|
- /*
- * AAC coefficients encoder
- * Copyright (C) 2008-2009 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * AAC coefficients encoder
- */
-
- /***********************************
- * TODOs:
- * speedup quantizer selection
- * add sane pulse detection
- ***********************************/
-
- #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
-
- #include <float.h>
-
- #include "libavutil/mathematics.h"
- #include "mathops.h"
- #include "avcodec.h"
- #include "put_bits.h"
- #include "aac.h"
- #include "aacenc.h"
- #include "aactab.h"
- #include "aacenctab.h"
- #include "aacenc_utils.h"
- #include "aacenc_quantization.h"
-
- #include "aacenc_is.h"
- #include "aacenc_tns.h"
- #include "aacenc_ltp.h"
- #include "aacenc_pred.h"
-
- #include "libavcodec/aaccoder_twoloop.h"
-
- /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
- * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
- #define NOISE_SPREAD_THRESHOLD 0.9f
-
- /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
- * replace low energy non zero bands */
- #define NOISE_LAMBDA_REPLACE 1.948f
-
- #include "libavcodec/aaccoder_trellis.h"
-
- /**
- * structure used in optimal codebook search
- */
- typedef struct BandCodingPath {
- int prev_idx; ///< pointer to the previous path point
- float cost; ///< path cost
- int run;
- } BandCodingPath;
-
- /**
- * Encode band info for single window group bands.
- */
- static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
- int win, int group_len, const float lambda)
- {
- BandCodingPath path[120][CB_TOT_ALL];
- int w, swb, cb, start, size;
- int i, j;
- const int max_sfb = sce->ics.max_sfb;
- const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
- const int run_esc = (1 << run_bits) - 1;
- int idx, ppos, count;
- int stackrun[120], stackcb[120], stack_len;
- float next_minrd = INFINITY;
- int next_mincb = 0;
-
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- start = win*128;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[0][cb].cost = 0.0f;
- path[0][cb].prev_idx = -1;
- path[0][cb].run = 0;
- }
- for (swb = 0; swb < max_sfb; swb++) {
- size = sce->ics.swb_sizes[swb];
- if (sce->zeroes[win*16 + swb]) {
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = path[swb][cb].cost;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- } else {
- float minrd = next_minrd;
- int mincb = next_mincb;
- next_minrd = INFINITY;
- next_mincb = 0;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- float cost_stay_here, cost_get_here;
- float rd = 0.0f;
- if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
- cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].cost = INFINITY;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- continue;
- }
- for (w = 0; w < group_len; w++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
- rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
- &s->scoefs[start + w*128], size,
- sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
- lambda / band->threshold, INFINITY, NULL, NULL, 0);
- }
- cost_stay_here = path[swb][cb].cost + rd;
- cost_get_here = minrd + rd + run_bits + 4;
- if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
- != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
- cost_stay_here += run_bits;
- if (cost_get_here < cost_stay_here) {
- path[swb+1][cb].prev_idx = mincb;
- path[swb+1][cb].cost = cost_get_here;
- path[swb+1][cb].run = 1;
- } else {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = cost_stay_here;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- if (path[swb+1][cb].cost < next_minrd) {
- next_minrd = path[swb+1][cb].cost;
- next_mincb = cb;
- }
- }
- }
- start += sce->ics.swb_sizes[swb];
- }
-
- //convert resulting path from backward-linked list
- stack_len = 0;
- idx = 0;
- for (cb = 1; cb < CB_TOT_ALL; cb++)
- if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
- idx = cb;
- ppos = max_sfb;
- while (ppos > 0) {
- av_assert1(idx >= 0);
- cb = idx;
- stackrun[stack_len] = path[ppos][cb].run;
- stackcb [stack_len] = cb;
- idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
- ppos -= path[ppos][cb].run;
- stack_len++;
- }
- //perform actual band info encoding
- start = 0;
- for (i = stack_len - 1; i >= 0; i--) {
- cb = aac_cb_out_map[stackcb[i]];
- put_bits(&s->pb, 4, cb);
- count = stackrun[i];
- memset(sce->zeroes + win*16 + start, !cb, count);
- //XXX: memset when band_type is also uint8_t
- for (j = 0; j < count; j++) {
- sce->band_type[win*16 + start] = cb;
- start++;
- }
- while (count >= run_esc) {
- put_bits(&s->pb, run_bits, run_esc);
- count -= run_esc;
- }
- put_bits(&s->pb, run_bits, count);
- }
- }
-
-
- typedef struct TrellisPath {
- float cost;
- int prev;
- } TrellisPath;
-
- #define TRELLIS_STAGES 121
- #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
-
- static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
- {
- int w, g, start = 0;
- int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
- int bands = 0;
-
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
- minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
- bands++;
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
- minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
