You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1124 lines
40KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "indeo3data.h"
  37. /* RLE opcodes. */
  38. enum {
  39. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  40. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  41. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  42. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  43. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  44. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  45. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  46. };
  47. /* Some constants for parsing frame bitstream flags. */
  48. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  49. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  50. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  51. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  52. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  53. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  54. typedef struct Plane {
  55. uint8_t *buffers[2];
  56. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  57. uint32_t width;
  58. uint32_t height;
  59. uint32_t pitch;
  60. } Plane;
  61. #define CELL_STACK_MAX 20
  62. typedef struct Cell {
  63. int16_t xpos; ///< cell coordinates in 4x4 blocks
  64. int16_t ypos;
  65. int16_t width; ///< cell width in 4x4 blocks
  66. int16_t height; ///< cell height in 4x4 blocks
  67. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  68. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  69. } Cell;
  70. typedef struct Indeo3DecodeContext {
  71. AVCodecContext *avctx;
  72. AVFrame frame;
  73. DSPContext dsp;
  74. GetBitContext gb;
  75. int need_resync;
  76. int skip_bits;
  77. const uint8_t *next_cell_data;
  78. const uint8_t *last_byte;
  79. const int8_t *mc_vectors;
  80. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  81. int16_t width, height;
  82. uint32_t frame_num; ///< current frame number (zero-based)
  83. uint32_t data_size; ///< size of the frame data in bytes
  84. uint16_t frame_flags; ///< frame properties
  85. uint8_t cb_offset; ///< needed for selecting VQ tables
  86. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  87. const uint8_t *y_data_ptr;
  88. const uint8_t *v_data_ptr;
  89. const uint8_t *u_data_ptr;
  90. int32_t y_data_size;
  91. int32_t v_data_size;
  92. int32_t u_data_size;
  93. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  94. Plane planes[3];
  95. } Indeo3DecodeContext;
  96. static uint8_t requant_tab[8][128];
  97. /*
  98. * Build the static requantization table.
  99. * This table is used to remap pixel values according to a specific
  100. * quant index and thus avoid overflows while adding deltas.
  101. */
  102. static av_cold void build_requant_tab(void)
  103. {
  104. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  105. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  106. int i, j, step;
  107. for (i = 0; i < 8; i++) {
  108. step = i + 2;
  109. for (j = 0; j < 128; j++)
  110. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  111. }
  112. /* some last elements calculated above will have values >= 128 */
  113. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  114. /* according with the quantization step of the respective section */
  115. requant_tab[0][127] = 126;
  116. requant_tab[1][119] = 118;
  117. requant_tab[1][120] = 118;
  118. requant_tab[2][126] = 124;
  119. requant_tab[2][127] = 124;
  120. requant_tab[6][124] = 120;
  121. requant_tab[6][125] = 120;
  122. requant_tab[6][126] = 120;
  123. requant_tab[6][127] = 120;
  124. /* Patch for compatibility with the Intel's binary decoders */
  125. requant_tab[1][7] = 10;
  126. requant_tab[4][8] = 10;
  127. }
  128. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  129. AVCodecContext *avctx)
  130. {
  131. int p, luma_width, luma_height, chroma_width, chroma_height;
  132. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  133. luma_width = ctx->width;
  134. luma_height = ctx->height;
  135. if (luma_width < 16 || luma_width > 640 ||
  136. luma_height < 16 || luma_height > 480 ||
  137. luma_width & 3 || luma_height & 3) {
  138. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  139. luma_width, luma_height);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. chroma_width = FFALIGN(luma_width >> 2, 4);
  143. chroma_height = FFALIGN(luma_height >> 2, 4);
  144. luma_pitch = FFALIGN(luma_width, 16);
  145. chroma_pitch = FFALIGN(chroma_width, 16);
  146. /* Calculate size of the luminance plane. */
  147. /* Add one line more for INTRA prediction. */
  148. luma_size = luma_pitch * (luma_height + 1);
  149. /* Calculate size of a chrominance planes. */
  150. /* Add one line more for INTRA prediction. */
  151. chroma_size = chroma_pitch * (chroma_height + 1);
  152. /* allocate frame buffers */
  153. for (p = 0; p < 3; p++) {
  154. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  155. ctx->planes[p].width = !p ? luma_width : chroma_width;
  156. ctx->planes[p].height = !p ? luma_height : chroma_height;
  157. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  158. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  159. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  160. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  161. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  162. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  163. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  164. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  165. }
  166. return 0;
  167. }
  168. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  169. {
  170. int p;
  171. for (p = 0; p < 3; p++) {
  172. av_freep(&ctx->planes[p].buffers[0]);
  173. av_freep(&ctx->planes[p].buffers[1]);
  174. }
  175. }
  176. /**
  177. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  178. * the cell(x, y) in the current frame.
