You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1207 lines
46KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #include "swscale.h"
  27. #include "swscale_internal.h"
  28. #include "rgb2rgb.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/cpu.h"
  31. #include "libavutil/avutil.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/bswap.h"
  34. #include "libavutil/pixdesc.h"
  35. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_1)[8][8] = {
  36. { 0, 1, 0, 1, 0, 1, 0, 1,},
  37. { 1, 0, 1, 0, 1, 0, 1, 0,},
  38. { 0, 1, 0, 1, 0, 1, 0, 1,},
  39. { 1, 0, 1, 0, 1, 0, 1, 0,},
  40. { 0, 1, 0, 1, 0, 1, 0, 1,},
  41. { 1, 0, 1, 0, 1, 0, 1, 0,},
  42. { 0, 1, 0, 1, 0, 1, 0, 1,},
  43. { 1, 0, 1, 0, 1, 0, 1, 0,},
  44. };
  45. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_3)[8][8] = {
  46. { 1, 2, 1, 2, 1, 2, 1, 2,},
  47. { 3, 0, 3, 0, 3, 0, 3, 0,},
  48. { 1, 2, 1, 2, 1, 2, 1, 2,},
  49. { 3, 0, 3, 0, 3, 0, 3, 0,},
  50. { 1, 2, 1, 2, 1, 2, 1, 2,},
  51. { 3, 0, 3, 0, 3, 0, 3, 0,},
  52. { 1, 2, 1, 2, 1, 2, 1, 2,},
  53. { 3, 0, 3, 0, 3, 0, 3, 0,},
  54. };
  55. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_64)[8][8] = {
  56. { 18, 34, 30, 46, 17, 33, 29, 45,},
  57. { 50, 2, 62, 14, 49, 1, 61, 13,},
  58. { 26, 42, 22, 38, 25, 41, 21, 37,},
  59. { 58, 10, 54, 6, 57, 9, 53, 5,},
  60. { 16, 32, 28, 44, 19, 35, 31, 47,},
  61. { 48, 0, 60, 12, 51, 3, 63, 15,},
  62. { 24, 40, 20, 36, 27, 43, 23, 39,},
  63. { 56, 8, 52, 4, 59, 11, 55, 7,},
  64. };
  65. extern const uint8_t dither_8x8_128[8][8];
  66. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_256)[8][8] = {
  67. { 72, 136, 120, 184, 68, 132, 116, 180,},
  68. { 200, 8, 248, 56, 196, 4, 244, 52,},
  69. { 104, 168, 88, 152, 100, 164, 84, 148,},
  70. { 232, 40, 216, 24, 228, 36, 212, 20,},
  71. { 64, 128, 102, 176, 76, 140, 124, 188,},
  72. { 192, 0, 240, 48, 204, 12, 252, 60,},
  73. { 96, 160, 80, 144, 108, 172, 92, 156,},
  74. { 224, 32, 208, 16, 236, 44, 220, 28,},
  75. };
  76. #define RGB2YUV_SHIFT 15
  77. #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  78. #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  79. #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  80. #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  81. #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  82. #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  83. #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  84. #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  85. #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  86. static void fillPlane(uint8_t *plane, int stride, int width, int height, int y,
  87. uint8_t val)
  88. {
  89. int i;
  90. uint8_t *ptr = plane + stride * y;
  91. for (i = 0; i < height; i++) {
  92. memset(ptr, val, width);
  93. ptr += stride;
  94. }
  95. }
  96. static void fill_plane9or10(uint8_t *plane, int stride, int width,
  97. int height, int y, uint8_t val,
  98. const int dst_depth, const int big_endian)
  99. {
  100. int i, j;
  101. uint16_t *dst = (uint16_t *) (plane + stride * y);
  102. #define FILL8TO9_OR_10(wfunc) \
  103. for (i = 0; i < height; i++) { \
  104. for (j = 0; j < width; j++) { \
  105. wfunc(&dst[j], (val << (dst_depth - 8)) | \
  106. (val >> (16 - dst_depth))); \
  107. } \
  108. dst += stride / 2; \
  109. }
  110. if (big_endian) {
  111. FILL8TO9_OR_10(AV_WB16);
  112. } else {
  113. FILL8TO9_OR_10(AV_WL16);
  114. }
  115. }
  116. static void copyPlane(const uint8_t *src, int srcStride,
  117. int srcSliceY, int srcSliceH, int width,
  118. uint8_t *dst, int dstStride)
  119. {
  120. dst += dstStride * srcSliceY;
  121. if (dstStride == srcStride && srcStride > 0) {
  122. memcpy(dst, src, srcSliceH * dstStride);
  123. } else {
  124. int i;
  125. for (i = 0; i < srcSliceH; i++) {
  126. memcpy(dst, src, width);
  127. src += srcStride;
  128. dst += dstStride;
  129. }
  130. }
  131. }
  132. static int planarToNv12Wrapper(SwsContext *c, const uint8_t *src[],
  133. int srcStride[], int srcSliceY,
  134. int srcSliceH, uint8_t *dstParam[],
  135. int dstStride[])
  136. {
  137. uint8_t *dst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  138. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  139. dstParam[0], dstStride[0]);
  140. if (c->dstFormat == AV_PIX_FMT_NV12)
  141. interleaveBytes(src[1], src[2], dst, c->srcW / 2, srcSliceH / 2,
  142. srcStride[1], srcStride[2], dstStride[0]);
  143. else
  144. interleaveBytes(src[2], src[1], dst, c->srcW / 2, srcSliceH / 2,
  145. srcStride[2], srcStride[1], dstStride[0]);
  146. return srcSliceH;
  147. }
  148. static int planarToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  149. int srcStride[], int srcSliceY, int srcSliceH,
  150. uint8_t *dstParam[], int dstStride[])
  151. {
  152. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  153. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  154. srcStride[1], dstStride[0]);
  155. return srcSliceH;
  156. }
  157. static int planarToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  158. int srcStride[], int srcSliceY, int srcSliceH,
