You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2030 lines
68KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. *
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #define BITSTREAM_READER_LE
  36. #include "avcodec.h"
  37. #include "get_bits.h"
  38. #include "dsputil.h"
  39. #include "rdft.h"
  40. #include "mpegaudiodsp.h"
  41. #include "mpegaudio.h"
  42. #include "qdm2data.h"
  43. #include "qdm2_tablegen.h"
  44. #undef NDEBUG
  45. #include <assert.h>
  46. #define QDM2_LIST_ADD(list, size, packet) \
  47. do { \
  48. if (size > 0) { \
  49. list[size - 1].next = &list[size]; \
  50. } \
  51. list[size].packet = packet; \
  52. list[size].next = NULL; \
  53. size++; \
  54. } while(0)
  55. // Result is 8, 16 or 30
  56. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  57. #define FIX_NOISE_IDX(noise_idx) \
  58. if ((noise_idx) >= 3840) \
  59. (noise_idx) -= 3840; \
  60. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  61. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  62. #define SAMPLES_NEEDED \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  64. #define SAMPLES_NEEDED_2(why) \
  65. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  66. #define QDM2_MAX_FRAME_SIZE 512
  67. typedef int8_t sb_int8_array[2][30][64];
  68. /**
  69. * Subpacket
  70. */
  71. typedef struct {
  72. int type; ///< subpacket type
  73. unsigned int size; ///< subpacket size
  74. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  75. } QDM2SubPacket;
  76. /**
  77. * A node in the subpacket list
  78. */
  79. typedef struct QDM2SubPNode {
  80. QDM2SubPacket *packet; ///< packet
  81. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  82. } QDM2SubPNode;
  83. typedef struct {
  84. float re;
  85. float im;
  86. } QDM2Complex;
  87. typedef struct {
  88. float level;
  89. QDM2Complex *complex;
  90. const float *table;
  91. int phase;
  92. int phase_shift;
  93. int duration;
  94. short time_index;
  95. short cutoff;
  96. } FFTTone;
  97. typedef struct {
  98. int16_t sub_packet;
  99. uint8_t channel;
  100. int16_t offset;
  101. int16_t exp;
  102. uint8_t phase;
  103. } FFTCoefficient;
  104. typedef struct {
  105. DECLARE_ALIGNED(32, QDM2Complex, complex)[MPA_MAX_CHANNELS][256];
  106. } QDM2FFT;
  107. /**
  108. * QDM2 decoder context
  109. */
  110. typedef struct {
  111. AVFrame frame;
  112. /// Parameters from codec header, do not change during playback
  113. int nb_channels; ///< number of channels
  114. int channels; ///< number of channels
  115. int group_size; ///< size of frame group (16 frames per group)
  116. int fft_size; ///< size of FFT, in complex numbers
  117. int checksum_size; ///< size of data block, used also for checksum
  118. /// Parameters built from header parameters, do not change during playback
  119. int group_order; ///< order of frame group
  120. int fft_order; ///< order of FFT (actually fftorder+1)
  121. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  122. int frame_size; ///< size of data frame
  123. int frequency_range;
  124. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  125. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  126. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  127. /// Packets and packet lists
  128. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  129. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  130. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  131. int sub_packets_B; ///< number of packets on 'B' list
  132. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  133. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  134. /// FFT and tones
  135. FFTTone fft_tones[1000];
  136. int fft_tone_start;
  137. int fft_tone_end;
  138. FFTCoefficient fft_coefs[1000];
  139. int fft_coefs_index;
  140. int fft_coefs_min_index[5];
  141. int fft_coefs_max_index[5];
  142. int fft_level_exp[6];
  143. RDFTContext rdft_ctx;
  144. QDM2FFT fft;
  145. /// I/O data
  146. const uint8_t *compressed_data;
  147. int compressed_size;
  148. float output_buffer[QDM2_MAX_FRAME_SIZE * MPA_MAX_CHANNELS * 2];
  149. /// Synthesis filter
  150. MPADSPContext mpadsp;
  151. DECLARE_ALIGNED(32, float, synth_buf)[MPA_MAX_CHANNELS][512*2];
  152. int synth_buf_offset[MPA_MAX_CHANNELS];
  153. DECLARE_ALIGNED(32, float, sb_samples)[MPA_MAX_CHANNELS][128][SBLIMIT];
  154. DECLARE_ALIGNED(32, float, samples)[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  155. /// Mixed temporary data used in decoding
  156. float tone_level[MPA_MAX_CHANNELS][30][64];
  157. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  158. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  159. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  160. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  161. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  162. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  163. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  164. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  165. // Flags
  166. int has_errors; ///< packet has errors
  167. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  168. int do_synth_filter; ///< used to perform or skip synthesis filter
  169. int sub_packet;
  170. int noise_idx; ///< index for dithering noise table
  171. } QDM2Context;
  172. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  173. static VLC vlc_tab_level;
  174. static VLC vlc_tab_diff;
  175. static VLC vlc_tab_run;
  176. static VLC fft_level_exp_alt_vlc;
  177. static VLC fft_level_exp_vlc;
  178. static VLC fft_stereo_exp_vlc;
  179. static VLC fft_stereo_phase_vlc;
  180. static VLC vlc_tab_tone_level_idx_hi1;
  181. static VLC vlc_tab_tone_level_idx_mid;
  182. static VLC vlc_tab_tone_level_idx_hi2;
  183. static VLC vlc_tab_type30;
  184. static VLC vlc_tab_type34;
  185. static VLC vlc_tab_fft_tone_offset[5];
  186. static const uint16_t qdm2_vlc_offs[] = {
  187. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  188. };
  189. static av_cold void qdm2_init_vlc(void)
  190. {
  191. static int vlcs_initialized = 0;
  192. static VLC_TYPE qdm2_table[3838][2];
  193. if (!vlcs_initialized) {
  194. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  195. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  196. init_vlc (&vlc_tab_level, 8, 24,
  197. vlc_tab_level_huffbits, 1, 1,
  198. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  199. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  200. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  201. init_vlc (&vlc_tab_diff, 8, 37,
  202. vlc_tab_diff_huffbits, 1, 1,
  203. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  204. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  205. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  206. init_vlc (&vlc_tab_run, 5, 6,
  207. vlc_tab_run_huffbits, 1, 1,
  208. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  209. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  210. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] - qdm2_vlc_offs[3];
  211. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  212. fft_level_exp_alt_huffbits, 1, 1,
  213. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  214. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  215. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  216. init_vlc (&fft_level_exp_vlc, 8, 20,
  217. fft_level_exp_huffbits, 1, 1,
  218. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  219. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  220. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] - qdm2_vlc_offs[5];
