You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

409 lines
13KB

  1. /*
  2. * samplerate conversion for both audio and video
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * samplerate conversion for both audio and video
  24. */
  25. #include "avcodec.h"
  26. #include "audioconvert.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/samplefmt.h"
  29. #define MAX_CHANNELS 8
  30. struct AVResampleContext;
  31. static const char *context_to_name(void *ptr)
  32. {
  33. return "audioresample";
  34. }
  35. static const AVOption options[] = {{NULL}};
  36. static const AVClass audioresample_context_class = {
  37. "ReSampleContext", context_to_name, options, LIBAVUTIL_VERSION_INT
  38. };
  39. struct ReSampleContext {
  40. struct AVResampleContext *resample_context;
  41. short *temp[MAX_CHANNELS];
  42. int temp_len;
  43. float ratio;
  44. /* channel convert */
  45. int input_channels, output_channels, filter_channels;
  46. AVAudioConvert *convert_ctx[2];
  47. enum AVSampleFormat sample_fmt[2]; ///< input and output sample format
  48. unsigned sample_size[2]; ///< size of one sample in sample_fmt
  49. short *buffer[2]; ///< buffers used for conversion to S16
  50. unsigned buffer_size[2]; ///< sizes of allocated buffers
  51. };
  52. /* n1: number of samples */
  53. static void stereo_to_mono(short *output, short *input, int n1)
  54. {
  55. short *p, *q;
  56. int n = n1;
  57. p = input;
  58. q = output;
  59. while (n >= 4) {
  60. q[0] = (p[0] + p[1]) >> 1;
  61. q[1] = (p[2] + p[3]) >> 1;
  62. q[2] = (p[4] + p[5]) >> 1;
  63. q[3] = (p[6] + p[7]) >> 1;
  64. q += 4;
  65. p += 8;
  66. n -= 4;
  67. }
  68. while (n > 0) {
  69. q[0] = (p[0] + p[1]) >> 1;
  70. q++;
  71. p += 2;
  72. n--;
  73. }
  74. }
  75. /* n1: number of samples */
  76. static void mono_to_stereo(short *output, short *input, int n1)
  77. {
  78. short *p, *q;
  79. int n = n1;
  80. int v;
  81. p = input;
  82. q = output;
  83. while (n >= 4) {
  84. v = p[0]; q[0] = v; q[1] = v;
  85. v = p[1]; q[2] = v; q[3] = v;
  86. v = p[2]; q[4] = v; q[5] = v;
  87. v = p[3]; q[6] = v; q[7] = v;
  88. q += 8;
  89. p += 4;
  90. n -= 4;
  91. }
  92. while (n > 0) {
  93. v = p[0]; q[0] = v; q[1] = v;
  94. q += 2;
  95. p += 1;
  96. n--;
  97. }
  98. }
  99. /*
  100. 5.1 to stereo input: [fl, fr, c, lfe, rl, rr]
  101. - Left = front_left + rear_gain * rear_left + center_gain * center
  102. - Right = front_right + rear_gain * rear_right + center_gain * center
  103. Where rear_gain is usually around 0.5-1.0 and
  104. center_gain is almost always 0.7 (-3 dB)
  105. */
  106. static void surround_to_stereo(short **output, short *input, int channels, int samples)
  107. {
  108. int i;
  109. short l, r;
  110. for (i = 0; i < samples; i++) {
  111. int fl,fr,c,rl,rr,lfe;
  112. fl = input[0];
  113. fr = input[1];
  114. c = input[2];
  115. lfe = input[3];
  116. rl = input[4];
  117. rr = input[5];
  118. l = av_clip_int16(fl + (0.5 * rl) + (0.7 * c));
  119. r = av_clip_int16(fr + (0.5 * rr) + (0.7 * c));
  120. /* output l & r. */
  121. *output[0]++ = l;
  122. *output[1]++ = r;
  123. /* increment input. */
  124. input += channels;
  125. }
  126. }
  127. static void deinterleave(short **output, short *input, int channels, int samples)
  128. {
  129. int i, j;
  130. for (i = 0; i < samples; i++) {
  131. for (j = 0; j < channels; j++) {
  132. *output[j]++ = *input++;
  133. }
  134. }
  135. }
  136. static void interleave(short *output, short **input, int channels, int samples)
  137. {
  138. int i, j;
  139. for (i = 0; i < samples; i++) {
  140. for (j = 0; j < channels; j++) {
  141. *output++ = *input[j]++;
  142. }
  143. }
  144. }
  145. static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
  146. {
  147. int i;
  148. short l, r;
  149. for (i = 0; i < n; i++) {
  150. l = *input1++;
  151. r = *input2++;
  152. *output++ = l; /* left */
  153. *output++ = (l / 2) + (r / 2); /* center */
  154. *output++ = r; /* right */