  159. uint8_t *dstParam[], int dstStride[])
  160. {
  161. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  162. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  163. srcStride[1], dstStride[0]);
  164. return srcSliceH;
  165. }
  166. static int yuv422pToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  167. int srcStride[], int srcSliceY, int srcSliceH,
  168. uint8_t *dstParam[], int dstStride[])
  169. {
  170. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  171. yuv422ptoyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  172. srcStride[1], dstStride[0]);
  173. return srcSliceH;
  174. }
  175. static int yuv422pToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  176. int srcStride[], int srcSliceY, int srcSliceH,
  177. uint8_t *dstParam[], int dstStride[])
  178. {
  179. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  180. yuv422ptouyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  181. srcStride[1], dstStride[0]);
  182. return srcSliceH;
  183. }
  184. static int yuyvToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  185. int srcStride[], int srcSliceY, int srcSliceH,
  186. uint8_t *dstParam[], int dstStride[])
  187. {
  188. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  189. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  190. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  191. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  192. dstStride[1], srcStride[0]);
  193. if (dstParam[3])
  194. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  195. return srcSliceH;
  196. }
  197. static int yuyvToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  198. int srcStride[], int srcSliceY, int srcSliceH,
  199. uint8_t *dstParam[], int dstStride[])
  200. {
  201. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  202. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  203. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  204. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  205. dstStride[1], srcStride[0]);
  206. return srcSliceH;
  207. }
  208. static int uyvyToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  209. int srcStride[], int srcSliceY, int srcSliceH,
  210. uint8_t *dstParam[], int dstStride[])
  211. {
  212. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  213. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  214. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  215. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  216. dstStride[1], srcStride[0]);
  217. if (dstParam[3])
  218. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  219. return srcSliceH;
  220. }
  221. static int uyvyToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  222. int srcStride[], int srcSliceY, int srcSliceH,
  223. uint8_t *dstParam[], int dstStride[])
  224. {
  225. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  226. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  227. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  228. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  229. dstStride[1], srcStride[0]);
  230. return srcSliceH;
  231. }
  232. static void gray8aToPacked32(const uint8_t *src, uint8_t *dst, int num_pixels,
  233. const uint8_t *palette)
  234. {
  235. int i;
  236. for (i = 0; i < num_pixels; i++)
  237. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | (src[(i << 1) + 1] << 24);
  238. }
  239. static void gray8aToPacked32_1(const uint8_t *src, uint8_t *dst, int num_pixels,
  240. const uint8_t *palette)
  241. {
  242. int i;
  243. for (i = 0; i < num_pixels; i++)
  244. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | src[(i << 1) + 1];
  245. }
  246. static void gray8aToPacked24(const uint8_t *src, uint8_t *dst, int num_pixels,
  247. const uint8_t *palette)
  248. {
  249. int i;
  250. for (i = 0; i < num_pixels; i++) {
  251. //FIXME slow?
  252. dst[0] = palette[src[i << 1] * 4 + 0];
  253. dst[1] = palette[src[i << 1] * 4 + 1];
  254. dst[2] = palette[src[i << 1] * 4 + 2];
  255. dst += 3;
  256. }
  257. }
  258. static int packed_16bpc_bswap(SwsContext *c, const uint8_t *src[],
  259. int srcStride[], int srcSliceY, int srcSliceH,
  260. uint8_t *dst[], int dstStride[])
  261. {
  262. int i, j;
  263. int srcstr = srcStride[0] >> 1;
  264. int dststr = dstStride[0] >> 1;
  265. uint16_t *dstPtr = (uint16_t *) dst[0];
  266. const uint16_t *srcPtr = (const uint16_t *) src[0];
  267. int min_stride = FFMIN(srcstr, dststr);
  268. for (i = 0; i < srcSliceH; i++) {
  269. for (j = 0; j < min_stride; j++) {
  270. dstPtr[j] = av_bswap16(srcPtr[j]);
  271. }
  272. srcPtr += srcstr;
  273. dstPtr += dststr;
  274. }
  275. return srcSliceH;
  276. }
  277. static int palToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  278. int srcSliceY, int srcSliceH, uint8_t *dst[],
  279. int dstStride[])
  280. {
  281. const enum AVPixelFormat srcFormat = c->srcFormat;
  282. const enum AVPixelFormat dstFormat = c->dstFormat;
  283. void (*conv)(const uint8_t *src, uint8_t *dst, int num_pixels,
  284. const uint8_t *palette) = NULL;
  285. int i;
  286. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  287. const uint8_t *srcPtr = src[0];