  221. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  222. fft_stereo_exp_huffbits, 1, 1,
  223. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  224. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  225. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] - qdm2_vlc_offs[6];
  226. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  227. fft_stereo_phase_huffbits, 1, 1,
  228. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  229. vlc_tab_tone_level_idx_hi1.table = &qdm2_table[qdm2_vlc_offs[7]];
  230. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] - qdm2_vlc_offs[7];
  231. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  232. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  233. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  234. vlc_tab_tone_level_idx_mid.table = &qdm2_table[qdm2_vlc_offs[8]];
  235. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] - qdm2_vlc_offs[8];
  236. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  237. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  238. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  239. vlc_tab_tone_level_idx_hi2.table = &qdm2_table[qdm2_vlc_offs[9]];
  240. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] - qdm2_vlc_offs[9];
  241. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  242. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  243. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  244. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  245. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  246. init_vlc (&vlc_tab_type30, 6, 9,
  247. vlc_tab_type30_huffbits, 1, 1,
  248. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  249. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  250. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  251. init_vlc (&vlc_tab_type34, 5, 10,
  252. vlc_tab_type34_huffbits, 1, 1,
  253. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  254. vlc_tab_fft_tone_offset[0].table = &qdm2_table[qdm2_vlc_offs[12]];
  255. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] - qdm2_vlc_offs[12];
  256. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  257. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  258. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  259. vlc_tab_fft_tone_offset[1].table = &qdm2_table[qdm2_vlc_offs[13]];
  260. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] - qdm2_vlc_offs[13];
  261. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  262. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  263. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  264. vlc_tab_fft_tone_offset[2].table = &qdm2_table[qdm2_vlc_offs[14]];
  265. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] - qdm2_vlc_offs[14];
  266. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  267. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  268. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  269. vlc_tab_fft_tone_offset[3].table = &qdm2_table[qdm2_vlc_offs[15]];
  270. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] - qdm2_vlc_offs[15];
  271. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  272. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  273. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  274. vlc_tab_fft_tone_offset[4].table = &qdm2_table[qdm2_vlc_offs[16]];
  275. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] - qdm2_vlc_offs[16];
  276. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  277. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  278. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  279. vlcs_initialized=1;
  280. }
  281. }
  282. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  283. {
  284. int value;
  285. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  286. /* stage-2, 3 bits exponent escape sequence */
  287. if (value-- == 0)
  288. value = get_bits (gb, get_bits (gb, 3) + 1);
  289. /* stage-3, optional */
  290. if (flag) {
  291. int tmp = vlc_stage3_values[value];
  292. if ((value & ~3) > 0)
  293. tmp += get_bits (gb, (value >> 2));
  294. value = tmp;
  295. }
  296. return value;
  297. }
  298. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  299. {
  300. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  301. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  302. }
  303. /**
  304. * QDM2 checksum
  305. *
  306. * @param data pointer to data to be checksum'ed
  307. * @param length data length
  308. * @param value checksum value
  309. *
  310. * @return 0 if checksum is OK
  311. */
  312. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  313. int i;
  314. for (i=0; i < length; i++)
  315. value -= data[i];
  316. return (uint16_t)(value & 0xffff);
  317. }
  318. /**
  319. * Fill a QDM2SubPacket structure with packet type, size, and data pointer.
  320. *
  321. * @param gb bitreader context
  322. * @param sub_packet packet under analysis
  323. */
  324. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  325. {
  326. sub_packet->type = get_bits (gb, 8);
  327. if (sub_packet->type == 0) {
  328. sub_packet->size = 0;
  329. sub_packet->data = NULL;
  330. } else {
  331. sub_packet->size = get_bits (gb, 8);
  332. if (sub_packet->type & 0x80) {
  333. sub_packet->size <<= 8;
  334. sub_packet->size |= get_bits (gb, 8);
  335. sub_packet->type &= 0x7f;
  336. }
  337. if (sub_packet->type == 0x7f)
  338. sub_packet->type |= (get_bits (gb, 8) << 8);
  339. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  340. }
  341. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  342. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  343. }
  344. /**
  345. * Return node pointer to first packet of requested type in list.
  346. *
  347. * @param list list of subpackets to be scanned
  348. * @param type type of searched subpacket
  349. * @return node pointer for subpacket if found, else NULL
  350. */
  351. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  352. {
  353. while (list != NULL && list->packet != NULL) {
  354. if (list->packet->type == type)
  355. return list;
  356. list = list->next;
  357. }
  358. return NULL;
  359. }
  360. /**
  361. * Replace 8 elements with their average value.
  362. * Called by qdm2_decode_superblock before starting subblock decoding.
  363. *
  364. * @param q context
  365. */
  366. static void average_quantized_coeffs (QDM2Context *q)
  367. {
  368. int i, j, n, ch, sum;
  369. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  370. for (ch = 0; ch < q->nb_channels; ch++)
  371. for (i = 0; i < n; i++) {
  372. sum = 0;
  373. for (j = 0; j < 8; j++)
  374. sum += q->quantized_coeffs[ch][i][j];
  375. sum /= 8;
  376. if (sum > 0)
  377. sum--;
  378. for (j=0; j < 8; j++)
  379. q->quantized_coeffs[ch][i][j] = sum;
  380. }
  381. }
  382. /**
  383. * Build subband samples with noise weighted by q->tone_level.
  384. * Called by synthfilt_build_sb_samples.
  385. *
  386. * @param q context
  387. * @param sb subband index
  388. */
  389. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  390. {
  391. int ch, j;
  392. FIX_NOISE_IDX(q->noise_idx);
  393. if (!q->nb_channels)
  394. return;
  395. for (ch = 0; ch < q->nb_channels; ch++)
  396. for (j = 0; j < 64; j++) {
  397. q->sb_samples[ch][j * 2][sb] = SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j];
  398. q->sb_samples[ch][j * 2 + 1][sb] = SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j];
  399. }
  400. }
  401. /**
  402. * Called while processing data from subpackets 11 and 12.
  403. * Used after making changes to coding_method array.
