You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

293 lines
8.8KB

  1. /*
  2. * A 32-bit implementation of the XTEA algorithm
  3. * Copyright (c) 2012 Samuel Pitoiset
  4. *
  5. * loosely based on the implementation of David Wheeler and Roger Needham
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * @brief XTEA 32-bit implementation
  26. * @author Samuel Pitoiset
  27. * @ingroup lavu_xtea
  28. */
  29. #include "avutil.h"
  30. #include "common.h"
  31. #include "intreadwrite.h"
  32. #include "mem.h"
  33. #include "xtea.h"
  34. #if !FF_API_CRYPTO_CONTEXT
  35. struct AVXTEA {
  36. uint32_t key[16];
  37. };
  38. #endif
  39. AVXTEA *av_xtea_alloc(void)
  40. {
  41. return av_mallocz(sizeof(struct AVXTEA));
  42. }
  43. void av_xtea_init(AVXTEA *ctx, const uint8_t key[16])
  44. {
  45. int i;
  46. for (i = 0; i < 4; i++)
  47. ctx->key[i] = AV_RB32(key + (i << 2));
  48. }
  49. static void xtea_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src,
  50. int decrypt, uint8_t *iv)
  51. {
  52. uint32_t v0, v1;
  53. #if !CONFIG_SMALL
  54. uint32_t k0 = ctx->key[0];
  55. uint32_t k1 = ctx->key[1];
  56. uint32_t k2 = ctx->key[2];
  57. uint32_t k3 = ctx->key[3];
  58. #endif
  59. v0 = AV_RB32(src);
  60. v1 = AV_RB32(src + 4);
  61. if (decrypt) {
  62. #if CONFIG_SMALL
  63. int i;
  64. uint32_t delta = 0x9E3779B9U, sum = delta * 32;
  65. for (i = 0; i < 32; i++) {
  66. v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
  67. sum -= delta;
  68. v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
  69. }
  70. #else
  71. #define DSTEP(SUM, K0, K1) \
  72. v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + K0); \
  73. v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM - 0x9E3779B9U + K1)
  74. DSTEP(0xC6EF3720U, k2, k3);
  75. DSTEP(0x28B7BD67U, k3, k2);
  76. DSTEP(0x8A8043AEU, k0, k1);
  77. DSTEP(0xEC48C9F5U, k1, k0);
  78. DSTEP(0x4E11503CU, k2, k3);
  79. DSTEP(0xAFD9D683U, k2, k2);
  80. DSTEP(0x11A25CCAU, k3, k1);
  81. DSTEP(0x736AE311U, k0, k0);
  82. DSTEP(0xD5336958U, k1, k3);
  83. DSTEP(0x36FBEF9FU, k1, k2);
  84. DSTEP(0x98C475E6U, k2, k1);
  85. DSTEP(0xFA8CFC2DU, k3, k0);
  86. DSTEP(0x5C558274U, k0, k3);
  87. DSTEP(0xBE1E08BBU, k1, k2);
  88. DSTEP(0x1FE68F02U, k1, k1);
  89. DSTEP(0x81AF1549U, k2, k0);
  90. DSTEP(0xE3779B90U, k3, k3);
  91. DSTEP(0x454021D7U, k0, k2);
  92. DSTEP(0xA708A81EU, k1, k1);
  93. DSTEP(0x08D12E65U, k1, k0);
  94. DSTEP(0x6A99B4ACU, k2, k3);
  95. DSTEP(0xCC623AF3U, k3, k2);
  96. DSTEP(0x2E2AC13AU, k0, k1);
  97. DSTEP(0x8FF34781U, k0, k0);
  98. DSTEP(0xF1BBCDC8U, k1, k3);
  99. DSTEP(0x5384540FU, k2, k2);
  100. DSTEP(0xB54CDA56U, k3, k1);
  101. DSTEP(0x1715609DU, k0, k0);
  102. DSTEP(0x78DDE6E4U, k0, k3);
  103. DSTEP(0xDAA66D2BU, k1, k2);
  104. DSTEP(0x3C6EF372U, k2, k1);
  105. DSTEP(0x9E3779B9U, k3, k0);
  106. #endif
  107. if (iv) {
  108. v0 ^= AV_RB32(iv);
  109. v1 ^= AV_RB32(iv + 4);
  110. memcpy(iv, src, 8);
  111. }
  112. } else {
  113. #if CONFIG_SMALL
  114. int i;
  115. uint32_t sum = 0, delta = 0x9E3779B9U;
  116. for (i = 0; i < 32; i++) {
  117. v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]);
  118. sum += delta;
  119. v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]);
  120. }
  121. #else
  122. #define ESTEP(SUM, K0, K1) \
  123. v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM + K0);\
  124. v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + 0x9E3779B9U + K1)
  125. ESTEP(0x00000000U, k0, k3);
  126. ESTEP(0x9E3779B9U, k1, k2);
  127. ESTEP(0x3C6EF372U, k2, k1);
  128. ESTEP(0xDAA66D2BU, k3, k0);
  129. ESTEP(0x78DDE6E4U, k0, k0);
  130. ESTEP(0x1715609DU, k1, k3);
  131. ESTEP(0xB54CDA56U, k2, k2);
  132. ESTEP(0x5384540FU, k3, k1);
  133. ESTEP(0xF1BBCDC8U, k0, k0);
  134. ESTEP(0x8FF34781U, k1, k0);
  135. ESTEP(0x2E2AC13AU, k2, k3);
  136. ESTEP(0xCC623AF3U, k3, k2);
  137. ESTEP(0x6A99B4ACU, k0, k1);
  138. ESTEP(0x08D12E65U, k1, k1);
  139. ESTEP(0xA708A81EU, k2, k0);
  140. ESTEP(0x454021D7U, k3, k3);
  141. ESTEP(0xE3779B90U, k0, k2);
  142. ESTEP(0x81AF1549U, k1, k1);
  143. ESTEP(0x1FE68F02U, k2, k1);
  144. ESTEP(0xBE1E08BBU, k3, k0);
  145. ESTEP(0x5C558274U, k0, k3);
  146. ESTEP(0xFA8CFC2DU, k1, k2);