  288. if (srcFormat == AV_PIX_FMT_Y400A) {
  289. switch (dstFormat) {
  290. case AV_PIX_FMT_RGB32 : conv = gray8aToPacked32; break;
  291. case AV_PIX_FMT_BGR32 : conv = gray8aToPacked32; break;
  292. case AV_PIX_FMT_BGR32_1: conv = gray8aToPacked32_1; break;
  293. case AV_PIX_FMT_RGB32_1: conv = gray8aToPacked32_1; break;
  294. case AV_PIX_FMT_RGB24 : conv = gray8aToPacked24; break;
  295. case AV_PIX_FMT_BGR24 : conv = gray8aToPacked24; break;
  296. }
  297. } else if (usePal(srcFormat)) {
  298. switch (dstFormat) {
  299. case AV_PIX_FMT_RGB32 : conv = sws_convertPalette8ToPacked32; break;
  300. case AV_PIX_FMT_BGR32 : conv = sws_convertPalette8ToPacked32; break;
  301. case AV_PIX_FMT_BGR32_1: conv = sws_convertPalette8ToPacked32; break;
  302. case AV_PIX_FMT_RGB32_1: conv = sws_convertPalette8ToPacked32; break;
  303. case AV_PIX_FMT_RGB24 : conv = sws_convertPalette8ToPacked24; break;
  304. case AV_PIX_FMT_BGR24 : conv = sws_convertPalette8ToPacked24; break;
  305. }
  306. }
  307. if (!conv)
  308. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  309. sws_format_name(srcFormat), sws_format_name(dstFormat));
  310. else {
  311. for (i = 0; i < srcSliceH; i++) {
  312. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  313. srcPtr += srcStride[0];
  314. dstPtr += dstStride[0];
  315. }
  316. }
  317. return srcSliceH;
  318. }
  319. static void gbr24ptopacked24(const uint8_t *src[], int srcStride[],
  320. uint8_t *dst, int dstStride, int srcSliceH,
  321. int width)
  322. {
  323. int x, h, i;
  324. for (h = 0; h < srcSliceH; h++) {
  325. uint8_t *dest = dst + dstStride * h;
  326. for (x = 0; x < width; x++) {
  327. *dest++ = src[0][x];
  328. *dest++ = src[1][x];
  329. *dest++ = src[2][x];
  330. }
  331. for (i = 0; i < 3; i++)
  332. src[i] += srcStride[i];
  333. }
  334. }
  335. static void gbr24ptopacked32(const uint8_t *src[], int srcStride[],
  336. uint8_t *dst, int dstStride, int srcSliceH,
  337. int alpha_first, int width)
  338. {
  339. int x, h, i;
  340. for (h = 0; h < srcSliceH; h++) {
  341. uint8_t *dest = dst + dstStride * h;
  342. if (alpha_first) {
  343. for (x = 0; x < width; x++) {
  344. *dest++ = 0xff;
  345. *dest++ = src[0][x];
  346. *dest++ = src[1][x];
  347. *dest++ = src[2][x];
  348. }
  349. } else {
  350. for (x = 0; x < width; x++) {
  351. *dest++ = src[0][x];
  352. *dest++ = src[1][x];
  353. *dest++ = src[2][x];
  354. *dest++ = 0xff;
  355. }
  356. }
  357. for (i = 0; i < 3; i++)
  358. src[i] += srcStride[i];
  359. }
  360. }
  361. static int planarRgbToRgbWrapper(SwsContext *c, const uint8_t *src[],
  362. int srcStride[], int srcSliceY, int srcSliceH,
  363. uint8_t *dst[], int dstStride[])
  364. {
  365. int alpha_first = 0;
  366. const uint8_t *src102[] = { src[1], src[0], src[2] };
  367. const uint8_t *src201[] = { src[2], src[0], src[1] };
  368. int stride102[] = { srcStride[1], srcStride[0], srcStride[2] };
  369. int stride201[] = { srcStride[2], srcStride[0], srcStride[1] };
  370. if (c->srcFormat != AV_PIX_FMT_GBRP) {
  371. av_log(c, AV_LOG_ERROR, "unsupported planar RGB conversion %s -> %s\n",
  372. av_get_pix_fmt_name(c->srcFormat),
  373. av_get_pix_fmt_name(c->dstFormat));
  374. return srcSliceH;
  375. }
  376. switch (c->dstFormat) {
  377. case AV_PIX_FMT_BGR24:
  378. gbr24ptopacked24(src102, stride102,
  379. dst[0] + srcSliceY * dstStride[0], dstStride[0],
  380. srcSliceH, c->srcW);
  381. break;
  382. case AV_PIX_FMT_RGB24:
  383. gbr24ptopacked24(src201, stride201,
  384. dst[0] + srcSliceY * dstStride[0], dstStride[0],
  385. srcSliceH, c->srcW);
  386. break;
  387. case AV_PIX_FMT_ARGB:
  388. alpha_first = 1;
  389. case AV_PIX_FMT_RGBA:
  390. gbr24ptopacked32(src201, stride201,
  391. dst[0] + srcSliceY * dstStride[0], dstStride[0],
  392. srcSliceH, alpha_first, c->srcW);
  393. break;
  394. case AV_PIX_FMT_ABGR:
  395. alpha_first = 1;
  396. case AV_PIX_FMT_BGRA:
  397. gbr24ptopacked32(src102, stride102,
  398. dst[0] + srcSliceY * dstStride[0], dstStride[0],
  399. srcSliceH, alpha_first, c->srcW);
  400. break;
  401. default:
  402. av_log(c, AV_LOG_ERROR,
  403. "unsupported planar RGB conversion %s -> %s\n",
  404. av_get_pix_fmt_name(c->srcFormat),
  405. av_get_pix_fmt_name(c->dstFormat));
  406. }
  407. return srcSliceH;
  408. }
  409. #define isRGBA32(x) ( \
  410. (x) == AV_PIX_FMT_ARGB \
  411. || (x) == AV_PIX_FMT_RGBA \
  412. || (x) == AV_PIX_FMT_BGRA \
  413. || (x) == AV_PIX_FMT_ABGR \
  414. )
  415. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  416. typedef void (* rgbConvFn) (const uint8_t *, uint8_t *, int);
  417. static rgbConvFn findRgbConvFn(SwsContext *c)
  418. {
  419. const enum AVPixelFormat srcFormat = c->srcFormat;
  420. const enum AVPixelFormat dstFormat = c->dstFormat;
  421. const int srcId = c->srcFormatBpp;
  422. const int dstId = c->dstFormatBpp;
  423. rgbConvFn conv = NULL;
  424. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  425. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  426. #define IS_NOT_NE(bpp, desc) \
  427. (((bpp + 7) >> 3) == 2 && \