  404. *
  405. * @param sb subband index
  406. * @param channels number of channels
  407. * @param coding_method q->coding_method[0][0][0]
  408. */
  409. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  410. {
  411. int j,k;
  412. int ch;
  413. int run, case_val;
  414. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  415. for (ch = 0; ch < channels; ch++) {
  416. for (j = 0; j < 64; ) {
  417. if((coding_method[ch][sb][j] - 8) > 22) {
  418. run = 1;
  419. case_val = 8;
  420. } else {
  421. switch (switchtable[coding_method[ch][sb][j]-8]) {
  422. case 0: run = 10; case_val = 10; break;
  423. case 1: run = 1; case_val = 16; break;
  424. case 2: run = 5; case_val = 24; break;
  425. case 3: run = 3; case_val = 30; break;
  426. case 4: run = 1; case_val = 30; break;
  427. case 5: run = 1; case_val = 8; break;
  428. default: run = 1; case_val = 8; break;
  429. }
  430. }
  431. for (k = 0; k < run; k++)
  432. if (j + k < 128)
  433. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  434. if (k > 0) {
  435. SAMPLES_NEEDED
  436. //not debugged, almost never used
  437. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  438. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  439. }
  440. j += run;
  441. }
  442. }
  443. }
  444. /**
  445. * Related to synthesis filter
  446. * Called by process_subpacket_10
  447. *
  448. * @param q context
  449. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  450. */
  451. static void fill_tone_level_array (QDM2Context *q, int flag)
  452. {
  453. int i, sb, ch, sb_used;
  454. int tmp, tab;
  455. // This should never happen
  456. if (q->nb_channels <= 0)
  457. return;
  458. for (ch = 0; ch < q->nb_channels; ch++)
  459. for (sb = 0; sb < 30; sb++)
  460. for (i = 0; i < 8; i++) {
  461. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  462. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  463. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  464. else
  465. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  466. if(tmp < 0)
  467. tmp += 0xff;
  468. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  469. }
  470. sb_used = QDM2_SB_USED(q->sub_sampling);
  471. if ((q->superblocktype_2_3 != 0) && !flag) {
  472. for (sb = 0; sb < sb_used; sb++)
  473. for (ch = 0; ch < q->nb_channels; ch++)
  474. for (i = 0; i < 64; i++) {
  475. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  476. if (q->tone_level_idx[ch][sb][i] < 0)
  477. q->tone_level[ch][sb][i] = 0;
  478. else
  479. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  480. }
  481. } else {
  482. tab = q->superblocktype_2_3 ? 0 : 1;
  483. for (sb = 0; sb < sb_used; sb++) {
  484. if ((sb >= 4) && (sb <= 23)) {
  485. for (ch = 0; ch < q->nb_channels; ch++)
  486. for (i = 0; i < 64; i++) {
  487. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  488. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  489. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  490. q->tone_level_idx_hi2[ch][sb - 4];
  491. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  492. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  493. q->tone_level[ch][sb][i] = 0;
  494. else
  495. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  496. }
  497. } else {
  498. if (sb > 4) {
  499. for (ch = 0; ch < q->nb_channels; ch++)
  500. for (i = 0; i < 64; i++) {
  501. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  502. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  503. q->tone_level_idx_hi2[ch][sb - 4];
  504. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  505. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  506. q->tone_level[ch][sb][i] = 0;
  507. else
  508. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  509. }
  510. } else {
  511. for (ch = 0; ch < q->nb_channels; ch++)
  512. for (i = 0; i < 64; i++) {
  513. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  514. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  515. q->tone_level[ch][sb][i] = 0;
  516. else
  517. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  518. }
  519. }
  520. }
  521. }
  522. }
  523. return;
  524. }
  525. /**
  526. * Related to synthesis filter
  527. * Called by process_subpacket_11
  528. * c is built with data from subpacket 11
  529. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  530. *
  531. * @param tone_level_idx
  532. * @param tone_level_idx_temp
  533. * @param coding_method q->coding_method[0][0][0]
  534. * @param nb_channels number of channels
  535. * @param c coming from subpacket 11, passed as 8*c
  536. * @param superblocktype_2_3 flag based on superblock packet type
  537. * @param cm_table_select q->cm_table_select
  538. */
  539. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  540. sb_int8_array coding_method, int nb_channels,
  541. int c, int superblocktype_2_3, int cm_table_select)
  542. {
  543. int ch, sb, j;
  544. int tmp, acc, esp_40, comp;
  545. int add1, add2, add3, add4;
  546. int64_t multres;
  547. // This should never happen
  548. if (nb_channels <= 0)
  549. return;
  550. if (!superblocktype_2_3) {
  551. /* This case is untested, no samples available */
  552. SAMPLES_NEEDED
  553. for (ch = 0; ch < nb_channels; ch++)
  554. for (sb = 0; sb < 30; sb++) {
  555. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  556. add1 = tone_level_idx[ch][sb][j] - 10;
  557. if (add1 < 0)
  558. add1 = 0;
  559. add2 = add3 = add4 = 0;
  560. if (sb > 1) {
  561. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  562. if (add2 < 0)
  563. add2 = 0;
  564. }
  565. if (sb > 0) {
  566. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  567. if (add3 < 0)
  568. add3 = 0;
  569. }
  570. if (sb < 29) {
  571. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  572. if (add4 < 0)
  573. add4 = 0;
  574. }
  575. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  576. if (tmp < 0)
  577. tmp = 0;
  578. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  579. }
  580. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  581. }
  582. acc = 0;
  583. for (ch = 0; ch < nb_channels; ch++)
  584. for (sb = 0; sb < 30; sb++)
  585. for (j = 0; j < 64; j++)
  586. acc += tone_level_idx_temp[ch][sb][j];
  587. multres = 0x66666667 * (acc * 10);
  588. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  589. for (ch = 0; ch < nb_channels; ch++)
  590. for (sb = 0; sb < 30; sb++)
  591. for (j = 0; j < 64; j++) {
  592. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  593. if (comp < 0)
  594. comp += 0xff;
  595. comp /= 256; // signed shift
  596. switch(sb) {
  597. case 0:
  598. if (comp < 30)
  599. comp = 30;
  600. comp += 15;
  601. break;
  602. case 1:
  603. if (comp < 24)