- bands++;
- }
- start += sce->ics.swb_sizes[g];
- }
- }
-
- if (!bands)
- return;
-
- /* Clip the scalefactor indices */
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
- }
- }
- }
- }
-
- static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int q, w, w2, g, start = 0;
- int i, j;
- int idx;
- TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
- int bandaddr[TRELLIS_STAGES];
- int minq;
- float mincost;
- float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
- int q0, q1, qcnt = 0;
-
- for (i = 0; i < 1024; i++) {
- float t = fabsf(sce->coeffs[i]);
- if (t > 0.0f) {
- q0f = FFMIN(q0f, t);
- q1f = FFMAX(q1f, t);
- qnrgf += t*t;
- qcnt++;
- }
- }
-
- if (!qcnt) {
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- memset(sce->zeroes, 1, sizeof(sce->zeroes));
- return;
- }
-
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
- if (q1 - q0 > 60) {
- int q0low = q0;
- int q1high = q1;
- //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
- int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
- q1 = qnrg + 30;
- q0 = qnrg - 30;
- if (q0 < q0low) {
- q1 += q0low - q0;
- q0 = q0low;
- } else if (q1 > q1high) {
- q0 -= q1 - q1high;
- q1 = q1high;
- }
- }
- // q0 == q1 isn't really a legal situation
- if (q0 == q1) {
- // the following is indirect but guarantees q1 != q0 && q1 near q0
- q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
- q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
- }
-
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[0][i].cost = 0.0f;
- paths[0][i].prev = -1;
- }
- for (j = 1; j < TRELLIS_STAGES; j++) {
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[j][i].cost = INFINITY;
- paths[j][i].prev = -2;
- }
- }
- idx = 1;
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- float qmin, qmax;
- int nz = 0;
-
- bandaddr[idx] = w * 16 + g;
- qmin = INT_MAX;
- qmax = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- if (band->energy <= band->threshold || band->threshold == 0.0f) {
- sce->zeroes[(w+w2)*16+g] = 1;
- continue;
- }
- sce->zeroes[(w+w2)*16+g] = 0;
- nz = 1;
- for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
- float t = fabsf(coefs[w2*128+i]);
- if (t > 0.0f)
- qmin = FFMIN(qmin, t);
- qmax = FFMAX(qmax, t);
- }
- }
- if (nz) {
- int minscale, maxscale;
- float minrd = INFINITY;
- float maxval;
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- minscale = coef2minsf(qmin);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- maxscale = coef2maxsf(qmax);
- minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
- maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
- if (minscale == maxscale) {
- maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
- minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
- }
- maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
- for (q = minscale; q < maxscale; q++) {
- float dist = 0;
- int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
- q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
- }
- minrd = FFMIN(minrd, dist);
-
- for (i = 0; i < q1 - q0; i++) {
- float cost;
- cost = paths[idx - 1][i].cost + dist
- + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
- if (cost < paths[idx][q].cost) {
- paths[idx][q].cost = cost;
- paths[idx][q].prev = i;
- }
- }
- }
- } else {
- for (q = 0; q < q1 - q0; q++) {
- paths[idx][q].cost = paths[idx - 1][q].cost + 1;
- paths[idx][q].prev = q;
- }
- }
- sce->zeroes[w*16+g] = !nz;
- start += sce->ics.swb_sizes[g];
- idx++;
- }
- }
- idx--;
- mincost = paths[idx][0].cost;
- minq = 0;
- for (i = 1; i < TRELLIS_STATES; i++) {
- if (paths[idx][i].cost < mincost) {
- mincost = paths[idx][i].cost;
- minq = i;
- }
- }
- while (idx) {
- sce->sf_idx[bandaddr[idx]] = minq + q0;
- minq = FFMAX(paths[idx][minq].prev, 0);
- idx--;
- }
- //set the same quantizers inside window groups
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for (g = 0; g < sce->ics.num_swb; g++)
- for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
- sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
- }
-
-
- static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int start = 0, i, w, w2, g;
- float uplim[128], maxq[128];
- int minq, maxsf;
- float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
- int last = 0, lastband = 0, curband = 0;
- float avg_energy = 0.0;
- if (sce->ics.num_windows == 1) {
- start = 0;
- for (i = 0; i < 1024; i++) {
- if (i - start >= sce->ics.swb_sizes[curband]) {
- start += sce->ics.swb_sizes[curband];
- curband++;
- }
- if (sce->coeffs[i]) {
- avg_energy += sce->coeffs[i] * sce->coeffs[i];
- last = i;
- lastband = curband;
- }
- }
- } else {
- for (w = 0; w < 8; w++) {
- const float *coeffs = &sce->coeffs[w*128];
- curband = start = 0;
- for (i = 0; i < 128; i++) {
- if (i - start >= sce->ics.swb_sizes[curband]) {
- start += sce->ics.swb_sizes[curband];
- curband++;
- }
- if (coeffs[i]) {
- avg_energy += coeffs[i] * coeffs[i];
- last = FFMAX(last, i);
- lastband = FFMAX(lastband, curband);
- }
- }
- }
- }
- last++;
- avg_energy /= last;
- if (avg_energy == 0.0f) {
- for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
- sce->sf_idx[i] = SCALE_ONE_POS;
- return;
- }