  428. (!(desc->flags & PIX_FMT_BE) != !HAVE_BIGENDIAN))
  429. /* if this is non-native rgb444/555/565, don't handle it here. */
  430. if (IS_NOT_NE(srcId, desc_src) || IS_NOT_NE(dstId, desc_dst))
  431. return NULL;
  432. #define CONV_IS(src, dst) (srcFormat == AV_PIX_FMT_##src && dstFormat == AV_PIX_FMT_##dst)
  433. if (isRGBA32(srcFormat) && isRGBA32(dstFormat)) {
  434. if ( CONV_IS(ABGR, RGBA)
  435. || CONV_IS(ARGB, BGRA)
  436. || CONV_IS(BGRA, ARGB)
  437. || CONV_IS(RGBA, ABGR)) conv = shuffle_bytes_3210;
  438. else if (CONV_IS(ABGR, ARGB)
  439. || CONV_IS(ARGB, ABGR)) conv = shuffle_bytes_0321;
  440. else if (CONV_IS(ABGR, BGRA)
  441. || CONV_IS(ARGB, RGBA)) conv = shuffle_bytes_1230;
  442. else if (CONV_IS(BGRA, RGBA)
  443. || CONV_IS(RGBA, BGRA)) conv = shuffle_bytes_2103;
  444. else if (CONV_IS(BGRA, ABGR)
  445. || CONV_IS(RGBA, ARGB)) conv = shuffle_bytes_3012;
  446. } else
  447. /* BGR -> BGR */
  448. if ((isBGRinInt(srcFormat) && isBGRinInt(dstFormat)) ||
  449. (isRGBinInt(srcFormat) && isRGBinInt(dstFormat))) {
  450. switch (srcId | (dstId << 16)) {
  451. case 0x000F000C: conv = rgb12to15; break;
  452. case 0x000F0010: conv = rgb16to15; break;
  453. case 0x000F0018: conv = rgb24to15; break;
  454. case 0x000F0020: conv = rgb32to15; break;
  455. case 0x0010000F: conv = rgb15to16; break;
  456. case 0x00100018: conv = rgb24to16; break;
  457. case 0x00100020: conv = rgb32to16; break;
  458. case 0x0018000F: conv = rgb15to24; break;
  459. case 0x00180010: conv = rgb16to24; break;
  460. case 0x00180020: conv = rgb32to24; break;
  461. case 0x0020000F: conv = rgb15to32; break;
  462. case 0x00200010: conv = rgb16to32; break;
  463. case 0x00200018: conv = rgb24to32; break;
  464. }
  465. } else if ((isBGRinInt(srcFormat) && isRGBinInt(dstFormat)) ||
  466. (isRGBinInt(srcFormat) && isBGRinInt(dstFormat))) {
  467. switch (srcId | (dstId << 16)) {
  468. case 0x000C000C: conv = rgb12tobgr12; break;
  469. case 0x000F000F: conv = rgb15tobgr15; break;
  470. case 0x000F0010: conv = rgb16tobgr15; break;
  471. case 0x000F0018: conv = rgb24tobgr15; break;
  472. case 0x000F0020: conv = rgb32tobgr15; break;
  473. case 0x0010000F: conv = rgb15tobgr16; break;
  474. case 0x00100010: conv = rgb16tobgr16; break;
  475. case 0x00100018: conv = rgb24tobgr16; break;
  476. case 0x00100020: conv = rgb32tobgr16; break;
  477. case 0x0018000F: conv = rgb15tobgr24; break;
  478. case 0x00180010: conv = rgb16tobgr24; break;
  479. case 0x00180018: conv = rgb24tobgr24; break;
  480. case 0x00180020: conv = rgb32tobgr24; break;
  481. case 0x0020000F: conv = rgb15tobgr32; break;
  482. case 0x00200010: conv = rgb16tobgr32; break;
  483. case 0x00200018: conv = rgb24tobgr32; break;
  484. }
  485. }
  486. return conv;
  487. }
  488. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  489. static int rgbToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  490. int srcSliceY, int srcSliceH, uint8_t *dst[],
  491. int dstStride[])
  492. {
  493. const enum AVPixelFormat srcFormat = c->srcFormat;
  494. const enum AVPixelFormat dstFormat = c->dstFormat;
  495. const int srcBpp = (c->srcFormatBpp + 7) >> 3;
  496. const int dstBpp = (c->dstFormatBpp + 7) >> 3;
  497. rgbConvFn conv = findRgbConvFn(c);
  498. if (!conv) {
  499. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  500. sws_format_name(srcFormat), sws_format_name(dstFormat));
  501. } else {
  502. const uint8_t *srcPtr = src[0];
  503. uint8_t *dstPtr = dst[0];
  504. if ((srcFormat == AV_PIX_FMT_RGB32_1 || srcFormat == AV_PIX_FMT_BGR32_1) &&
  505. !isRGBA32(dstFormat))
  506. srcPtr += ALT32_CORR;
  507. if ((dstFormat == AV_PIX_FMT_RGB32_1 || dstFormat == AV_PIX_FMT_BGR32_1) &&
  508. !isRGBA32(srcFormat))
  509. dstPtr += ALT32_CORR;
  510. if (dstStride[0] * srcBpp == srcStride[0] * dstBpp && srcStride[0] > 0 &&
  511. !(srcStride[0] % srcBpp))
  512. conv(srcPtr, dstPtr + dstStride[0] * srcSliceY,
  513. srcSliceH * srcStride[0]);
  514. else {
  515. int i;
  516. dstPtr += dstStride[0] * srcSliceY;
  517. for (i = 0; i < srcSliceH; i++) {
  518. conv(srcPtr, dstPtr, c->srcW * srcBpp);
  519. srcPtr += srcStride[0];
  520. dstPtr += dstStride[0];
  521. }
  522. }
  523. }
  524. return srcSliceH;
  525. }
  526. static int bgr24ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  527. int srcStride[], int srcSliceY, int srcSliceH,
  528. uint8_t *dst[], int dstStride[])
  529. {
  530. rgb24toyv12(
  531. src[0],
  532. dst[0] + srcSliceY * dstStride[0],
  533. dst[1] + (srcSliceY >> 1) * dstStride[1],
  534. dst[2] + (srcSliceY >> 1) * dstStride[2],
  535. c->srcW, srcSliceH,
  536. dstStride[0], dstStride[1], srcStride[0]);
  537. if (dst[3])
  538. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  539. return srcSliceH;
  540. }
  541. static int yvu9ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  542. int srcStride[], int srcSliceY, int srcSliceH,
  543. uint8_t *dst[], int dstStride[])
  544. {
  545. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  546. dst[0], dstStride[0]);
  547. planar2x(src[1], dst[1] + dstStride[1] * (srcSliceY >> 1), c->chrSrcW,