  604. comp = 24;
  605. comp += 10;
  606. break;
  607. case 2:
  608. case 3:
  609. case 4:
  610. if (comp < 16)
  611. comp = 16;
  612. }
  613. if (comp <= 5)
  614. tmp = 0;
  615. else if (comp <= 10)
  616. tmp = 10;
  617. else if (comp <= 16)
  618. tmp = 16;
  619. else if (comp <= 24)
  620. tmp = -1;
  621. else
  622. tmp = 0;
  623. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  624. }
  625. for (sb = 0; sb < 30; sb++)
  626. fix_coding_method_array(sb, nb_channels, coding_method);
  627. for (ch = 0; ch < nb_channels; ch++)
  628. for (sb = 0; sb < 30; sb++)
  629. for (j = 0; j < 64; j++)
  630. if (sb >= 10) {
  631. if (coding_method[ch][sb][j] < 10)
  632. coding_method[ch][sb][j] = 10;
  633. } else {
  634. if (sb >= 2) {
  635. if (coding_method[ch][sb][j] < 16)
  636. coding_method[ch][sb][j] = 16;
  637. } else {
  638. if (coding_method[ch][sb][j] < 30)
  639. coding_method[ch][sb][j] = 30;
  640. }
  641. }
  642. } else { // superblocktype_2_3 != 0
  643. for (ch = 0; ch < nb_channels; ch++)
  644. for (sb = 0; sb < 30; sb++)
  645. for (j = 0; j < 64; j++)
  646. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  647. }
  648. return;
  649. }
  650. /**
  651. *
  652. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  653. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  654. *
  655. * @param q context
  656. * @param gb bitreader context
  657. * @param length packet length in bits
  658. * @param sb_min lower subband processed (sb_min included)
  659. * @param sb_max higher subband processed (sb_max excluded)
  660. */
  661. static int synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  662. {
  663. int sb, j, k, n, ch, run, channels;
  664. int joined_stereo, zero_encoding, chs;
  665. int type34_first;
  666. float type34_div = 0;
  667. float type34_predictor;
  668. float samples[10], sign_bits[16];
  669. if (length == 0) {
  670. // If no data use noise
  671. for (sb=sb_min; sb < sb_max; sb++)
  672. build_sb_samples_from_noise (q, sb);
  673. return 0;
  674. }
  675. for (sb = sb_min; sb < sb_max; sb++) {
  676. FIX_NOISE_IDX(q->noise_idx);
  677. channels = q->nb_channels;
  678. if (q->nb_channels <= 1 || sb < 12)
  679. joined_stereo = 0;
  680. else if (sb >= 24)
  681. joined_stereo = 1;
  682. else
  683. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  684. if (joined_stereo) {
  685. if (BITS_LEFT(length,gb) >= 16)
  686. for (j = 0; j < 16; j++)
  687. sign_bits[j] = get_bits1 (gb);
  688. for (j = 0; j < 64; j++)
  689. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  690. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  691. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  692. channels = 1;
  693. }
  694. for (ch = 0; ch < channels; ch++) {
  695. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  696. type34_predictor = 0.0;
  697. type34_first = 1;
  698. for (j = 0; j < 128; ) {
  699. switch (q->coding_method[ch][sb][j / 2]) {
  700. case 8:
  701. if (BITS_LEFT(length,gb) >= 10) {
  702. if (zero_encoding) {
  703. for (k = 0; k < 5; k++) {
  704. if ((j + 2 * k) >= 128)
  705. break;
  706. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  707. }
  708. } else {
  709. n = get_bits(gb, 8);
  710. for (k = 0; k < 5; k++)
  711. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  712. }
  713. for (k = 0; k < 5; k++)
  714. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  715. } else {
  716. for (k = 0; k < 10; k++)
  717. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  718. }
  719. run = 10;
  720. break;
  721. case 10:
  722. if (BITS_LEFT(length,gb) >= 1) {
  723. float f = 0.81;
  724. if (get_bits1(gb))
  725. f = -f;
  726. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  727. samples[0] = f;
  728. } else {
  729. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  730. }
  731. run = 1;
  732. break;
  733. case 16:
  734. if (BITS_LEFT(length,gb) >= 10) {
  735. if (zero_encoding) {
  736. for (k = 0; k < 5; k++) {
  737. if ((j + k) >= 128)
  738. break;
  739. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  740. }
  741. } else {
  742. n = get_bits (gb, 8);
  743. for (k = 0; k < 5; k++)
  744. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  745. }
  746. } else {
  747. for (k = 0; k < 5; k++)
  748. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  749. }
  750. run = 5;
  751. break;
  752. case 24:
  753. if (BITS_LEFT(length,gb) >= 7) {
  754. n = get_bits(gb, 7);
  755. for (k = 0; k < 3; k++)
  756. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  757. } else {
  758. for (k = 0; k < 3; k++)
  759. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  760. }
  761. run = 3;
  762. break;
  763. case 30:
  764. if (BITS_LEFT(length,gb) >= 4) {
  765. unsigned v = qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1);
  766. if (v >= FF_ARRAY_ELEMS(type30_dequant))
  767. return AVERROR_INVALIDDATA;
  768. samples[0] = type30_dequant[v];
  769. } else
  770. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  771. run = 1;
  772. break;
  773. case 34:
  774. if (BITS_LEFT(length,gb) >= 7) {
  775. if (type34_first) {
  776. type34_div = (float)(1 << get_bits(gb, 2));
  777. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  778. type34_predictor = samples[0];
  779. type34_first = 0;
  780. } else {
  781. unsigned v = qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1);
  782. if (v >= FF_ARRAY_ELEMS(type34_delta))
  783. return AVERROR_INVALIDDATA;
  784. samples[0] = type34_delta[v] / type34_div + type34_predictor;
  785. type34_predictor = samples[0];
  786. }
  787. } else {
  788. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  789. }
  790. run = 1;
  791. break;
  792. default:
  793. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  794. run = 1;
  795. break;
  796. }
  797. if (joined_stereo) {
  798. float tmp[10][MPA_MAX_CHANNELS];
  799. for (k = 0; k < run; k++) {
  800. tmp[k][0] = samples[k];
  801. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  802. }
  803. for (chs = 0; chs < q->nb_channels; chs++)
  804. for (k = 0; k < run; k++)
  805. if ((j + k) < 128)
  806. q->sb_samples[chs][j + k][sb] = q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs];
  807. } else {
  808. for (k = 0; k < run; k++)
  809. if ((j + k) < 128)
  810. q->sb_samples[ch][j + k][sb] = q->tone_level[ch][sb][(j + k)/2] * samples[k];
  811. }
  812. j += run;
  813. } // j loop
  814. } // channel loop
  815. } // subband loop
  816. return 0;
  817. }
  818. /**
  819. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  820. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  821. * same VLC tables as process_subpacket_9 are used.