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- float *coefs = &sce->coeffs[start];
- const int size = sce->ics.swb_sizes[g];
- int start2 = start, end2 = start + size, peakpos = start;
- float maxval = -1, thr = 0.0f, t;
- maxq[w*16+g] = 0.0f;
- if (g > lastband) {
- maxq[w*16+g] = 0.0f;
- start += size;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
- memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
- continue;
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- for (i = 0; i < size; i++) {
- float t = coefs[w2*128+i]*coefs[w2*128+i];
- maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
- thr += t;
- if (sce->ics.num_windows == 1 && maxval < t) {
- maxval = t;
- peakpos = start+i;
- }
- }
- }
- if (sce->ics.num_windows == 1) {
- start2 = FFMAX(peakpos - 2, start2);
- end2 = FFMIN(peakpos + 3, end2);
- } else {
- start2 -= start;
- end2 -= start;
- }
- start += size;
- thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
- t = 1.0 - (1.0 * start2 / last);
- uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
- }
- }
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- const float *scaled = &s->scoefs[start];
- const int size = sce->ics.swb_sizes[g];
- int scf, prev_scf, step;
- int min_scf = -1, max_scf = 256;
- float curdiff;
- if (maxq[w*16+g] < 21.544) {
- sce->zeroes[w*16+g] = 1;
- start += size;
- continue;
- }
- sce->zeroes[w*16+g] = 0;
- scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
- for (;;) {
- float dist = 0.0f;
- int quant_max;
-
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- int b;
- dist += quantize_band_cost(s, coefs + w2*128,
- scaled + w2*128,
- sce->ics.swb_sizes[g],
- scf,
- ESC_BT,
- lambda,
- INFINITY,
- &b, NULL,
- 0);
- dist -= b;
- }
- dist *= 1.0f / 512.0f / lambda;
- quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
- if (quant_max >= 8191) { // too much, return to the previous quantizer
- sce->sf_idx[w*16+g] = prev_scf;
- break;
- }
- prev_scf = scf;
- curdiff = fabsf(dist - uplim[w*16+g]);
- if (curdiff <= 1.0f)
- step = 0;
- else
- step = log2f(curdiff);
- if (dist > uplim[w*16+g])
- step = -step;
- scf += step;
- scf = av_clip_uint8(scf);
- step = scf - prev_scf;
- if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
- sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
- break;
- }
- if (step > 0)
- min_scf = prev_scf;
- else
- max_scf = prev_scf;
- }
- start += size;
- }
- }
- minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
- for (i = 1; i < 128; i++) {
- if (!sce->sf_idx[i])
- sce->sf_idx[i] = sce->sf_idx[i-1];
- else
- minq = FFMIN(minq, sce->sf_idx[i]);
- }
- if (minq == INT_MAX)
- minq = 0;
- minq = FFMIN(minq, SCALE_MAX_POS);
- maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
- for (i = 126; i >= 0; i--) {
- if (!sce->sf_idx[i])
- sce->sf_idx[i] = sce->sf_idx[i+1];
- sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
- }
- }
-
- static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int i, w, w2, g;
- int minq = 255;
-
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- if (band->energy <= band->threshold) {
- sce->sf_idx[(w+w2)*16+g] = 218;
- sce->zeroes[(w+w2)*16+g] = 1;
- } else {
- sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
- sce->zeroes[(w+w2)*16+g] = 0;
- }
- minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
- }
- }
- }
- for (i = 0; i < 128; i++) {
- sce->sf_idx[i] = 140;
- //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
- }
- //set the same quantizers inside window groups
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for (g = 0; g < sce->ics.num_swb; g++)
- for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
- sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
- }
-
- static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
- {
- FFPsyBand *band;
- int w, g, w2, i;
- int wlen = 1024 / sce->ics.num_windows;
- int bandwidth, cutoff;
- float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
- float *NOR34 = &s->scoefs[3*128];
- uint8_t nextband[128];
- const float lambda = s->lambda;
- const float freq_mult = avctx->sample_rate*0.5f/wlen;
- const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
- const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
- const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
- const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
-
- int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
- / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
- * (lambda / 120.f);
-
- /** Keep this in sync with twoloop's cutoff selection */
- float rate_bandwidth_multiplier = 1.5f;
- int prev = -1000, prev_sf = -1;
- int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
- ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
- : (avctx->bit_rate / avctx->channels);
-
- frame_bit_rate *= 1.15f;
-
- if (avctx->cutoff > 0) {
- bandwidth = avctx->cutoff;
- } else {
- bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
- }
-
- cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
-
- memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
- ff_init_nextband_map(sce, nextband);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- int wstart = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- int noise_sfi;