  548. srcSliceH >> 2, srcStride[1], dstStride[1]);
  549. planar2x(src[2], dst[2] + dstStride[2] * (srcSliceY >> 1), c->chrSrcW,
  550. srcSliceH >> 2, srcStride[2], dstStride[2]);
  551. if (dst[3])
  552. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  553. return srcSliceH;
  554. }
  555. /* unscaled copy like stuff (assumes nearly identical formats) */
  556. static int packedCopyWrapper(SwsContext *c, const uint8_t *src[],
  557. int srcStride[], int srcSliceY, int srcSliceH,
  558. uint8_t *dst[], int dstStride[])
  559. {
  560. if (dstStride[0] == srcStride[0] && srcStride[0] > 0)
  561. memcpy(dst[0] + dstStride[0] * srcSliceY, src[0], srcSliceH * dstStride[0]);
  562. else {
  563. int i;
  564. const uint8_t *srcPtr = src[0];
  565. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  566. int length = 0;
  567. /* universal length finder */
  568. while (length + c->srcW <= FFABS(dstStride[0]) &&
  569. length + c->srcW <= FFABS(srcStride[0]))
  570. length += c->srcW;
  571. assert(length != 0);
  572. for (i = 0; i < srcSliceH; i++) {
  573. memcpy(dstPtr, srcPtr, length);
  574. srcPtr += srcStride[0];
  575. dstPtr += dstStride[0];
  576. }
  577. }
  578. return srcSliceH;
  579. }
  580. #define clip9(x) av_clip_uintp2(x, 9)
  581. #define clip10(x) av_clip_uintp2(x, 10)
  582. #define DITHER_COPY(dst, dstStride, wfunc, src, srcStride, rfunc, dithers, shift, clip) \
  583. for (i = 0; i < height; i++) { \
  584. const uint8_t *dither = dithers[i & 7]; \
  585. for (j = 0; j < length - 7; j += 8) { \
  586. wfunc(&dst[j + 0], clip((rfunc(&src[j + 0]) + dither[0]) >> shift)); \
  587. wfunc(&dst[j + 1], clip((rfunc(&src[j + 1]) + dither[1]) >> shift)); \
  588. wfunc(&dst[j + 2], clip((rfunc(&src[j + 2]) + dither[2]) >> shift)); \
  589. wfunc(&dst[j + 3], clip((rfunc(&src[j + 3]) + dither[3]) >> shift)); \
  590. wfunc(&dst[j + 4], clip((rfunc(&src[j + 4]) + dither[4]) >> shift)); \
  591. wfunc(&dst[j + 5], clip((rfunc(&src[j + 5]) + dither[5]) >> shift)); \
  592. wfunc(&dst[j + 6], clip((rfunc(&src[j + 6]) + dither[6]) >> shift)); \
  593. wfunc(&dst[j + 7], clip((rfunc(&src[j + 7]) + dither[7]) >> shift)); \
  594. } \
  595. for (; j < length; j++) \
  596. wfunc(&dst[j], (rfunc(&src[j]) + dither[j & 7]) >> shift); \
  597. dst += dstStride; \
  598. src += srcStride; \
  599. }
  600. static int planarCopyWrapper(SwsContext *c, const uint8_t *src[],
  601. int srcStride[], int srcSliceY, int srcSliceH,
  602. uint8_t *dst[], int dstStride[])
  603. {
  604. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  605. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  606. int plane, i, j;
  607. for (plane = 0; plane < 4; plane++) {
  608. int length = (plane == 0 || plane == 3) ? c->srcW : -((-c->srcW ) >> c->chrDstHSubSample);
  609. int y = (plane == 0 || plane == 3) ? srcSliceY: -((-srcSliceY) >> c->chrDstVSubSample);
  610. int height = (plane == 0 || plane == 3) ? srcSliceH: -((-srcSliceH) >> c->chrDstVSubSample);
  611. const uint8_t *srcPtr = src[plane];
  612. uint8_t *dstPtr = dst[plane] + dstStride[plane] * y;
  613. if (!dst[plane])
  614. continue;
  615. // ignore palette for GRAY8
  616. if (plane == 1 && !dst[2]) continue;
  617. if (!src[plane] || (plane == 1 && !src[2])) {
  618. int val = (plane == 3) ? 255 : 128;
  619. if (is16BPS(c->dstFormat))
  620. length *= 2;
  621. if (is9_OR_10BPS(c->dstFormat)) {
  622. fill_plane9or10(dst[plane], dstStride[plane],
  623. length, height, y, val,
  624. desc_dst->comp[plane].depth_minus1 + 1,
  625. isBE(c->dstFormat));
  626. } else
  627. fillPlane(dst[plane], dstStride[plane], length, height, y,
  628. val);
  629. } else {
  630. if (is9_OR_10BPS(c->srcFormat)) {
  631. const int src_depth = desc_src->comp[plane].depth_minus1 + 1;
  632. const int dst_depth = desc_dst->comp[plane].depth_minus1 + 1;
  633. const uint16_t *srcPtr2 = (const uint16_t *) srcPtr;
  634. if (is16BPS(c->dstFormat)) {
  635. uint16_t *dstPtr2 = (uint16_t *) dstPtr;
  636. #define COPY9_OR_10TO16(rfunc, wfunc) \
  637. for (i = 0; i < height; i++) { \
  638. for (j = 0; j < length; j++) { \
  639. int srcpx = rfunc(&srcPtr2[j]); \
  640. wfunc(&dstPtr2[j], (srcpx << (16 - src_depth)) | (srcpx >> (2 * src_depth - 16))); \
  641. } \
  642. dstPtr2 += dstStride[plane] / 2; \
  643. srcPtr2 += srcStride[plane] / 2; \
  644. }
  645. if (isBE(c->dstFormat)) {
  646. if (isBE(c->srcFormat)) {
  647. COPY9_OR_10TO16(AV_RB16, AV_WB16);
  648. } else {
  649. COPY9_OR_10TO16(AV_RL16, AV_WB16);
  650. }
  651. } else {
  652. if (isBE(c->srcFormat)) {
  653. COPY9_OR_10TO16(AV_RB16, AV_WL16);
  654. } else {
  655. COPY9_OR_10TO16(AV_RL16, AV_WL16);
  656. }
  657. }
  658. } else if (is9_OR_10BPS(c->dstFormat)) {
  659. uint16_t *dstPtr2 = (uint16_t *) dstPtr;
  660. #define COPY9_OR_10TO9_OR_10(loop) \
  661. for (i = 0; i < height; i++) { \
  662. for (j = 0; j < length; j++) { \
  663. loop; \
  664. } \
  665. dstPtr2 += dstStride[plane] / 2; \
  666. srcPtr2 += srcStride[plane] / 2; \
  667. }
  668. #define COPY9_OR_10TO9_OR_10_2(rfunc, wfunc) \
  669. if (dst_depth > src_depth) { \