  822. *
  823. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  824. * @param gb bitreader context
  825. * @param length packet length in bits
  826. */
  827. static int init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  828. {
  829. int i, k, run, level, diff;
  830. if (BITS_LEFT(length,gb) < 16)
  831. return -1;
  832. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  833. quantized_coeffs[0] = level;
  834. for (i = 0; i < 7; ) {
  835. if (BITS_LEFT(length,gb) < 16)
  836. return -1;
  837. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  838. if (i + run >= 8)
  839. return -1;
  840. if (BITS_LEFT(length,gb) < 16)
  841. return -1;
  842. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  843. for (k = 1; k <= run; k++)
  844. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  845. level += diff;
  846. i += run;
  847. }
  848. return 0;
  849. }
  850. /**
  851. * Related to synthesis filter, process data from packet 10
  852. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  853. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  854. *
  855. * @param q context
  856. * @param gb bitreader context
  857. * @param length packet length in bits
  858. */
  859. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  860. {
  861. int sb, j, k, n, ch;
  862. for (ch = 0; ch < q->nb_channels; ch++) {
  863. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  864. if (BITS_LEFT(length,gb) < 16) {
  865. memset(q->quantized_coeffs[ch][0], 0, 8);
  866. break;
  867. }
  868. }
  869. n = q->sub_sampling + 1;
  870. for (sb = 0; sb < n; sb++)
  871. for (ch = 0; ch < q->nb_channels; ch++)
  872. for (j = 0; j < 8; j++) {
  873. if (BITS_LEFT(length,gb) < 1)
  874. break;
  875. if (get_bits1(gb)) {
  876. for (k=0; k < 8; k++) {
  877. if (BITS_LEFT(length,gb) < 16)
  878. break;
  879. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  880. }
  881. } else {
  882. for (k=0; k < 8; k++)
  883. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  884. }
  885. }
  886. n = QDM2_SB_USED(q->sub_sampling) - 4;
  887. for (sb = 0; sb < n; sb++)
  888. for (ch = 0; ch < q->nb_channels; ch++) {
  889. if (BITS_LEFT(length,gb) < 16)
  890. break;
  891. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  892. if (sb > 19)
  893. q->tone_level_idx_hi2[ch][sb] -= 16;
  894. else
  895. for (j = 0; j < 8; j++)
  896. q->tone_level_idx_mid[ch][sb][j] = -16;
  897. }
  898. n = QDM2_SB_USED(q->sub_sampling) - 5;
  899. for (sb = 0; sb < n; sb++)
  900. for (ch = 0; ch < q->nb_channels; ch++)
  901. for (j = 0; j < 8; j++) {
  902. if (BITS_LEFT(length,gb) < 16)
  903. break;
  904. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  905. }
  906. }
  907. /**
  908. * Process subpacket 9, init quantized_coeffs with data from it
  909. *
  910. * @param q context
  911. * @param node pointer to node with packet
  912. */
  913. static int process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  914. {
  915. GetBitContext gb;
  916. int i, j, k, n, ch, run, level, diff;
  917. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  918. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  919. for (i = 1; i < n; i++)
  920. for (ch=0; ch < q->nb_channels; ch++) {
  921. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  922. q->quantized_coeffs[ch][i][0] = level;
  923. for (j = 0; j < (8 - 1); ) {
  924. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  925. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  926. if (j + run >= 8)
  927. return -1;
  928. for (k = 1; k <= run; k++)
  929. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  930. level += diff;
  931. j += run;
  932. }
  933. }
  934. for (ch = 0; ch < q->nb_channels; ch++)
  935. for (i = 0; i < 8; i++)
  936. q->quantized_coeffs[ch][0][i] = 0;
  937. return 0;
  938. }
  939. /**
  940. * Process subpacket 10 if not null, else
  941. *
  942. * @param q context
  943. * @param node pointer to node with packet
  944. * @param length packet length in bits
  945. */
  946. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  947. {
  948. GetBitContext gb;
  949. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  950. if (length != 0) {
  951. init_tone_level_dequantization(q, &gb, length);
  952. fill_tone_level_array(q, 1);
  953. } else {
  954. fill_tone_level_array(q, 0);
  955. }
  956. }
  957. /**
  958. * Process subpacket 11
  959. *
  960. * @param q context
  961. * @param node pointer to node with packet
  962. * @param length packet length in bit
  963. */
  964. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  965. {
  966. GetBitContext gb;
  967. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  968. if (length >= 32) {
  969. int c = get_bits (&gb, 13);
  970. if (c > 3)
  971. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  972. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  973. }
  974. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  975. }
  976. /**
  977. * Process subpacket 12
  978. *
  979. * @param q context
  980. * @param node pointer to node with packet
  981. * @param length packet length in bits
  982. */
  983. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  984. {
  985. GetBitContext gb;
  986. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  987. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  988. }
  989. /*
  990. * Process new subpackets for synthesis filter
  991. *
  992. * @param q context
  993. * @param list list with synthesis filter packets (list D)
  994. */
  995. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  996. {
  997. QDM2SubPNode *nodes[4];
  998. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  999. if (nodes[0] != NULL)
  1000. process_subpacket_9(q, nodes[0]);
  1001. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1002. if (nodes[1] != NULL)
  1003. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1004. else
  1005. process_subpacket_10(q, NULL, 0);
  1006. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1007. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1008. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1009. else
  1010. process_subpacket_11(q, NULL, 0);
  1011. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1012. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1013. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1014. else
  1015. process_subpacket_12(q, NULL, 0);
  1016. }
  1017. /*
  1018. * Decode superblock, fill packet lists.
  1019. *
  1020. * @param q context
  1021. */
  1022. static void qdm2_decode_super_block (QDM2Context *q)
  1023. {
  1024. GetBitContext gb;
  1025. QDM2SubPacket header, *packet;
  1026. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1027. unsigned int next_index = 0;
  1028. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1029. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1030. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1031. q->sub_packets_B = 0;
  1032. sub_packets_D = 0;
  1033. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1034. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1035. qdm2_decode_sub_packet_header(&gb, &header);
  1036. if (header.type < 2 || header.type >= 8) {
  1037. q->has_errors = 1;
  1038. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1039. return;
  1040. }
  1041. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1042. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1043. init_get_bits(&gb, header.data, header.size*8);
  1044. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1045. int csum = 257 * get_bits(&gb, 8);
  1046. csum += 2 * get_bits(&gb, 8);
  1047. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1048. if (csum != 0) {
  1049. q->has_errors = 1;
  1050. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1051. return;
  1052. }
  1053. }
  1054. q->sub_packet_list_B[0].packet = NULL;
  1055. q->sub_packet_list_D[0].packet = NULL;
  1056. for (i = 0; i < 6; i++)
  1057. if (--q->fft_level_exp[i] < 0)