  179. *
  180. * @param ctx pointer to the decoder context
  181. * @param plane pointer to the plane descriptor
  182. * @param cell pointer to the cell descriptor
  183. */
  184. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  185. {
  186. int h, w, mv_x, mv_y, offset, offset_dst;
  187. uint8_t *src, *dst;
  188. /* setup output and reference pointers */
  189. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  190. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  191. if(cell->mv_ptr){
  192. mv_y = cell->mv_ptr[0];
  193. mv_x = cell->mv_ptr[1];
  194. }else
  195. mv_x= mv_y= 0;
  196. offset = offset_dst + mv_y * plane->pitch + mv_x;
  197. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  198. h = cell->height << 2;
  199. for (w = cell->width; w > 0;) {
  200. /* copy using 16xH blocks */
  201. if (!((cell->xpos << 2) & 15) && w >= 4) {
  202. for (; w >= 4; src += 16, dst += 16, w -= 4)
  203. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  204. }
  205. /* copy using 8xH blocks */
  206. if (!((cell->xpos << 2) & 7) && w >= 2) {
  207. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  208. w -= 2;
  209. src += 8;
  210. dst += 8;
  211. }
  212. if (w >= 1) {
  213. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  214. w--;
  215. src += 4;
  216. dst += 4;
  217. }
  218. }
  219. }
  220. /* Average 4/8 pixels at once without rounding using SWAR */
  221. #define AVG_32(dst, src, ref) \
  222. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  223. #define AVG_64(dst, src, ref) \
  224. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  225. /*
  226. * Replicate each even pixel as follows:
  227. * ABCDEFGH -> AACCEEGG
  228. */
  229. static inline uint64_t replicate64(uint64_t a) {
  230. #if HAVE_BIGENDIAN
  231. a &= 0xFF00FF00FF00FF00ULL;
  232. a |= a >> 8;
  233. #else
  234. a &= 0x00FF00FF00FF00FFULL;
  235. a |= a << 8;
  236. #endif
  237. return a;
  238. }
  239. static inline uint32_t replicate32(uint32_t a) {
  240. #if HAVE_BIGENDIAN
  241. a &= 0xFF00FF00UL;
  242. a |= a >> 8;
  243. #else
  244. a &= 0x00FF00FFUL;
  245. a |= a << 8;
  246. #endif
  247. return a;
  248. }
  249. /* Fill n lines with 64bit pixel value pix */
  250. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  251. int32_t row_offset)
  252. {
  253. for (; n > 0; dst += row_offset, n--)
  254. AV_WN64A(dst, pix);
  255. }
  256. /* Error codes for cell decoding. */
  257. enum {
  258. IV3_NOERR = 0,
  259. IV3_BAD_RLE = 1,
  260. IV3_BAD_DATA = 2,
  261. IV3_BAD_COUNTER = 3,
  262. IV3_UNSUPPORTED = 4,
  263. IV3_OUT_OF_DATA = 5
  264. };
  265. #define BUFFER_PRECHECK \
  266. if (*data_ptr >= last_ptr) \
  267. return IV3_OUT_OF_DATA; \
  268. #define RLE_BLOCK_COPY \
  269. if (cell->mv_ptr || !skip_flag) \
  270. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  271. #define RLE_BLOCK_COPY_8 \
  272. pix64 = AV_RN64A(ref);\
  273. if (is_first_row) {/* special prediction case: top line of a cell */\
  274. pix64 = replicate64(pix64);\
  275. fill_64(dst + row_offset, pix64, 7, row_offset);\
  276. AVG_64(dst, ref, dst + row_offset);\
  277. } else \
  278. fill_64(dst, pix64, 8, row_offset)
  279. #define RLE_LINES_COPY \
  280. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  281. #define RLE_LINES_COPY_M10 \