- float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
- float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
- float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
- float min_energy = -1.0f, max_energy = 0.0f;
- const int start = wstart+sce->ics.swb_offset[g];
- const float freq = (start-wstart)*freq_mult;
- const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
- if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff)
- continue;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- sfb_energy += band->energy;
- spread = FFMIN(spread, band->spread);
- threshold += band->threshold;
- if (!w2) {
- min_energy = max_energy = band->energy;
- } else {
- min_energy = FFMIN(min_energy, band->energy);
- max_energy = FFMAX(max_energy, band->energy);
- }
- }
-
- /* Ramps down at ~8000Hz and loosens the dist threshold */
- dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
-
- /* PNS is acceptable when all of these are true:
- * 1. high spread energy (noise-like band)
- * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
- * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
- *
- * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
- */
- if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
- ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
- (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
- min_energy < pns_transient_energy_r * max_energy ) {
- sce->pns_ener[w*16+g] = sfb_energy;
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- continue;
- }
-
- pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
- noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
- noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
- if (prev != -1000) {
- int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
- if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- continue;
- }
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- float band_energy, scale, pns_senergy;
- const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- for (i = 0; i < sce->ics.swb_sizes[g]; i+=2) {
- double rnd[2];
- av_bmg_get(&s->lfg, rnd);
- PNS[i+0] = (float)rnd[0];
- PNS[i+1] = (float)rnd[1];
- }
- band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- scale = noise_amp/sqrtf(band_energy);
- s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
- pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- pns_energy += pns_senergy;
- abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
- abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
- NOR34,
- sce->ics.swb_sizes[g],
- sce->sf_idx[(w+w2)*16+g],
- sce->band_alt[(w+w2)*16+g],
- lambda/band->threshold, INFINITY, NULL, NULL, 0);
- /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
- dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
- }
- if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
- dist2 += 5;
- } else {
- dist2 += 9;
- }
- energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
- sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
- if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
- sce->band_type[w*16+g] = NOISE_BT;
- sce->zeroes[w*16+g] = 0;
- prev = noise_sfi;
- }
- if (!sce->zeroes[w*16+g])
- prev_sf = sce->sf_idx[w*16+g];
- }
- }
- }
-
- static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
- {
- FFPsyBand *band;
- int w, g, w2;
- int wlen = 1024 / sce->ics.num_windows;
- int bandwidth, cutoff;
- const float lambda = s->lambda;
- const float freq_mult = avctx->sample_rate*0.5f/wlen;
- const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
- const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
-
- int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
- / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
- * (lambda / 120.f);
-
- /** Keep this in sync with twoloop's cutoff selection */
- float rate_bandwidth_multiplier = 1.5f;
- int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
- ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
- : (avctx->bit_rate / avctx->channels);
-
- frame_bit_rate *= 1.15f;
-
- if (avctx->cutoff > 0) {
- bandwidth = avctx->cutoff;
- } else {
- bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
- }
-
- cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
-
- memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
- float min_energy = -1.0f, max_energy = 0.0f;
- const int start = sce->ics.swb_offset[g];
- const float freq = start*freq_mult;
- const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
- if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
- sce->can_pns[w*16+g] = 0;
- continue;
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- sfb_energy += band->energy;
- spread = FFMIN(spread, band->spread);
- threshold += band->threshold;
- if (!w2) {
- min_energy = max_energy = band->energy;
- } else {
- min_energy = FFMIN(min_energy, band->energy);
- max_energy = FFMAX(max_energy, band->energy);
- }
- }
-
- /* PNS is acceptable when all of these are true:
- * 1. high spread energy (noise-like band)
- * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
- * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
- */
- sce->pns_ener[w*16+g] = sfb_energy;