  670. COPY9_OR_10TO9_OR_10(int srcpx = rfunc(&srcPtr2[j]); \
  671. wfunc(&dstPtr2[j], (srcpx << 1) | (srcpx >> 9))); \
  672. } else if (dst_depth < src_depth) { \
  673. DITHER_COPY(dstPtr2, dstStride[plane] / 2, wfunc, \
  674. srcPtr2, srcStride[plane] / 2, rfunc, \
  675. dither_8x8_1, 1, clip9); \
  676. } else { \
  677. COPY9_OR_10TO9_OR_10(wfunc(&dstPtr2[j], rfunc(&srcPtr2[j]))); \
  678. }
  679. if (isBE(c->dstFormat)) {
  680. if (isBE(c->srcFormat)) {
  681. COPY9_OR_10TO9_OR_10_2(AV_RB16, AV_WB16);
  682. } else {
  683. COPY9_OR_10TO9_OR_10_2(AV_RL16, AV_WB16);
  684. }
  685. } else {
  686. if (isBE(c->srcFormat)) {
  687. COPY9_OR_10TO9_OR_10_2(AV_RB16, AV_WL16);
  688. } else {
  689. COPY9_OR_10TO9_OR_10_2(AV_RL16, AV_WL16);
  690. }
  691. }
  692. } else {
  693. #define W8(a, b) { *(a) = (b); }
  694. #define COPY9_OR_10TO8(rfunc) \
  695. if (src_depth == 9) { \
  696. DITHER_COPY(dstPtr, dstStride[plane], W8, \
  697. srcPtr2, srcStride[plane] / 2, rfunc, \
  698. dither_8x8_1, 1, av_clip_uint8); \
  699. } else { \
  700. DITHER_COPY(dstPtr, dstStride[plane], W8, \
  701. srcPtr2, srcStride[plane] / 2, rfunc, \
  702. dither_8x8_3, 2, av_clip_uint8); \
  703. }
  704. if (isBE(c->srcFormat)) {
  705. COPY9_OR_10TO8(AV_RB16);
  706. } else {
  707. COPY9_OR_10TO8(AV_RL16);
  708. }
  709. }
  710. } else if (is9_OR_10BPS(c->dstFormat)) {
  711. const int dst_depth = desc_dst->comp[plane].depth_minus1 + 1;
  712. uint16_t *dstPtr2 = (uint16_t *) dstPtr;
  713. if (is16BPS(c->srcFormat)) {
  714. const uint16_t *srcPtr2 = (const uint16_t *) srcPtr;
  715. #define COPY16TO9_OR_10(rfunc, wfunc) \
  716. if (dst_depth == 9) { \
  717. DITHER_COPY(dstPtr2, dstStride[plane] / 2, wfunc, \
  718. srcPtr2, srcStride[plane] / 2, rfunc, \
  719. dither_8x8_128, 7, clip9); \
  720. } else { \
  721. DITHER_COPY(dstPtr2, dstStride[plane] / 2, wfunc, \
  722. srcPtr2, srcStride[plane] / 2, rfunc, \
  723. dither_8x8_64, 6, clip10); \
  724. }
  725. if (isBE(c->dstFormat)) {
  726. if (isBE(c->srcFormat)) {
  727. COPY16TO9_OR_10(AV_RB16, AV_WB16);
  728. } else {
  729. COPY16TO9_OR_10(AV_RL16, AV_WB16);
  730. }
  731. } else {
  732. if (isBE(c->srcFormat)) {
  733. COPY16TO9_OR_10(AV_RB16, AV_WL16);
  734. } else {
  735. COPY16TO9_OR_10(AV_RL16, AV_WL16);
  736. }
  737. }
  738. } else /* 8bit */ {
  739. #define COPY8TO9_OR_10(wfunc) \
  740. for (i = 0; i < height; i++) { \
  741. for (j = 0; j < length; j++) { \
  742. const int srcpx = srcPtr[j]; \
  743. wfunc(&dstPtr2[j], (srcpx << (dst_depth - 8)) | (srcpx >> (16 - dst_depth))); \
  744. } \
  745. dstPtr2 += dstStride[plane] / 2; \
  746. srcPtr += srcStride[plane]; \
  747. }
  748. if (isBE(c->dstFormat)) {
  749. COPY8TO9_OR_10(AV_WB16);
  750. } else {
  751. COPY8TO9_OR_10(AV_WL16);
  752. }
  753. }
  754. } else if (is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)) {
  755. const uint16_t *srcPtr2 = (const uint16_t *) srcPtr;
  756. #define COPY16TO8(rfunc) \
  757. DITHER_COPY(dstPtr, dstStride[plane], W8, \
  758. srcPtr2, srcStride[plane] / 2, rfunc, \
  759. dither_8x8_256, 8, av_clip_uint8);
  760. if (isBE(c->srcFormat)) {
  761. COPY16TO8(AV_RB16);
  762. } else {
  763. COPY16TO8(AV_RL16);
  764. }
  765. } else if (!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)) {
  766. for (i = 0; i < height; i++) {
  767. for (j = 0; j < length; j++) {
  768. dstPtr[ j << 1 ] = srcPtr[j];
  769. dstPtr[(j << 1) + 1] = srcPtr[j];
  770. }
  771. srcPtr += srcStride[plane];
  772. dstPtr += dstStride[plane];
  773. }
  774. } else if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat) &&
  775. isBE(c->srcFormat) != isBE(c->dstFormat)) {
  776. for (i = 0; i < height; i++) {
  777. for (j = 0; j < length; j++)
  778. ((uint16_t *) dstPtr)[j] = av_bswap16(((const uint16_t *) srcPtr)[j]);
  779. srcPtr += srcStride[plane];
  780. dstPtr += dstStride[plane];
  781. }
  782. } else if (dstStride[plane] == srcStride[plane] &&
  783. srcStride[plane] > 0 && srcStride[plane] == length) {
  784. memcpy(dst[plane] + dstStride[plane] * y, src[plane],
  785. height * dstStride[plane]);
  786. } else {
  787. if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  788. length *= 2;
  789. else if (!desc_src->comp[0].depth_minus1)
  790. length >>= 3; // monowhite/black
  791. for (i = 0; i < height; i++) {
  792. memcpy(dstPtr, srcPtr, length);
  793. srcPtr += srcStride[plane];
  794. dstPtr += dstStride[plane];
  795. }
  796. }
  797. }
  798. }
  799. return srcSliceH;
  800. }
  801. #define IS_DIFFERENT_ENDIANESS(src_fmt, dst_fmt, pix_fmt) \
  802. ((src_fmt == pix_fmt ## BE && dst_fmt == pix_fmt ## LE) || \
  803. (src_fmt == pix_fmt ## LE && dst_fmt == pix_fmt ## BE))
  804. void ff_get_unscaled_swscale(SwsContext *c)
  805. {
  806. const enum AVPixelFormat srcFormat = c->srcFormat;
  807. const enum AVPixelFormat dstFormat = c->dstFormat;
  808. const int flags = c->flags;
  809. const int dstH = c->dstH;
  810. int needsDither;
  811. needsDither = isAnyRGB(dstFormat) &&
  812. c->dstFormatBpp < 24 &&
  813. (c->dstFormatBpp < c->srcFormatBpp || (!isAnyRGB(srcFormat)));
  814. /* yv12_to_nv12 */