  282. pix64 = AV_RN64A(ref);\
  283. if (is_top_of_cell) {\
  284. pix64 = replicate64(pix64);\
  285. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  286. AVG_64(dst, ref, dst + row_offset);\
  287. } else \
  288. fill_64(dst, pix64, num_lines << 1, row_offset)
  289. #define APPLY_DELTA_4 \
  290. AV_WN16A(dst + line_offset , AV_RN16A(ref ) + delta_tab->deltas[dyad1]);\
  291. AV_WN16A(dst + line_offset + 2, AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]);\
  292. if (mode >= 3) {\
  293. if (is_top_of_cell && !cell->ypos) {\
  294. AV_COPY32(dst, dst + row_offset);\
  295. } else {\
  296. AVG_32(dst, ref, dst + row_offset);\
  297. }\
  298. }
  299. #define APPLY_DELTA_8 \
  300. /* apply two 32-bit VQ deltas to next even line */\
  301. if (is_top_of_cell) { \
  302. AV_WN32A(dst + row_offset , \
  303. replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]);\
  304. AV_WN32A(dst + row_offset + 4, \
  305. replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]);\
  306. } else { \
  307. AV_WN32A(dst + row_offset , \
  308. AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]);\
  309. AV_WN32A(dst + row_offset + 4, \
  310. AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]);\
  311. } \
  312. /* odd lines are not coded but rather interpolated/replicated */\
  313. /* first line of the cell on the top of image? - replicate */\
  314. /* otherwise - interpolate */\
  315. if (is_top_of_cell && !cell->ypos) {\
  316. AV_COPY64(dst, dst + row_offset);\
  317. } else \
  318. AVG_64(dst, ref, dst + row_offset);
  319. #define APPLY_DELTA_1011_INTER \
  320. if (mode == 10) { \
  321. AV_WN32A(dst , \
  322. AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]);\
  323. AV_WN32A(dst + 4 , \
  324. AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]);\
  325. AV_WN32A(dst + row_offset , \
  326. AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]);\
  327. AV_WN32A(dst + row_offset + 4, \
  328. AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]);\
  329. } else { \
  330. AV_WN16A(dst , \
  331. AV_RN16A(dst ) + delta_tab->deltas[dyad1]);\
  332. AV_WN16A(dst + 2 , \
  333. AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]);\
  334. AV_WN16A(dst + row_offset , \
  335. AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]);\
  336. AV_WN16A(dst + row_offset + 2, \
  337. AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]);\
  338. }
  339. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  340. int pitch, int h_zoom, int v_zoom, int mode,
  341. const vqEntry *delta[2], int swap_quads[2],
  342. const uint8_t **data_ptr, const uint8_t *last_ptr)
  343. {
  344. int x, y, line, num_lines;
  345. int rle_blocks = 0;
  346. uint8_t code, *dst, *ref;
  347. const vqEntry *delta_tab;
  348. unsigned int dyad1, dyad2;
  349. uint64_t pix64;
  350. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  351. int row_offset, blk_row_offset, line_offset;
  352. row_offset = pitch;
  353. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  354. line_offset = v_zoom ? row_offset : 0;
  355. for (y = 0; y + v_zoom < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  356. for (x = 0; x + h_zoom < cell->width; x += 1 + h_zoom) {
  357. ref = ref_block;
