - } ThreadData;
 - 
 - static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 - {
 -     SRCNNContext* srcnn_context = context->priv;
 -     const ThreadData* td = arg;
 -     const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 -     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 -     const uint8_t* src = td->out + slice_start * td->out_linesize;
 -     float* dst = srcnn_context->input_output_buf + slice_start * td->width;
 -     int y, x;
 - 
 -     for (y = slice_start; y < slice_end; ++y){
 -         for (x = 0; x < td->width; ++x){
 -             dst[x] = (float)src[x] / 255.0f;
 -         }
 -         src += td->out_linesize;
 -         dst += td->width;
 -     }
 - 
 -     return 0;
 - }
 - 
 - static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 - {
 -     SRCNNContext* srcnn_context = context->priv;
 -     const ThreadData* td = arg;
 -     const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 -     const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 -     const float* src = srcnn_context->input_output_buf + slice_start * td->width;
 -     uint8_t* dst = td->out + slice_start * td->out_linesize;
 -     int y, x;
 - 
 -     for (y = slice_start; y < slice_end; ++y){
 -         for (x = 0; x < td->width; ++x){
 -             dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
 -         }
 -         src += td->width;
 -         dst += td->out_linesize;
 -     }
 - 
 -     return 0;
 - }
 - 
 - static int filter_frame(AVFilterLink* inlink, AVFrame* in)
 - {
 -     AVFilterContext* context = inlink->dst;
 -     SRCNNContext* srcnn_context = context->priv;
 -     AVFilterLink* outlink = context->outputs[0];
 -     AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 -     ThreadData td;
 -     int nb_threads;
 -     DNNReturnType dnn_result;
 - 
 -     if (!out){
 -         av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
 -         av_frame_free(&in);
 -         return AVERROR(ENOMEM);
 -     }
 -     av_frame_copy_props(out, in);
 -     av_frame_copy(out, in);
 -     av_frame_free(&in);
 -     td.out = out->data[0];
 -     td.out_linesize = out->linesize[0];
 -     td.height = out->height;
 -     td.width = out->width;
 - 
 -     nb_threads = ff_filter_get_nb_threads(context);
 -     context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
 - 
 -     dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model);
 -     if (dnn_result != DNN_SUCCESS){
 -         av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
 -         return AVERROR(EIO);
 -     }
 - 
 -     context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
 - 
 -     return ff_filter_frame(outlink, out);
 - }
 - 
 - static av_cold void uninit(AVFilterContext* context)
 - {
 -     SRCNNContext* srcnn_context = context->priv;
 - 
 -     if (srcnn_context->dnn_module){
 -         (srcnn_context->dnn_module->free_model)(&srcnn_context->model);
 -         av_freep(&srcnn_context->dnn_module);
 -     }
 -     av_freep(&srcnn_context->input_output_buf);
 - }
 - 
 - static const AVFilterPad srcnn_inputs[] = {
 -     {
 -         .name         = "default",
 -         .type         = AVMEDIA_TYPE_VIDEO,
 -         .config_props = config_props,
 -         .filter_frame = filter_frame,
 -     },
 -     { NULL }
 - };
 - 
 - static const AVFilterPad srcnn_outputs[] = {
 -     {
 -         .name = "default",
 -         .type = AVMEDIA_TYPE_VIDEO,
 -     },
 -     { NULL }
 - };
 - 
 - AVFilter ff_vf_srcnn = {
 -     .name          = "srcnn",
 -     .description   = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
 -     .priv_size     = sizeof(SRCNNContext),
 -     .init          = init,
 -     .uninit        = uninit,
 -     .query_formats = query_formats,
 -     .inputs        = srcnn_inputs,
 -     .outputs       = srcnn_outputs,
 -     .priv_class    = &srcnn_class,
 -     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
 - };
 
 
  |