  815. if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) &&
  816. (dstFormat == AV_PIX_FMT_NV12 || dstFormat == AV_PIX_FMT_NV21)) {
  817. c->swScale = planarToNv12Wrapper;
  818. }
  819. /* yuv2bgr */
  820. if ((srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUV422P ||
  821. srcFormat == AV_PIX_FMT_YUVA420P) && isAnyRGB(dstFormat) &&
  822. !(flags & SWS_ACCURATE_RND) && !(dstH & 1)) {
  823. c->swScale = ff_yuv2rgb_get_func_ptr(c);
  824. }
  825. if (srcFormat == AV_PIX_FMT_YUV410P &&
  826. (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) &&
  827. !(flags & SWS_BITEXACT)) {
  828. c->swScale = yvu9ToYv12Wrapper;
  829. }
  830. /* bgr24toYV12 */
  831. if (srcFormat == AV_PIX_FMT_BGR24 &&
  832. (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P) &&
  833. !(flags & SWS_ACCURATE_RND))
  834. c->swScale = bgr24ToYv12Wrapper;
  835. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  836. if (isAnyRGB(srcFormat) && isAnyRGB(dstFormat) && findRgbConvFn(c)
  837. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  838. c->swScale= rgbToRgbWrapper;
  839. if (isPlanarRGB(srcFormat) && isPackedRGB(dstFormat))
  840. c->swScale = planarRgbToRgbWrapper;
  841. /* bswap 16 bits per pixel/component packed formats */
  842. if (IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR444) ||
  843. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR48) ||
  844. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR555) ||
  845. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_BGR565) ||
  846. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_GRAY16) ||
  847. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB444) ||
  848. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB48) ||
  849. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB555) ||
  850. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, AV_PIX_FMT_RGB565))
  851. c->swScale = packed_16bpc_bswap;
  852. if ((usePal(srcFormat) && (
  853. dstFormat == AV_PIX_FMT_RGB32 ||
  854. dstFormat == AV_PIX_FMT_RGB32_1 ||
  855. dstFormat == AV_PIX_FMT_RGB24 ||
  856. dstFormat == AV_PIX_FMT_BGR32 ||
  857. dstFormat == AV_PIX_FMT_BGR32_1 ||
  858. dstFormat == AV_PIX_FMT_BGR24)))
  859. c->swScale = palToRgbWrapper;
  860. if (srcFormat == AV_PIX_FMT_YUV422P) {
  861. if (dstFormat == AV_PIX_FMT_YUYV422)
  862. c->swScale = yuv422pToYuy2Wrapper;
  863. else if (dstFormat == AV_PIX_FMT_UYVY422)
  864. c->swScale = yuv422pToUyvyWrapper;
  865. }
  866. /* LQ converters if -sws 0 or -sws 4*/
  867. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) {
  868. /* yv12_to_yuy2 */
  869. if (srcFormat == AV_PIX_FMT_YUV420P || srcFormat == AV_PIX_FMT_YUVA420P) {
  870. if (dstFormat == AV_PIX_FMT_YUYV422)
  871. c->swScale = planarToYuy2Wrapper;
  872. else if (dstFormat == AV_PIX_FMT_UYVY422)
  873. c->swScale = planarToUyvyWrapper;
  874. }
  875. }
  876. if (srcFormat == AV_PIX_FMT_YUYV422 &&
  877. (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P))
  878. c->swScale = yuyvToYuv420Wrapper;
  879. if (srcFormat == AV_PIX_FMT_UYVY422 &&
  880. (dstFormat == AV_PIX_FMT_YUV420P || dstFormat == AV_PIX_FMT_YUVA420P))
  881. c->swScale = uyvyToYuv420Wrapper;
  882. if (srcFormat == AV_PIX_FMT_YUYV422 && dstFormat == AV_PIX_FMT_YUV422P)
  883. c->swScale = yuyvToYuv422Wrapper;
  884. if (srcFormat == AV_PIX_FMT_UYVY422 && dstFormat == AV_PIX_FMT_YUV422P)
  885. c->swScale = uyvyToYuv422Wrapper;
  886. /* simple copy */
  887. if ( srcFormat == dstFormat ||
  888. (srcFormat == AV_PIX_FMT_YUVA420P && dstFormat == AV_PIX_FMT_YUV420P) ||
  889. (srcFormat == AV_PIX_FMT_YUV420P && dstFormat == AV_PIX_FMT_YUVA420P) ||
  890. (isPlanarYUV(srcFormat) && isGray(dstFormat)) ||
  891. (isPlanarYUV(dstFormat) && isGray(srcFormat)) ||
  892. (isGray(dstFormat) && isGray(srcFormat)) ||
  893. (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) &&
  894. c->chrDstHSubSample == c->chrSrcHSubSample &&
  895. c->chrDstVSubSample == c->chrSrcVSubSample &&
  896. dstFormat != AV_PIX_FMT_NV12 && dstFormat != AV_PIX_FMT_NV21 &&
  897. srcFormat != AV_PIX_FMT_NV12 && srcFormat != AV_PIX_FMT_NV21))
  898. {
  899. if (isPacked(c->srcFormat))
  900. c->swScale = packedCopyWrapper;
  901. else /* Planar YUV or gray */
  902. c->swScale = planarCopyWrapper;
  903. }
  904. if (ARCH_BFIN)
  905. ff_bfin_get_unscaled_swscale(c);
  906. if (HAVE_ALTIVEC)
  907. ff_swscale_get_unscaled_altivec(c);
  908. }
  909. static void reset_ptr(const uint8_t *src[], int format)
  910. {
  911. if (!isALPHA(format))
  912. src[3] = NULL;
  913. if (!isPlanar(format)) {
  914. src[3] = src[2] = NULL;
  915. if (!usePal(format))
  916. src[1] = NULL;
  917. }
  918. }
  919. static int check_image_pointers(uint8_t *data[4], enum AVPixelFormat pix_fmt,
  920. const int linesizes[4])
  921. {
  922. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  923. int i;
  924. for (i = 0; i < 4; i++) {
  925. int plane = desc->comp[i].plane;
  926. if (!data[plane] || !linesizes[plane])
  927. return 0;
  928. }
  929. return 1;
  930. }
  931. /**
  932. * swscale wrapper, so we don't need to export the SwsContext.