  358. dst = block;
  359. if (rle_blocks > 0) {
  360. if (mode <= 4) {
  361. RLE_BLOCK_COPY;
  362. } else if (mode == 10 && !cell->mv_ptr) {
  363. RLE_BLOCK_COPY_8;
  364. }
  365. rle_blocks--;
  366. } else {
  367. for (line = 0; line < 4;) {
  368. num_lines = 1;
  369. is_top_of_cell = is_first_row && !line;
  370. /* select primary VQ table for odd, secondary for even lines */
  371. if (mode <= 4)
  372. delta_tab = delta[line & 1];
  373. else
  374. delta_tab = delta[1];
  375. BUFFER_PRECHECK;
  376. code = bytestream_get_byte(data_ptr);
  377. if (code < 248) {
  378. if (code < delta_tab->num_dyads) {
  379. BUFFER_PRECHECK;
  380. dyad1 = bytestream_get_byte(data_ptr);
  381. dyad2 = code;
  382. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  383. return IV3_BAD_DATA;
  384. } else {
  385. /* process QUADS */
  386. code -= delta_tab->num_dyads;
  387. dyad1 = code / delta_tab->quad_exp;
  388. dyad2 = code % delta_tab->quad_exp;
  389. if (swap_quads[line & 1])
  390. FFSWAP(unsigned int, dyad1, dyad2);
  391. }
  392. if (mode <= 4) {
  393. APPLY_DELTA_4;
  394. } else if (mode == 10 && !cell->mv_ptr) {
  395. APPLY_DELTA_8;
  396. } else {
  397. APPLY_DELTA_1011_INTER;
  398. }
  399. } else {
  400. /* process RLE codes */
  401. switch (code) {
  402. case RLE_ESC_FC:
  403. skip_flag = 0;
  404. rle_blocks = 1;
  405. code = 253;
  406. /* FALLTHROUGH */
  407. case RLE_ESC_FF:
  408. case RLE_ESC_FE:
  409. case RLE_ESC_FD:
  410. num_lines = 257 - code - line;
  411. if (num_lines <= 0)
  412. return IV3_BAD_RLE;
  413. if (mode <= 4) {
  414. RLE_LINES_COPY;
  415. } else if (mode == 10 && !cell->mv_ptr) {
  416. RLE_LINES_COPY_M10;
  417. }
  418. break;
  419. case RLE_ESC_FB:
  420. BUFFER_PRECHECK;
  421. code = bytestream_get_byte(data_ptr);
  422. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  423. if (code >= 64 || rle_blocks < 0)
  424. return IV3_BAD_COUNTER;
  425. skip_flag = code & 0x20;
  426. num_lines = 4 - line; /* enforce next block processing */
  427. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  428. if (mode <= 4) {
  429. RLE_LINES_COPY;
  430. } else if (mode == 10 && !cell->mv_ptr) {
  431. RLE_LINES_COPY_M10;
  432. }
  433. }
  434. break;
  435. case RLE_ESC_F9:
  436. skip_flag = 1;
  437. rle_blocks = 1;
  438. /* FALLTHROUGH */
  439. case RLE_ESC_FA:
  440. if (line)
  441. return IV3_BAD_RLE;
  442. num_lines = 4; /* enforce next block processing */
  443. if (cell->mv_ptr) {
  444. if (mode <= 4) {
  445. RLE_LINES_COPY;
  446. } else if (mode == 10 && !cell->mv_ptr) {
  447. RLE_LINES_COPY_M10;
  448. }
  449. }
  450. break;
  451. default:
  452. return IV3_UNSUPPORTED;
  453. }
  454. }
  455. line += num_lines;
  456. ref += row_offset * (num_lines << v_zoom);
  457. dst += row_offset * (num_lines << v_zoom);
  458. }
  459. }
  460. /* move to next horizontal block */
  461. block += 4 << h_zoom;
  462. ref_block += 4 << h_zoom;
  463. }
  464. /* move to next line of blocks */
  465. ref_block += blk_row_offset;
  466. block += blk_row_offset;
  467. }
  468. return IV3_NOERR;
  469. }
  470. /**
  471. * Decode a vector-quantized cell.
  472. * It consists of several routines, each of which handles one or more "modes"
  473. * with which a cell can be encoded.