  1058. q->fft_level_exp[i] = 0;
  1059. for (i = 0; packet_bytes > 0; i++) {
  1060. int j;
  1061. q->sub_packet_list_A[i].next = NULL;
  1062. if (i > 0) {
  1063. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1064. /* seek to next block */
  1065. init_get_bits(&gb, header.data, header.size*8);
  1066. skip_bits(&gb, next_index*8);
  1067. if (next_index >= header.size)
  1068. break;
  1069. }
  1070. /* decode subpacket */
  1071. packet = &q->sub_packets[i];
  1072. qdm2_decode_sub_packet_header(&gb, packet);
  1073. next_index = packet->size + get_bits_count(&gb) / 8;
  1074. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1075. if (packet->type == 0)
  1076. break;
  1077. if (sub_packet_size > packet_bytes) {
  1078. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1079. break;
  1080. packet->size += packet_bytes - sub_packet_size;
  1081. }
  1082. packet_bytes -= sub_packet_size;
  1083. /* add subpacket to 'all subpackets' list */
  1084. q->sub_packet_list_A[i].packet = packet;
  1085. /* add subpacket to related list */
  1086. if (packet->type == 8) {
  1087. SAMPLES_NEEDED_2("packet type 8");
  1088. return;
  1089. } else if (packet->type >= 9 && packet->type <= 12) {
  1090. /* packets for MPEG Audio like Synthesis Filter */
  1091. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1092. } else if (packet->type == 13) {
  1093. for (j = 0; j < 6; j++)
  1094. q->fft_level_exp[j] = get_bits(&gb, 6);
  1095. } else if (packet->type == 14) {
  1096. for (j = 0; j < 6; j++)
  1097. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1098. } else if (packet->type == 15) {
  1099. SAMPLES_NEEDED_2("packet type 15")
  1100. return;
  1101. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1102. /* packets for FFT */
  1103. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1104. }
  1105. } // Packet bytes loop
  1106. /* **************************************************************** */
  1107. if (q->sub_packet_list_D[0].packet != NULL) {
  1108. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1109. q->do_synth_filter = 1;
  1110. } else if (q->do_synth_filter) {
  1111. process_subpacket_10(q, NULL, 0);
  1112. process_subpacket_11(q, NULL, 0);
  1113. process_subpacket_12(q, NULL, 0);
  1114. }
  1115. /* **************************************************************** */
  1116. }
  1117. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1118. int offset, int duration, int channel,
  1119. int exp, int phase)
  1120. {
  1121. if (q->fft_coefs_min_index[duration] < 0)
  1122. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1123. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1124. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1125. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1126. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1127. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1128. q->fft_coefs_index++;
  1129. }
  1130. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1131. {
  1132. int channel, stereo, phase, exp;
  1133. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1134. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1135. int n, offset;
  1136. local_int_4 = 0;
  1137. local_int_28 = 0;
  1138. local_int_20 = 2;
  1139. local_int_8 = (4 - duration);
  1140. local_int_10 = 1 << (q->group_order - duration - 1);
  1141. offset = 1;
  1142. while (get_bits_left(gb)>0) {
  1143. if (q->superblocktype_2_3) {
  1144. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1145. offset = 1;
  1146. if (n == 0) {
  1147. local_int_4 += local_int_10;
  1148. local_int_28 += (1 << local_int_8);
  1149. } else {
  1150. local_int_4 += 8*local_int_10;
  1151. local_int_28 += (8 << local_int_8);
  1152. }
  1153. }
  1154. offset += (n - 2);
  1155. } else {
  1156. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1157. while (offset >= (local_int_10 - 1)) {
  1158. offset += (1 - (local_int_10 - 1));
  1159. local_int_4 += local_int_10;
  1160. local_int_28 += (1 << local_int_8);
  1161. }
  1162. }
  1163. if (local_int_4 >= q->group_size)
  1164. return;
  1165. local_int_14 = (offset >> local_int_8);
  1166. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1167. return;
  1168. if (q->nb_channels > 1) {
  1169. channel = get_bits1(gb);
  1170. stereo = get_bits1(gb);
  1171. } else {
  1172. channel = 0;
  1173. stereo = 0;
  1174. }
  1175. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1176. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1177. exp = (exp < 0) ? 0 : exp;
  1178. phase = get_bits(gb, 3);
  1179. stereo_exp = 0;
  1180. stereo_phase = 0;
  1181. if (stereo) {
  1182. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1183. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1184. if (stereo_phase < 0)
  1185. stereo_phase += 8;
  1186. }
  1187. if (q->frequency_range > (local_int_14 + 1)) {
  1188. int sub_packet = (local_int_20 + local_int_28);
  1189. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1190. if (stereo)
  1191. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1192. }
  1193. offset++;
  1194. }
  1195. }
  1196. static void qdm2_decode_fft_packets (QDM2Context *q)
  1197. {
  1198. int i, j, min, max, value, type, unknown_flag;
  1199. GetBitContext gb;
  1200. if (q->sub_packet_list_B[0].packet == NULL)
  1201. return;
  1202. /* reset minimum indexes for FFT coefficients */
  1203. q->fft_coefs_index = 0;
  1204. for (i=0; i < 5; i++)
  1205. q->fft_coefs_min_index[i] = -1;
  1206. /* process subpackets ordered by type, largest type first */
  1207. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1208. QDM2SubPacket *packet= NULL;
  1209. /* find subpacket with largest type less than max */
  1210. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1211. value = q->sub_packet_list_B[j].packet->type;
  1212. if (value > min && value < max) {
  1213. min = value;
  1214. packet = q->sub_packet_list_B[j].packet;
  1215. }
  1216. }
  1217. max = min;
  1218. /* check for errors (?) */
  1219. if (!packet)
  1220. return;
  1221. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1222. return;
  1223. /* decode FFT tones */
  1224. init_get_bits (&gb, packet->data, packet->size*8);
  1225. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1226. unknown_flag = 1;
  1227. else
  1228. unknown_flag = 0;
  1229. type = packet->type;
  1230. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1231. int duration = q->sub_sampling + 5 - (type & 15);
  1232. if (duration >= 0 && duration < 4)
  1233. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1234. } else if (type == 31) {
  1235. for (j=0; j < 4; j++)
  1236. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1237. } else if (type == 46) {
  1238. for (j=0; j < 6; j++)
  1239. q->fft_level_exp[j] = get_bits(&gb, 6);
  1240. for (j=0; j < 4; j++)
  1241. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1242. }
  1243. } // Loop on B packets
  1244. /* calculate maximum indexes for FFT coefficients */
  1245. for (i = 0, j = -1; i < 5; i++)
  1246. if (q->fft_coefs_min_index[i] >= 0) {
  1247. if (j >= 0)
  1248. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1249. j = i;
  1250. }
  1251. if (j >= 0)
  1252. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1253. }
  1254. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1255. {
  1256. float level, f[6];
  1257. int i;
  1258. QDM2Complex c;
  1259. const double iscale = 2.0*M_PI / 512.0;
  1260. tone->phase += tone->phase_shift;
  1261. /* calculate current level (maximum amplitude) of tone */
  1262. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1263. c.im = level * sin(tone->phase*iscale);
  1264. c.re = level * cos(tone->phase*iscale);
  1265. /* generate FFT coefficients for tone */
  1266. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1267. tone->complex[0].im += c.im;
  1268. tone->complex[0].re += c.re;
  1269. tone->complex[1].im -= c.im;
  1270. tone->complex[1].re -= c.re;
  1271. } else {
  1272. f[1] = -tone->table[4];
