You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

259 lines
7.9KB

  1. /*
  2. * AAC encoder utilities
  3. * Copyright (C) 2015 Rostislav Pehlivanov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder utilities
  24. * @author Rostislav Pehlivanov ( atomnuker gmail com )
  25. */
  26. #ifndef AVCODEC_AACENC_UTILS_H
  27. #define AVCODEC_AACENC_UTILS_H
  28. #include "aac.h"
  29. #include "aacenctab.h"
  30. #include "aactab.h"
  31. #define ROUND_STANDARD 0.4054f
  32. #define ROUND_TO_ZERO 0.1054f
  33. #define C_QUANT 0.4054f
  34. static inline void abs_pow34_v(float *out, const float *in, const int size)
  35. {
  36. int i;
  37. for (i = 0; i < size; i++) {
  38. float a = fabsf(in[i]);
  39. out[i] = sqrtf(a * sqrtf(a));
  40. }
  41. }
  42. /**
  43. * Quantize one coefficient.
  44. * @return absolute value of the quantized coefficient
  45. * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  46. */
  47. static inline int quant(float coef, const float Q, const float rounding)
  48. {
  49. float a = coef * Q;
  50. return sqrtf(a * sqrtf(a)) + rounding;
  51. }
  52. static inline void quantize_bands(int *out, const float *in, const float *scaled,
  53. int size, float Q34, int is_signed, int maxval,
  54. const float rounding)
  55. {
  56. int i;
  57. double qc;
  58. for (i = 0; i < size; i++) {
  59. qc = scaled[i] * Q34;
  60. out[i] = (int)FFMIN(qc + rounding, (double)maxval);
  61. if (is_signed && in[i] < 0.0f) {
  62. out[i] = -out[i];
  63. }
  64. }
  65. }
  66. static inline float find_max_val(int group_len, int swb_size, const float *scaled)
  67. {
  68. float maxval = 0.0f;
  69. int w2, i;
  70. for (w2 = 0; w2 < group_len; w2++) {
  71. for (i = 0; i < swb_size; i++) {
  72. maxval = FFMAX(maxval, scaled[w2*128+i]);
  73. }
  74. }
  75. return maxval;
  76. }
  77. static inline int find_min_book(float maxval, int sf)
  78. {
  79. float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
  80. float Q34 = sqrtf(Q * sqrtf(Q));
  81. int qmaxval, cb;
  82. qmaxval = maxval * Q34 + C_QUANT;
  83. if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
  84. cb = 11;
  85. else
  86. cb = aac_maxval_cb[qmaxval];
  87. return cb;
  88. }
  89. static inline float find_form_factor(int group_len, int swb_size, float thresh,
  90. const float *scaled, float nzslope) {
  91. const float iswb_size = 1.0f / swb_size;
  92. const float iswb_sizem1 = 1.0f / (swb_size - 1);
  93. const float ethresh = thresh;
  94. float form = 0.0f, weight = 0.0f;
  95. int w2, i;
  96. for (w2 = 0; w2 < group_len; w2++) {
  97. float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
  98. float nzl = 0;
  99. for (i = 0; i < swb_size; i++) {
  100. float s = fabsf(scaled[w2*128+i]);
  101. maxval = FFMAX(maxval, s);
  102. e += s;
  103. e2 += s *= s;
  104. /* We really don't want a hard non-zero-line count, since
  105. * even below-threshold lines do add up towards band spectral power.
  106. * So, fall steeply towards zero, but smoothly
  107. */
  108. if (s >= ethresh) {
  109. nzl += 1.0f;
  110. } else {
  111. nzl += powf(s / ethresh, nzslope);
  112. }
  113. }
  114. if (e2 > thresh) {
  115. float frm;
  116. e *= iswb_size;
  117. /** compute variance */
  118. for (i = 0; i < swb_size; i++) {
  119. float d = fabsf(scaled[w2*128+i]) - e;
  120. var += d*d;
  121. }
  122. var = sqrtf(var * iswb_sizem1);
  123. e2 *= iswb_size;
  124. frm = e / FFMIN(e+4*var,maxval);
  125. form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
  126. weight += e2;
  127. }
  128. }
  129. if (weight > 0) {
  130. return form / weight;
  131. } else {
  132. return 1.0f;
  133. }
  134. }
  135. /** Return the minimum scalefactor where the quantized coef does not clip. */
  136. static inline uint8_t coef2minsf(float coef)
  137. {
  138. return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
  139. }
  140. /** Return the maximum scalefactor where the quantized coef is not zero. */
  141. static inline uint8_t coef2maxsf(float coef)
  142. {
  143. return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
  144. }
  145. /*
  146. * Returns the closest possible index to an array of float values, given a value.
  147. */
  148. static inline int quant_array_idx(const float val, const float *arr, const int num)
  149. {
  150. int i, index = 0;
  151. float quant_min_err = INFINITY;
  152. for (i = 0; i < num; i++) {
  153. float error = (val - arr[i])*(val - arr[i]);
  154. if (error < quant_min_err) {
  155. quant_min_err = error;
  156. index = i;
  157. }
  158. }
  159. return index;
  160. }
  161. /**
  162. * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
  163. */
  164. static av_always_inline float bval2bmax(float b)
  165. {
  166. return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
  167. }
  168. /*
  169. * Compute a nextband map to be used with SF delta constraint utilities.
  170. * The nextband array should contain 128 elements, and positions that don't
  171. * map to valid, nonzero bands of the form w*16+g (with w being the initial
  172. * window of the window group, only) are left indetermined.
  173. */
  174. static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
  175. {
  176. unsigned char prevband = 0;
  177. int w, g;
  178. /** Just a safe default */
  179. for (g = 0; g < 128; g++)
  180. nextband[g] = g;
  181. /** Now really navigate the nonzero band chain */
  182. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  183. for (g = 0; g < sce->ics.num_swb; g++) {
  184. if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
  185. prevband = nextband[prevband] = w*16+g;
  186. }
  187. }
  188. nextband[prevband] = prevband; /* terminate */
  189. }
  190. /*
  191. * Updates nextband to reflect a removed band (equivalent to
  192. * calling ff_init_nextband_map after marking a band as zero)
  193. */
  194. static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
  195. {
  196. nextband[prevband] = nextband[band];
  197. }
  198. /*
  199. * Checks whether the specified band could be removed without inducing
  200. * scalefactor delta that violates SF delta encoding constraints.
  201. * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
  202. * band, in encoding order, or negative if there was no such band.
  203. */
  204. static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
  205. const uint8_t *nextband, int prev_sf, int band)
  206. {
  207. return prev_sf >= 0
  208. && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
  209. && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
  210. }
  211. /*
  212. * Checks whether the specified band's scalefactor could be replaced
  213. * with another one without violating SF delta encoding constraints.
  214. * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
  215. * band, in encoding order, or negative if there was no such band.
  216. */
  217. static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
  218. const uint8_t *nextband, int prev_sf, int new_sf, int band)
  219. {
  220. return new_sf >= (prev_sf - SCALE_MAX_DIFF)
  221. && new_sf <= (prev_sf + SCALE_MAX_DIFF)
  222. && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
  223. && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
  224. }
  225. #define ERROR_IF(cond, ...) \
  226. if (cond) { \
  227. av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
  228. return AVERROR(EINVAL); \
  229. }
  230. #define WARN_IF(cond, ...) \
  231. if (cond) { \
  232. av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
  233. }
  234. #endif /* AVCODEC_AACENC_UTILS_H */