  474. *
  475. * @param ctx pointer to the decoder context
  476. * @param avctx ptr to the AVCodecContext
  477. * @param plane pointer to the plane descriptor
  478. * @param cell pointer to the cell descriptor
  479. * @param data_ptr pointer to the compressed data
  480. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  481. * @return number of consumed bytes or negative number in case of error
  482. */
  483. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  484. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  485. const uint8_t *last_ptr)
  486. {
  487. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  488. int zoom_fac;
  489. int offset, error = 0, swap_quads[2];
  490. uint8_t code, *block, *ref_block = 0;
  491. const vqEntry *delta[2];
  492. const uint8_t *data_start = data_ptr;
  493. /* get coding mode and VQ table index from the VQ descriptor byte */
  494. code = *data_ptr++;
  495. mode = code >> 4;
  496. vq_index = code & 0xF;
  497. /* setup output and reference pointers */
  498. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  499. block = plane->pixels[ctx->buf_sel] + offset;
  500. if (cell->mv_ptr) {
  501. mv_y = cell->mv_ptr[0];
  502. mv_x = cell->mv_ptr[1];
  503. if ( mv_x + 4*cell->xpos < 0
  504. || mv_y + 4*cell->ypos < 0
  505. || mv_x + 4*cell->xpos + 4*cell->width > plane->width
  506. || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
  507. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
  508. return AVERROR_INVALIDDATA;
  509. }
  510. }
  511. if (!cell->mv_ptr) {
  512. /* use previous line as reference for INTRA cells */
  513. ref_block = block - plane->pitch;
  514. } else if (mode >= 10) {
  515. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  516. /* so we don't need to do data copying for each RLE code later */
  517. copy_cell(ctx, plane, cell);
  518. } else {
  519. /* set the pointer to the reference pixels for modes 0-4 INTER */
  520. mv_y = cell->mv_ptr[0];
  521. mv_x = cell->mv_ptr[1];
  522. offset += mv_y * plane->pitch + mv_x;
  523. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  524. }
  525. /* select VQ tables as follows: */
  526. /* modes 0 and 3 use only the primary table for all lines in a block */
  527. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  528. if (mode == 1 || mode == 4) {
  529. code = ctx->alt_quant[vq_index];
  530. prim_indx = (code >> 4) + ctx->cb_offset;
  531. second_indx = (code & 0xF) + ctx->cb_offset;
  532. } else {
  533. vq_index += ctx->cb_offset;
  534. prim_indx = second_indx = vq_index;
  535. }
  536. if (prim_indx >= 24 || second_indx >= 24) {
  537. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  538. prim_indx, second_indx);
  539. return AVERROR_INVALIDDATA;
  540. }
  541. delta[0] = &vq_tab[second_indx];
  542. delta[1] = &vq_tab[prim_indx];
  543. swap_quads[0] = second_indx >= 16;
  544. swap_quads[1] = prim_indx >= 16;
  545. /* requantize the prediction if VQ index of this cell differs from VQ index */
  546. /* of the predicted cell in order to avoid overflows. */
  547. if (vq_index >= 8 && ref_block) {
  548. for (x = 0; x < cell->width << 2; x++)
  549. ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
  550. }
  551. error = IV3_NOERR;
  552. switch (mode) {
  553. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  554. case 1:
  555. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  556. case 4:
  557. if (mode >= 3 && cell->mv_ptr) {
  558. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  559. return AVERROR_INVALIDDATA;
  560. }
  561. zoom_fac = mode >= 3;
  562. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  563. mode, delta, swap_quads, &data_ptr, last_ptr);
  564. break;
  565. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  566. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  567. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  568. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  569. mode, delta, swap_quads, &data_ptr, last_ptr);
  570. } else { /* mode 10 and 11 INTER processing */
  571. if (mode == 11 && !cell->mv_ptr) {
  572. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  573. return AVERROR_INVALIDDATA;
  574. }
  575. zoom_fac = mode == 10;
  576. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  577. zoom_fac, 1, mode, delta, swap_quads,
  578. &data_ptr, last_ptr);
  579. }
  580. break;
  581. default:
  582. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  583. return AVERROR_INVALIDDATA;
  584. }//switch mode
  585. switch (error) {
  586. case IV3_BAD_RLE:
  587. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  588. mode, data_ptr[-1]);
  589. return AVERROR_INVALIDDATA;
  590. case IV3_BAD_DATA:
  591. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  592. return AVERROR_INVALIDDATA;
  593. case IV3_BAD_COUNTER:
  594. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  595. return AVERROR_INVALIDDATA;