  155. *output++ = 0; /* left surround */
  156. *output++ = 0; /* right surroud */
  157. *output++ = 0; /* low freq */
  158. }
  159. }
  160. ReSampleContext *av_audio_resample_init(int output_channels, int input_channels,
  161. int output_rate, int input_rate,
  162. enum AVSampleFormat sample_fmt_out,
  163. enum AVSampleFormat sample_fmt_in,
  164. int filter_length, int log2_phase_count,
  165. int linear, double cutoff)
  166. {
  167. ReSampleContext *s;
  168. if (input_channels > MAX_CHANNELS) {
  169. av_log(NULL, AV_LOG_ERROR,
  170. "Resampling with input channels greater than %d is unsupported.\n",
  171. MAX_CHANNELS);
  172. return NULL;
  173. }
  174. if (output_channels > 2 &&
  175. !(output_channels == 6 && input_channels == 2) &&
  176. output_channels != input_channels) {
  177. av_log(NULL, AV_LOG_ERROR,
  178. "Resampling output channel count must be 1 or 2 for mono input; 1, 2 or 6 for stereo input; or N for N channel input.\n");
  179. return NULL;
  180. }
  181. s = av_mallocz(sizeof(ReSampleContext));
  182. if (!s) {
  183. av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n");
  184. return NULL;
  185. }
  186. s->ratio = (float)output_rate / (float)input_rate;
  187. s->input_channels = input_channels;
  188. s->output_channels = output_channels;
  189. s->filter_channels = s->input_channels;
  190. if (s->output_channels < s->filter_channels)
  191. s->filter_channels = s->output_channels;
  192. s->sample_fmt[0] = sample_fmt_in;
  193. s->sample_fmt[1] = sample_fmt_out;
  194. s->sample_size[0] = av_get_bits_per_sample_fmt(s->sample_fmt[0]) >> 3;
  195. s->sample_size[1] = av_get_bits_per_sample_fmt(s->sample_fmt[1]) >> 3;
  196. if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  197. if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1,
  198. s->sample_fmt[0], 1, NULL, 0))) {
  199. av_log(s, AV_LOG_ERROR,
  200. "Cannot convert %s sample format to s16 sample format\n",
  201. av_get_sample_fmt_name(s->sample_fmt[0]));
  202. av_free(s);
  203. return NULL;
  204. }
  205. }
  206. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  207. if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1,
  208. AV_SAMPLE_FMT_S16, 1, NULL, 0))) {
  209. av_log(s, AV_LOG_ERROR,
  210. "Cannot convert s16 sample format to %s sample format\n",
  211. av_get_sample_fmt_name(s->sample_fmt[1]));
  212. av_audio_convert_free(s->convert_ctx[0]);
  213. av_free(s);
  214. return NULL;
  215. }
  216. }
  217. #define TAPS 16
  218. s->resample_context = av_resample_init(output_rate, input_rate,
  219. filter_length, log2_phase_count,
  220. linear, cutoff);
  221. *(const AVClass**)s->resample_context = &audioresample_context_class;
  222. return s;
  223. }
  224. /* resample audio. 'nb_samples' is the number of input samples */
  225. /* XXX: optimize it ! */
  226. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  227. {
  228. int i, nb_samples1;
  229. short *bufin[MAX_CHANNELS];
  230. short *bufout[MAX_CHANNELS];
  231. short *buftmp2[MAX_CHANNELS], *buftmp3[MAX_CHANNELS];
  232. short *output_bak = NULL;
  233. int lenout;
  234. if (s->input_channels == s->output_channels && s->ratio == 1.0 && 0) {
  235. /* nothing to do */
  236. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  237. return nb_samples;
  238. }
  239. if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) {
  240. int istride[1] = { s->sample_size[0] };
  241. int ostride[1] = { 2 };
  242. const void *ibuf[1] = { input };
  243. void *obuf[1];
  244. unsigned input_size = nb_samples * s->input_channels * 2;
  245. if (!s->buffer_size[0] || s->buffer_size[0] < input_size) {
  246. av_free(s->buffer[0]);
  247. s->buffer_size[0] = input_size;
  248. s->buffer[0] = av_malloc(s->buffer_size[0]);
  249. if (!s->buffer[0]) {
  250. av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  251. return 0;
  252. }
  253. }
  254. obuf[0] = s->buffer[0];
  255. if (av_audio_convert(s->convert_ctx[0], obuf, ostride,