  1273. f[0] = tone->table[3] - tone->table[0];
  1274. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1275. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1276. f[4] = tone->table[0] - tone->table[1];
  1277. f[5] = tone->table[2];
  1278. for (i = 0; i < 2; i++) {
  1279. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re += c.re * f[i];
  1280. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1281. }
  1282. for (i = 0; i < 4; i++) {
  1283. tone->complex[i].re += c.re * f[i+2];
  1284. tone->complex[i].im += c.im * f[i+2];
  1285. }
  1286. }
  1287. /* copy the tone if it has not yet died out */
  1288. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1289. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1290. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1291. }
  1292. }
  1293. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1294. {
  1295. int i, j, ch;
  1296. const double iscale = 0.25 * M_PI;
  1297. for (ch = 0; ch < q->channels; ch++) {
  1298. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1299. }
  1300. /* apply FFT tones with duration 4 (1 FFT period) */
  1301. if (q->fft_coefs_min_index[4] >= 0)
  1302. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1303. float level;
  1304. QDM2Complex c;
  1305. if (q->fft_coefs[i].sub_packet != sub_packet)
  1306. break;
  1307. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1308. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1309. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1310. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1311. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1312. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1313. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1314. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1315. }
  1316. /* generate existing FFT tones */
  1317. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1318. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1319. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1320. }
  1321. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1322. for (i = 0; i < 4; i++)
  1323. if (q->fft_coefs_min_index[i] >= 0) {
  1324. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1325. int offset, four_i;
  1326. FFTTone tone;
  1327. if (q->fft_coefs[j].sub_packet != sub_packet)
  1328. break;
  1329. four_i = (4 - i);
  1330. offset = q->fft_coefs[j].offset >> four_i;
  1331. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1332. if (offset < q->frequency_range) {
  1333. if (offset < 2)
  1334. tone.cutoff = offset;
  1335. else
  1336. tone.cutoff = (offset >= 60) ? 3 : 2;
  1337. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1338. tone.complex = &q->fft.complex[ch][offset];
  1339. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1340. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1341. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1342. tone.duration = i;
  1343. tone.time_index = 0;
  1344. qdm2_fft_generate_tone(q, &tone);
  1345. }
  1346. }
  1347. q->fft_coefs_min_index[i] = j;
  1348. }
  1349. }
  1350. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1351. {
  1352. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1353. int i;
  1354. q->fft.complex[channel][0].re *= 2.0f;
  1355. q->fft.complex[channel][0].im = 0.0f;
  1356. q->rdft_ctx.rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1357. /* add samples to output buffer */
  1358. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1359. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex[channel])[i] * gain;
  1360. }
  1361. /**
  1362. * @param q context
  1363. * @param index subpacket number
  1364. */
  1365. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1366. {
  1367. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1368. /* copy sb_samples */
  1369. sb_used = QDM2_SB_USED(q->sub_sampling);
  1370. for (ch = 0; ch < q->channels; ch++)
  1371. for (i = 0; i < 8; i++)
  1372. for (k=sb_used; k < SBLIMIT; k++)
  1373. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1374. for (ch = 0; ch < q->nb_channels; ch++) {
  1375. float *samples_ptr = q->samples + ch;
  1376. for (i = 0; i < 8; i++) {
  1377. ff_mpa_synth_filter_float(&q->mpadsp,
  1378. q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1379. ff_mpa_synth_window_float, &dither_state,
  1380. samples_ptr, q->nb_channels,
  1381. q->sb_samples[ch][(8 * index) + i]);
  1382. samples_ptr += 32 * q->nb_channels;
  1383. }
  1384. }
  1385. /* add samples to output buffer */
  1386. sub_sampling = (4 >> q->sub_sampling);
  1387. for (ch = 0; ch < q->channels; ch++)
  1388. for (i = 0; i < q->frame_size; i++)
  1389. q->output_buffer[q->channels * i + ch] += (1 << 23) * q->samples[q->nb_channels * sub_sampling * i + ch];
  1390. }
  1391. /**
  1392. * Init static data (does not depend on specific file)
  1393. *
  1394. * @param q context
  1395. */
  1396. static av_cold void qdm2_init(QDM2Context *q) {
  1397. static int initialized = 0;
  1398. if (initialized != 0)
  1399. return;
  1400. initialized = 1;
  1401. qdm2_init_vlc();
  1402. ff_mpa_synth_init_float(ff_mpa_synth_window_float);
  1403. softclip_table_init();
  1404. rnd_table_init();
  1405. init_noise_samples();
  1406. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1407. }
  1408. #if 0
  1409. static void dump_context(QDM2Context *q)
  1410. {
  1411. int i;
  1412. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1413. PRINT("compressed_data",q->compressed_data);
  1414. PRINT("compressed_size",q->compressed_size);
  1415. PRINT("frame_size",q->frame_size);
  1416. PRINT("checksum_size",q->checksum_size);
  1417. PRINT("channels",q->channels);
  1418. PRINT("nb_channels",q->nb_channels);
  1419. PRINT("fft_frame_size",q->fft_frame_size);
  1420. PRINT("fft_size",q->fft_size);
  1421. PRINT("sub_sampling",q->sub_sampling);
  1422. PRINT("fft_order",q->fft_order);
  1423. PRINT("group_order",q->group_order);
  1424. PRINT("group_size",q->group_size);
  1425. PRINT("sub_packet",q->sub_packet);
  1426. PRINT("frequency_range",q->frequency_range);
  1427. PRINT("has_errors",q->has_errors);
  1428. PRINT("fft_tone_end",q->fft_tone_end);
  1429. PRINT("fft_tone_start",q->fft_tone_start);
  1430. PRINT("fft_coefs_index",q->fft_coefs_index);
  1431. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1432. PRINT("cm_table_select",q->cm_table_select);
  1433. PRINT("noise_idx",q->noise_idx);
  1434. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1435. {
  1436. FFTTone *t = &q->fft_tones[i];
  1437. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1438. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1439. // PRINT(" level", t->level);
  1440. PRINT(" phase", t->phase);
  1441. PRINT(" phase_shift", t->phase_shift);
  1442. PRINT(" duration", t->duration);
  1443. PRINT(" samples_im", t->samples_im);
  1444. PRINT(" samples_re", t->samples_re);
  1445. PRINT(" table", t->table);
  1446. }
  1447. }
  1448. #endif
  1449. /**
  1450. * Init parameters from codec extradata
  1451. */
  1452. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1453. {
  1454. QDM2Context *s = avctx->priv_data;
  1455. uint8_t *extradata;
  1456. int extradata_size;
  1457. int tmp_val, tmp, size;
  1458. /* extradata parsing
  1459. Structure:
  1460. wave {
  1461. frma (QDM2)
  1462. QDCA
  1463. QDCP
  1464. }
  1465. 32 size (including this field)
  1466. 32 tag (=frma)
  1467. 32 type (=QDM2 or QDMC)
  1468. 32 size (including this field, in bytes)
  1469. 32 tag (=QDCA) // maybe mandatory parameters
  1470. 32 unknown (=1)
  1471. 32 channels (=2)
  1472. 32 samplerate (=44100)
  1473. 32 bitrate (=96000)
  1474. 32 block size (=4096)
  1475. 32 frame size (=256) (for one channel)
  1476. 32 packet size (=1300)
  1477. 32 size (including this field, in bytes)
  1478. 32 tag (=QDCP) // maybe some tuneable parameters
  1479. 32 float1 (=1.0)
  1480. 32 zero ?
  1481. 32 float2 (=1.0)
  1482. 32 float3 (=1.0)
  1483. 32 unknown (27)
  1484. 32 unknown (8)
  1485. 32 zero ?