  596. case IV3_UNSUPPORTED:
  597. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  598. return AVERROR_INVALIDDATA;
  599. case IV3_OUT_OF_DATA:
  600. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  601. return AVERROR_INVALIDDATA;
  602. }
  603. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  604. }
  605. /* Binary tree codes. */
  606. enum {
  607. H_SPLIT = 0,
  608. V_SPLIT = 1,
  609. INTRA_NULL = 2,
  610. INTER_DATA = 3
  611. };
  612. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  613. #define UPDATE_BITPOS(n) \
  614. ctx->skip_bits += (n); \
  615. ctx->need_resync = 1
  616. #define RESYNC_BITSTREAM \
  617. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  618. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  619. ctx->skip_bits = 0; \
  620. ctx->need_resync = 0; \
  621. }
  622. #define CHECK_CELL \
  623. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  624. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  625. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  626. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  627. return AVERROR_INVALIDDATA; \
  628. }
  629. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  630. Plane *plane, int code, Cell *ref_cell,
  631. const int depth, const int strip_width)
  632. {
  633. Cell curr_cell;
  634. int bytes_used;
  635. int mv_x, mv_y;
  636. if (depth <= 0) {
  637. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  638. return AVERROR_INVALIDDATA; // unwind recursion
  639. }
  640. curr_cell = *ref_cell; // clone parent cell
  641. if (code == H_SPLIT) {
  642. SPLIT_CELL(ref_cell->height, curr_cell.height);
  643. ref_cell->ypos += curr_cell.height;
  644. ref_cell->height -= curr_cell.height;
  645. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  646. return AVERROR_INVALIDDATA;
  647. } else if (code == V_SPLIT) {
  648. if (curr_cell.width > strip_width) {
  649. /* split strip */
  650. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  651. } else
  652. SPLIT_CELL(ref_cell->width, curr_cell.width);
  653. ref_cell->xpos += curr_cell.width;
  654. ref_cell->width -= curr_cell.width;
  655. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  656. return AVERROR_INVALIDDATA;
  657. }
  658. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  659. RESYNC_BITSTREAM;
  660. switch (code = get_bits(&ctx->gb, 2)) {
  661. case H_SPLIT:
  662. case V_SPLIT:
  663. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  664. return AVERROR_INVALIDDATA;
  665. break;
  666. case INTRA_NULL:
  667. if (!curr_cell.tree) { /* MC tree INTRA code */
  668. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  669. curr_cell.tree = 1; /* enter the VQ tree */
  670. } else { /* VQ tree NULL code */
  671. RESYNC_BITSTREAM;
  672. code = get_bits(&ctx->gb, 2);
  673. if (code >= 2) {
  674. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  675. return AVERROR_INVALIDDATA;
  676. }
  677. if (code == 1)
  678. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  679. CHECK_CELL
  680. if (!curr_cell.mv_ptr)
  681. return AVERROR_INVALIDDATA;
  682. mv_y = curr_cell.mv_ptr[0];
  683. mv_x = curr_cell.mv_ptr[1];
  684. if ( mv_x + 4*curr_cell.xpos < 0
  685. || mv_y + 4*curr_cell.ypos < 0
  686. || mv_x + 4*curr_cell.xpos + 4*curr_cell.width > plane->width
  687. || mv_y + 4*curr_cell.ypos + 4*curr_cell.height > plane->height) {
  688. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*curr_cell.xpos, mv_y + 4*curr_cell.ypos);
  689. return AVERROR_INVALIDDATA;
  690. }
  691. copy_cell(ctx, plane, &curr_cell);
  692. return 0;
  693. }
  694. break;
  695. case INTER_DATA:
  696. if (!curr_cell.tree) { /* MC tree INTER code */
  697. unsigned mv_idx;
  698. /* get motion vector index and setup the pointer to the mv set */
  699. if (!ctx->need_resync)
  700. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  701. if (ctx->next_cell_data >= ctx->last_byte) {
  702. av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
  703. return AVERROR_INVALIDDATA;
  704. }
  705. mv_idx = *(ctx->next_cell_data++);
  706. if (mv_idx >= ctx->num_vectors) {
  707. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  708. return AVERROR_INVALIDDATA;
  709. }
  710. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  711. curr_cell.tree = 1; /* enter the VQ tree */
  712. UPDATE_BITPOS(8);
  713. } else { /* VQ tree DATA code */
  714. if (!ctx->need_resync)
  715. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  716. CHECK_CELL
  717. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  718. ctx->next_cell_data, ctx->last_byte);
  719. if (bytes_used < 0)
  720. return AVERROR_INVALIDDATA;
  721. UPDATE_BITPOS(bytes_used << 3);
  722. ctx->next_cell_data += bytes_used;
  723. return 0;
  724. }
  725. break;
  726. }
  727. }//while
  728. return AVERROR_INVALIDDATA;
  729. }