- if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
- sce->can_pns[w*16+g] = 0;
- } else {
- sce->can_pns[w*16+g] = 1;
- }
- }
- }
- }
-
- static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
- {
- int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
- uint8_t nextband0[128], nextband1[128];
- float M[128], S[128];
- float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
- const float lambda = s->lambda;
- const float mslambda = FFMIN(1.0f, lambda / 120.f);
- SingleChannelElement *sce0 = &cpe->ch[0];
- SingleChannelElement *sce1 = &cpe->ch[1];
- if (!cpe->common_window)
- return;
-
- /** Scout out next nonzero bands */
- ff_init_nextband_map(sce0, nextband0);
- ff_init_nextband_map(sce1, nextband1);
-
- prev_mid = sce0->sf_idx[0];
- prev_side = sce1->sf_idx[0];
- for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce0->ics.num_swb; g++) {
- float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
- cpe->ms_mask[w*16+g] = 0;
- if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g]) {
- float Mmax = 0.0f, Smax = 0.0f;
-
- /* Must compute mid/side SF and book for the whole window group */
- for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
- M[i] = (sce0->coeffs[start+(w+w2)*128+i]
- + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
- S[i] = M[i]
- - sce1->coeffs[start+(w+w2)*128+i];
- }
- abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
- abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
- Mmax = FFMAX(Mmax, M34[i]);
- Smax = FFMAX(Smax, S34[i]);
- }
- }
-
- for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
- float dist1 = 0.0f, dist2 = 0.0f;
- int B0 = 0, B1 = 0;
- int minidx;
- int mididx, sididx;
- int midcb, sidcb;
-
- minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
- mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
- sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
- if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
- && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
- || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
- /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
- continue;
- }
-
- midcb = find_min_book(Mmax, mididx);
- sidcb = find_min_book(Smax, sididx);
-
- /* No CB can be zero */
- midcb = FFMAX(1,midcb);
- sidcb = FFMAX(1,sidcb);
-
- for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
- FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
- FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
- float minthr = FFMIN(band0->threshold, band1->threshold);
- int b1,b2,b3,b4;
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
- M[i] = (sce0->coeffs[start+(w+w2)*128+i]
- + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
- S[i] = M[i]
- - sce1->coeffs[start+(w+w2)*128+i];
- }
-
- abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
- abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
- L34,
- sce0->ics.swb_sizes[g],
- sce0->sf_idx[(w+w2)*16+g],
- sce0->band_type[(w+w2)*16+g],
- lambda / band0->threshold, INFINITY, &b1, NULL, 0);
- dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
- R34,
- sce1->ics.swb_sizes[g],
- sce1->sf_idx[(w+w2)*16+g],
- sce1->band_type[(w+w2)*16+g],
- lambda / band1->threshold, INFINITY, &b2, NULL, 0);
- dist2 += quantize_band_cost(s, M,
- M34,
- sce0->ics.swb_sizes[g],
- sce0->sf_idx[(w+w2)*16+g],
- sce0->band_type[(w+w2)*16+g],
- lambda / minthr, INFINITY, &b3, NULL, 0);
- dist2 += quantize_band_cost(s, S,
- S34,
- sce1->ics.swb_sizes[g],
- sce1->sf_idx[(w+w2)*16+g],
- sce1->band_type[(w+w2)*16+g],
- mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
- B0 += b1+b2;
- B1 += b3+b4;
- dist1 -= B0;
- dist2 -= B1;
- }
- cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
- if (cpe->ms_mask[w*16+g]) {
- /* Setting the M/S mask is useful with I/S or PNS, but only the flag */
- if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
- sce0->sf_idx[w*16+g] = mididx;
- sce1->sf_idx[w*16+g] = sididx;
- sce0->band_type[w*16+g] = midcb;
- sce1->band_type[w*16+g] = sidcb;
- }
- break;
- } else if (B1 > B0) {
- /* More boost won't fix this */
- break;
- }
- }
- }
- if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
- prev_mid = sce0->sf_idx[w*16+g];
- if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
- prev_side = sce1->sf_idx[w*16+g];
- start += sce0->ics.swb_sizes[g];
- }
- }
- }
-
- AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
- [AAC_CODER_FAAC] = {
- search_for_quantizers_faac,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_ANMR] = {
- search_for_quantizers_anmr,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_TWOLOOP] = {
- search_for_quantizers_twoloop,
- codebook_trellis_rate,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_FAST] = {
- search_for_quantizers_fast,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_ltp_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_pred,
- ff_aac_adjust_common_ltp,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- ff_aac_update_ltp,
- ff_aac_ltp_insert_new_frame,
- set_special_band_scalefactors,
- search_for_pns,
- mark_pns,
- ff_aac_search_for_tns,
- ff_aac_search_for_ltp,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- };
|