  256. ibuf, istride, nb_samples * s->input_channels) < 0) {
  257. av_log(s->resample_context, AV_LOG_ERROR,
  258. "Audio sample format conversion failed\n");
  259. return 0;
  260. }
  261. input = s->buffer[0];
  262. }
  263. lenout= 2*s->output_channels*nb_samples * s->ratio + 16;
  264. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  265. output_bak = output;
  266. if (!s->buffer_size[1] || s->buffer_size[1] < lenout) {
  267. av_free(s->buffer[1]);
  268. s->buffer_size[1] = lenout;
  269. s->buffer[1] = av_malloc(s->buffer_size[1]);
  270. if (!s->buffer[1]) {
  271. av_log(s->resample_context, AV_LOG_ERROR, "Could not allocate buffer\n");
  272. return 0;
  273. }
  274. }
  275. output = s->buffer[1];
  276. }
  277. /* XXX: move those malloc to resample init code */
  278. for (i = 0; i < s->filter_channels; i++) {
  279. bufin[i] = av_malloc((nb_samples + s->temp_len) * sizeof(short));
  280. memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short));
  281. buftmp2[i] = bufin[i] + s->temp_len;
  282. bufout[i] = av_malloc(lenout * sizeof(short));
  283. }
  284. if (s->input_channels == 2 && s->output_channels == 1) {
  285. buftmp3[0] = output;
  286. stereo_to_mono(buftmp2[0], input, nb_samples);
  287. } else if (s->output_channels >= 2 && s->input_channels == 1) {
  288. buftmp3[0] = bufout[0];
  289. memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  290. } else if (s->input_channels == 6 && s->output_channels ==2) {
  291. buftmp3[0] = bufout[0];
  292. buftmp3[1] = bufout[1];
  293. surround_to_stereo(buftmp2, input, s->input_channels, nb_samples);
  294. } else if (s->output_channels >= s->input_channels && s->input_channels >= 2) {
  295. for (i = 0; i < s->input_channels; i++) {
  296. buftmp3[i] = bufout[i];
  297. }
  298. deinterleave(buftmp2, input, s->input_channels, nb_samples);
  299. } else {
  300. buftmp3[0] = output;
  301. memcpy(buftmp2[0], input, nb_samples * sizeof(short));
  302. }
  303. nb_samples += s->temp_len;
  304. /* resample each channel */
  305. nb_samples1 = 0; /* avoid warning */
  306. for (i = 0; i < s->filter_channels; i++) {
  307. int consumed;
  308. int is_last = i + 1 == s->filter_channels;
  309. nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i],
  310. &consumed, nb_samples, lenout, is_last);
  311. s->temp_len = nb_samples - consumed;
  312. s->temp[i] = av_realloc(s->temp[i], s->temp_len * sizeof(short));
  313. memcpy(s->temp[i], bufin[i] + consumed, s->temp_len * sizeof(short));
  314. }
  315. if (s->output_channels == 2 && s->input_channels == 1) {
  316. mono_to_stereo(output, buftmp3[0], nb_samples1);
  317. } else if (s->output_channels == 6 && s->input_channels == 2) {
  318. ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  319. } else if ((s->output_channels == s->input_channels && s->input_channels >= 2) ||
  320. (s->output_channels == 2 && s->input_channels == 6)) {
  321. interleave(output, buftmp3, s->output_channels, nb_samples1);
  322. }
  323. if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) {
  324. int istride[1] = { 2 };
  325. int ostride[1] = { s->sample_size[1] };
  326. const void *ibuf[1] = { output };
  327. void *obuf[1] = { output_bak };
  328. if (av_audio_convert(s->convert_ctx[1], obuf, ostride,
  329. ibuf, istride, nb_samples1 * s->output_channels) < 0) {
  330. av_log(s->resample_context, AV_LOG_ERROR,
  331. "Audio sample format convertion failed\n");
  332. return 0;
  333. }
  334. }
  335. for (i = 0; i < s->filter_channels; i++) {
  336. av_free(bufin[i]);
  337. av_free(bufout[i]);
  338. }
  339. return nb_samples1;
  340. }
  341. void audio_resample_close(ReSampleContext *s)
  342. {
  343. int i;
  344. av_resample_close(s->resample_context);
  345. for (i = 0; i < s->filter_channels; i++)
  346. av_freep(&s->temp[i]);
  347. av_freep(&s->buffer[0]);
  348. av_freep(&s->buffer[1]);
  349. av_audio_convert_free(s->convert_ctx[0]);
  350. av_audio_convert_free(s->convert_ctx[1]);
  351. av_free(s);
  352. }