  730. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  731. Plane *plane, const uint8_t *data, int32_t data_size,
  732. int32_t strip_width)
  733. {
  734. Cell curr_cell;
  735. unsigned num_vectors;
  736. /* each plane data starts with mc_vector_count field, */
  737. /* an optional array of motion vectors followed by the vq data */
  738. num_vectors = bytestream_get_le32(&data); data_size -= 4;
  739. if (num_vectors > 256) {
  740. av_log(ctx->avctx, AV_LOG_ERROR,
  741. "Read invalid number of motion vectors %d\n", num_vectors);
  742. return AVERROR_INVALIDDATA;
  743. }
  744. if (num_vectors * 2 > data_size)
  745. return AVERROR_INVALIDDATA;
  746. ctx->num_vectors = num_vectors;
  747. ctx->mc_vectors = num_vectors ? data : 0;
  748. /* init the bitreader */
  749. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  750. ctx->skip_bits = 0;
  751. ctx->need_resync = 0;
  752. ctx->last_byte = data + data_size;
  753. /* initialize the 1st cell and set its dimensions to whole plane */
  754. curr_cell.xpos = curr_cell.ypos = 0;
  755. curr_cell.width = plane->width >> 2;
  756. curr_cell.height = plane->height >> 2;
  757. curr_cell.tree = 0; // we are in the MC tree now
  758. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  759. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  760. }
  761. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  762. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  763. const uint8_t *buf, int buf_size)
  764. {
  765. const uint8_t *buf_ptr = buf, *bs_hdr;
  766. uint32_t frame_num, word2, check_sum, data_size;
  767. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  768. uint16_t height, width;
  769. int i, j;
  770. /* parse and check the OS header */
  771. frame_num = bytestream_get_le32(&buf_ptr);
  772. word2 = bytestream_get_le32(&buf_ptr);
  773. check_sum = bytestream_get_le32(&buf_ptr);
  774. data_size = bytestream_get_le32(&buf_ptr);
  775. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  776. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  777. return AVERROR_INVALIDDATA;
  778. }
  779. /* parse the bitstream header */
  780. bs_hdr = buf_ptr;
  781. buf_size -= 16;
  782. if (bytestream_get_le16(&buf_ptr) != 32) {
  783. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  784. return AVERROR_INVALIDDATA;
  785. }
  786. ctx->frame_num = frame_num;
  787. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  788. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  789. ctx->cb_offset = *buf_ptr++;
  790. if (ctx->data_size == 16)
  791. return 4;
  792. if (ctx->data_size > buf_size)
  793. ctx->data_size = buf_size;
  794. buf_ptr += 3; // skip reserved byte and checksum
  795. /* check frame dimensions */
  796. height = bytestream_get_le16(&buf_ptr);
  797. width = bytestream_get_le16(&buf_ptr);
  798. if (av_image_check_size(width, height, 0, avctx))
  799. return AVERROR_INVALIDDATA;
  800. if (width != ctx->width || height != ctx->height) {
  801. int res;
  802. av_dlog(avctx, "Frame dimensions changed!\n");
  803. ctx->width = width;
  804. ctx->height = height;
  805. free_frame_buffers(ctx);
  806. if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
  807. return res;
  808. avcodec_set_dimensions(avctx, width, height);
  809. }
  810. y_offset = bytestream_get_le32(&buf_ptr);
  811. v_offset = bytestream_get_le32(&buf_ptr);
  812. u_offset = bytestream_get_le32(&buf_ptr);
  813. /* unfortunately there is no common order of planes in the buffer */
  814. /* so we use that sorting algo for determining planes data sizes */
  815. starts[0] = y_offset;
  816. starts[1] = v_offset;
  817. starts[2] = u_offset;
  818. for (j = 0; j < 3; j++) {
  819. ends[j] = ctx->data_size;
  820. for (i = 2; i >= 0; i--)
  821. if (starts[i] < ends[j] && starts[i] > starts[j])
  822. ends[j] = starts[i];
  823. }
  824. ctx->y_data_size = ends[0] - starts[0];
  825. ctx->v_data_size = ends[1] - starts[1];
  826. ctx->u_data_size = ends[2] - starts[2];
  827. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  828. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  829. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  830. return AVERROR_INVALIDDATA;
  831. }
  832. ctx->y_data_ptr = bs_hdr + y_offset;
  833. ctx->v_data_ptr = bs_hdr + v_offset;
  834. ctx->u_data_ptr = bs_hdr + u_offset;
  835. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  836. if (ctx->data_size == 16) {
  837. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  838. return 16;
  839. }
  840. if (ctx->frame_flags & BS_8BIT_PEL) {
  841. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  842. return AVERROR_PATCHWELCOME;
  843. }
  844. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  845. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  846. return AVERROR_PATCHWELCOME;
  847. }
  848. return 0;
  849. }
  850. /**
  851. * Convert and output the current plane.