  1486. */
  1487. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1488. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1489. return -1;
  1490. }
  1491. extradata = avctx->extradata;
  1492. extradata_size = avctx->extradata_size;
  1493. while (extradata_size > 7) {
  1494. if (!memcmp(extradata, "frmaQDM", 7))
  1495. break;
  1496. extradata++;
  1497. extradata_size--;
  1498. }
  1499. if (extradata_size < 12) {
  1500. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1501. extradata_size);
  1502. return -1;
  1503. }
  1504. if (memcmp(extradata, "frmaQDM", 7)) {
  1505. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1506. return -1;
  1507. }
  1508. if (extradata[7] == 'C') {
  1509. // s->is_qdmc = 1;
  1510. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1511. return -1;
  1512. }
  1513. extradata += 8;
  1514. extradata_size -= 8;
  1515. size = AV_RB32(extradata);
  1516. if(size > extradata_size){
  1517. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1518. extradata_size, size);
  1519. return -1;
  1520. }
  1521. extradata += 4;
  1522. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1523. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1524. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1525. return -1;
  1526. }
  1527. extradata += 8;
  1528. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1529. extradata += 4;
  1530. if (s->channels > MPA_MAX_CHANNELS)
  1531. return AVERROR_INVALIDDATA;
  1532. avctx->sample_rate = AV_RB32(extradata);
  1533. extradata += 4;
  1534. avctx->bit_rate = AV_RB32(extradata);
  1535. extradata += 4;
  1536. s->group_size = AV_RB32(extradata);
  1537. extradata += 4;
  1538. s->fft_size = AV_RB32(extradata);
  1539. extradata += 4;
  1540. s->checksum_size = AV_RB32(extradata);
  1541. if (s->checksum_size >= 1U << 28) {
  1542. av_log(avctx, AV_LOG_ERROR, "data block size too large (%u)\n", s->checksum_size);
  1543. return AVERROR_INVALIDDATA;
  1544. }
  1545. s->fft_order = av_log2(s->fft_size) + 1;
  1546. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1547. // something like max decodable tones
  1548. s->group_order = av_log2(s->group_size) + 1;
  1549. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1550. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1551. return AVERROR_INVALIDDATA;
  1552. s->sub_sampling = s->fft_order - 7;
  1553. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1554. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1555. case 0: tmp = 40; break;
  1556. case 1: tmp = 48; break;
  1557. case 2: tmp = 56; break;
  1558. case 3: tmp = 72; break;
  1559. case 4: tmp = 80; break;
  1560. case 5: tmp = 100;break;
  1561. default: tmp=s->sub_sampling; break;
  1562. }
  1563. tmp_val = 0;
  1564. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1565. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1566. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1567. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1568. s->cm_table_select = tmp_val;
  1569. if (s->sub_sampling == 0)
  1570. tmp = 7999;
  1571. else
  1572. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1573. /*
  1574. 0: 7999 -> 0
  1575. 1: 20000 -> 2
  1576. 2: 28000 -> 2
  1577. */
  1578. if (tmp < 8000)
  1579. s->coeff_per_sb_select = 0;
  1580. else if (tmp <= 16000)
  1581. s->coeff_per_sb_select = 1;
  1582. else
  1583. s->coeff_per_sb_select = 2;
  1584. // Fail on unknown fft order
  1585. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1586. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1587. return -1;
  1588. }
  1589. ff_rdft_init(&s->rdft_ctx, s->fft_order, IDFT_C2R);
  1590. ff_mpadsp_init(&s->mpadsp);
  1591. qdm2_init(s);
  1592. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1593. avcodec_get_frame_defaults(&s->frame);
  1594. avctx->coded_frame = &s->frame;
  1595. // dump_context(s);
  1596. return 0;
  1597. }
  1598. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1599. {
  1600. QDM2Context *s = avctx->priv_data;
  1601. ff_rdft_end(&s->rdft_ctx);
  1602. return 0;
  1603. }
  1604. static int qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1605. {
  1606. int ch, i;
  1607. const int frame_size = (q->frame_size * q->channels);
  1608. if((unsigned)frame_size > FF_ARRAY_ELEMS(q->output_buffer)/2)
  1609. return -1;
  1610. /* select input buffer */
  1611. q->compressed_data = in;
  1612. q->compressed_size = q->checksum_size;
  1613. // dump_context(q);
  1614. /* copy old block, clear new block of output samples */
  1615. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1616. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1617. /* decode block of QDM2 compressed data */
  1618. if (q->sub_packet == 0) {
  1619. q->has_errors = 0; // zero it for a new super block
  1620. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1621. qdm2_decode_super_block(q);
  1622. }
  1623. /* parse subpackets */
  1624. if (!q->has_errors) {
  1625. if (q->sub_packet == 2)
  1626. qdm2_decode_fft_packets(q);
  1627. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1628. }
  1629. /* sound synthesis stage 1 (FFT) */
  1630. for (ch = 0; ch < q->channels; ch++) {
  1631. qdm2_calculate_fft(q, ch, q->sub_packet);
  1632. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1633. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1634. return -1;
  1635. }
  1636. }
  1637. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1638. if (!q->has_errors && q->do_synth_filter)
  1639. qdm2_synthesis_filter(q, q->sub_packet);
  1640. q->sub_packet = (q->sub_packet + 1) % 16;
  1641. /* clip and convert output float[] to 16bit signed samples */
  1642. for (i = 0; i < frame_size; i++) {
  1643. int value = (int)q->output_buffer[i];
  1644. if (value > SOFTCLIP_THRESHOLD)
  1645. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1646. else if (value < -SOFTCLIP_THRESHOLD)
  1647. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1648. out[i] = value;
  1649. }
  1650. return 0;
  1651. }
  1652. static int qdm2_decode_frame(AVCodecContext *avctx, void *data,
  1653. int *got_frame_ptr, AVPacket *avpkt)
  1654. {
  1655. const uint8_t *buf = avpkt->data;
  1656. int buf_size = avpkt->size;
  1657. QDM2Context *s = avctx->priv_data;
  1658. int16_t *out;
  1659. int i, ret;
  1660. if(!buf)
  1661. return 0;
  1662. if(buf_size < s->checksum_size)
  1663. return -1;
  1664. /* get output buffer */
  1665. s->frame.nb_samples = 16 * s->frame_size;
  1666. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  1667. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1668. return ret;
  1669. }
  1670. out = (int16_t *)s->frame.data[0];
  1671. for (i = 0; i < 16; i++) {
  1672. if (qdm2_decode(s, buf, out) < 0)
  1673. return -1;
  1674. out += s->channels * s->frame_size;
  1675. }
  1676. *got_frame_ptr = 1;
  1677. *(AVFrame *)data = s->frame;
  1678. return s->checksum_size;
  1679. }
  1680. AVCodec ff_qdm2_decoder =
  1681. {
  1682. .name = "qdm2",
  1683. .type = AVMEDIA_TYPE_AUDIO,
  1684. .id = CODEC_ID_QDM2,
  1685. .priv_data_size = sizeof(QDM2Context),
  1686. .init = qdm2_decode_init,
  1687. .close = qdm2_decode_close,
  1688. .decode = qdm2_decode_frame,
  1689. .capabilities = CODEC_CAP_DR1,
  1690. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1691. };