  147. ESTEP(0x98C475E6U, k2, k1);
  148. ESTEP(0x36FBEF9FU, k3, k1);
  149. ESTEP(0xD5336958U, k0, k0);
  150. ESTEP(0x736AE311U, k1, k3);
  151. ESTEP(0x11A25CCAU, k2, k2);
  152. ESTEP(0xAFD9D683U, k3, k2);
  153. ESTEP(0x4E11503CU, k0, k1);
  154. ESTEP(0xEC48C9F5U, k1, k0);
  155. ESTEP(0x8A8043AEU, k2, k3);
  156. ESTEP(0x28B7BD67U, k3, k2);
  157. #endif
  158. }
  159. AV_WB32(dst, v0);
  160. AV_WB32(dst + 4, v1);
  161. }
  162. void av_xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count,
  163. uint8_t *iv, int decrypt)
  164. {
  165. int i;
  166. if (decrypt) {
  167. while (count--) {
  168. xtea_crypt_ecb(ctx, dst, src, decrypt, iv);
  169. src += 8;
  170. dst += 8;
  171. }
  172. } else {
  173. while (count--) {
  174. if (iv) {
  175. for (i = 0; i < 8; i++)
  176. dst[i] = src[i] ^ iv[i];
  177. xtea_crypt_ecb(ctx, dst, dst, decrypt, NULL);
  178. memcpy(iv, dst, 8);
  179. } else {
  180. xtea_crypt_ecb(ctx, dst, src, decrypt, NULL);
  181. }
  182. src += 8;
  183. dst += 8;
  184. }
  185. }
  186. }
  187. #ifdef TEST
  188. #include <stdio.h>
  189. #define XTEA_NUM_TESTS 6
  190. static const uint8_t xtea_test_key[XTEA_NUM_TESTS][16] = {
  191. { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  192. 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
  193. { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  194. 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
  195. { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  196. 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
  197. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  198. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  199. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  200. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
  201. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  202. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
  203. };
  204. static const uint8_t xtea_test_pt[XTEA_NUM_TESTS][8] = {
  205. { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
  206. { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
  207. { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
  208. { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
  209. { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
  210. { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 }
  211. };
  212. static const uint8_t xtea_test_ct[XTEA_NUM_TESTS][8] = {
  213. { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 },
  214. { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 },
  215. { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
  216. { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 },
  217. { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d },
  218. { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
  219. };
  220. static void test_xtea(AVXTEA *ctx, uint8_t *dst, const uint8_t *src,
  221. const uint8_t *ref, int len, uint8_t *iv, int dir,
  222. const char *test)
  223. {
  224. av_xtea_crypt(ctx, dst, src, len, iv, dir);
  225. if (memcmp(dst, ref, 8*len)) {
  226. int i;
  227. printf("%s failed\ngot ", test);
  228. for (i = 0; i < 8*len; i++)
  229. printf("%02x ", dst[i]);
  230. printf("\nexpected ");
  231. for (i = 0; i < 8*len; i++)
  232. printf("%02x ", ref[i]);
  233. printf("\n");
  234. exit(1);
  235. }
  236. }
  237. int main(void)
  238. {
  239. AVXTEA ctx;
  240. uint8_t buf[8], iv[8];
  241. int i;
  242. static const uint8_t src[32] = "HelloWorldHelloWorldHelloWorld";
  243. uint8_t ct[32];
  244. uint8_t pl[32];
  245. for (i = 0; i < XTEA_NUM_TESTS; i++) {
  246. av_xtea_init(&ctx, xtea_test_key[i]);
  247. test_xtea(&ctx, buf, xtea_test_pt[i], xtea_test_ct[i], 1, NULL, 0, "encryption");
  248. test_xtea(&ctx, buf, xtea_test_ct[i], xtea_test_pt[i], 1, NULL, 1, "decryption");
  249. /* encrypt */
  250. memcpy(iv, "HALLO123", 8);
  251. av_xtea_crypt(&ctx, ct, src, 4, iv, 0);
  252. /* decrypt into pl */
  253. memcpy(iv, "HALLO123", 8);
  254. test_xtea(&ctx, pl, ct, src, 4, iv, 1, "CBC decryption");
  255. memcpy(iv, "HALLO123", 8);
  256. test_xtea(&ctx, ct, ct, src, 4, iv, 1, "CBC inplace decryption");
  257. }
  258. printf("Test encryption/decryption success.\n");
  259. return 0;
  260. }
  261. #endif