  852. * All pixel values will be upsampled by shifting right by one bit.
  853. *
  854. * @param[in] plane pointer to the descriptor of the plane being processed
  855. * @param[in] buf_sel indicates which frame buffer the input data stored in
  856. * @param[out] dst pointer to the buffer receiving converted pixels
  857. * @param[in] dst_pitch pitch for moving to the next y line
  858. */
  859. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
  860. {
  861. int x,y;
  862. const uint8_t *src = plane->pixels[buf_sel];
  863. uint32_t pitch = plane->pitch;
  864. for (y = 0; y < plane->height; y++) {
  865. /* convert four pixels at once using SWAR */
  866. for (x = 0; x < plane->width >> 2; x++) {
  867. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  868. src += 4;
  869. dst += 4;
  870. }
  871. for (x <<= 2; x < plane->width; x++)
  872. *dst++ = *src++ << 1;
  873. src += pitch - plane->width;
  874. dst += dst_pitch - plane->width;
  875. }
  876. }
  877. static av_cold int decode_init(AVCodecContext *avctx)
  878. {
  879. Indeo3DecodeContext *ctx = avctx->priv_data;
  880. ctx->avctx = avctx;
  881. ctx->width = avctx->width;
  882. ctx->height = avctx->height;
  883. avctx->pix_fmt = PIX_FMT_YUV410P;
  884. avcodec_get_frame_defaults(&ctx->frame);
  885. build_requant_tab();
  886. ff_dsputil_init(&ctx->dsp, avctx);
  887. return allocate_frame_buffers(ctx, avctx);
  888. }
  889. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  890. AVPacket *avpkt)
  891. {
  892. Indeo3DecodeContext *ctx = avctx->priv_data;
  893. const uint8_t *buf = avpkt->data;
  894. int buf_size = avpkt->size;
  895. int res;
  896. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  897. if (res < 0)
  898. return res;
  899. /* skip sync(null) frames */
  900. if (res) {
  901. // we have processed 16 bytes but no data was decoded
  902. *data_size = 0;
  903. return buf_size;
  904. }
  905. /* skip droppable INTER frames if requested */
  906. if (ctx->frame_flags & BS_NONREF &&
  907. (avctx->skip_frame >= AVDISCARD_NONREF))
  908. return 0;
  909. /* skip INTER frames if requested */
  910. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  911. return 0;
  912. /* use BS_BUFFER flag for buffer switching */
  913. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  914. /* decode luma plane */
  915. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  916. return res;
  917. /* decode chroma planes */
  918. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  919. return res;
  920. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  921. return res;
  922. if (ctx->frame.data[0])
  923. avctx->release_buffer(avctx, &ctx->frame);
  924. ctx->frame.reference = 0;
  925. if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
  926. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  927. return res;
  928. }
  929. output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
  930. output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
  931. output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
  932. *data_size = sizeof(AVFrame);
  933. *(AVFrame*)data = ctx->frame;
  934. return buf_size;
  935. }
  936. static av_cold int decode_close(AVCodecContext *avctx)
  937. {
  938. Indeo3DecodeContext *ctx = avctx->priv_data;
  939. free_frame_buffers(avctx->priv_data);
  940. if (ctx->frame.data[0])
  941. avctx->release_buffer(avctx, &ctx->frame);
  942. return 0;
  943. }
  944. AVCodec ff_indeo3_decoder = {
  945. .name = "indeo3",
  946. .type = AVMEDIA_TYPE_VIDEO,
  947. .id = CODEC_ID_INDEO3,
  948. .priv_data_size = sizeof(Indeo3DecodeContext),
  949. .init = decode_init,
  950. .close = decode_close,
  951. .decode = decode_frame,
  952. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  953. };