  933. * Assumes planar YUV to be in YUV order instead of YVU.
  934. */
  935. int attribute_align_arg sws_scale(struct SwsContext *c,
  936. const uint8_t * const srcSlice[],
  937. const int srcStride[], int srcSliceY,
  938. int srcSliceH, uint8_t *const dst[],
  939. const int dstStride[])
  940. {
  941. int i;
  942. const uint8_t *src2[4] = { srcSlice[0], srcSlice[1], srcSlice[2], srcSlice[3] };
  943. uint8_t *dst2[4] = { dst[0], dst[1], dst[2], dst[3] };
  944. // do not mess up sliceDir if we have a "trailing" 0-size slice
  945. if (srcSliceH == 0)
  946. return 0;
  947. if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
  948. av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
  949. return 0;
  950. }
  951. if (!check_image_pointers(dst, c->dstFormat, dstStride)) {
  952. av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
  953. return 0;
  954. }
  955. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  956. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  957. return 0;
  958. }
  959. if (c->sliceDir == 0) {
  960. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  961. }
  962. if (usePal(c->srcFormat)) {
  963. for (i = 0; i < 256; i++) {
  964. int p, r, g, b, y, u, v;
  965. if (c->srcFormat == AV_PIX_FMT_PAL8) {
  966. p = ((const uint32_t *)(srcSlice[1]))[i];
  967. r = (p >> 16) & 0xFF;
  968. g = (p >> 8) & 0xFF;
  969. b = p & 0xFF;
  970. } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
  971. r = ( i >> 5 ) * 36;
  972. g = ((i >> 2) & 7) * 36;
  973. b = ( i & 3) * 85;
  974. } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
  975. b = ( i >> 6 ) * 85;
  976. g = ((i >> 3) & 7) * 36;
  977. r = ( i & 7) * 36;
  978. } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
  979. r = ( i >> 3 ) * 255;
  980. g = ((i >> 1) & 3) * 85;
  981. b = ( i & 1) * 255;
  982. } else if (c->srcFormat == AV_PIX_FMT_GRAY8 ||
  983. c->srcFormat == AV_PIX_FMT_Y400A) {
  984. r = g = b = i;
  985. } else {
  986. assert(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);
  987. b = ( i >> 3 ) * 255;
  988. g = ((i >> 1) & 3) * 85;
  989. r = ( i & 1) * 255;
  990. }
  991. y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  992. u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  993. v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  994. c->pal_yuv[i] = y + (u << 8) + (v << 16);
  995. switch (c->dstFormat) {
  996. case AV_PIX_FMT_BGR32:
  997. #if !HAVE_BIGENDIAN
  998. case AV_PIX_FMT_RGB24:
  999. #endif
  1000. c->pal_rgb[i] = r + (g << 8) + (b << 16);
  1001. break;
  1002. case AV_PIX_FMT_BGR32_1:
  1003. #if HAVE_BIGENDIAN
  1004. case AV_PIX_FMT_BGR24:
  1005. #endif
  1006. c->pal_rgb[i] = (r + (g << 8) + (b << 16)) << 8;
  1007. break;
  1008. case AV_PIX_FMT_RGB32_1:
  1009. #if HAVE_BIGENDIAN
  1010. case AV_PIX_FMT_RGB24:
  1011. #endif
  1012. c->pal_rgb[i] = (b + (g << 8) + (r << 16)) << 8;
  1013. break;
  1014. case AV_PIX_FMT_RGB32:
  1015. #if !HAVE_BIGENDIAN
  1016. case AV_PIX_FMT_BGR24:
  1017. #endif
  1018. default:
  1019. c->pal_rgb[i] = b + (g << 8) + (r << 16);
  1020. }
  1021. }
  1022. }
  1023. // copy strides, so they can safely be modified
  1024. if (c->sliceDir == 1) {
  1025. // slices go from top to bottom
  1026. int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
  1027. srcStride[3] };
  1028. int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
  1029. dstStride[3] };
  1030. reset_ptr(src2, c->srcFormat);
  1031. reset_ptr((const uint8_t **) dst2, c->dstFormat);
  1032. /* reset slice direction at end of frame */
  1033. if (srcSliceY + srcSliceH == c->srcH)
  1034. c->sliceDir = 0;
  1035. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
  1036. dstStride2);
  1037. } else {
  1038. // slices go from bottom to top => we flip the image internally
  1039. int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
  1040. -srcStride[3] };
  1041. int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
  1042. -dstStride[3] };
  1043. src2[0] += (srcSliceH - 1) * srcStride[0];
  1044. if (!usePal(c->srcFormat))
  1045. src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
  1046. src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
  1047. src2[3] += (srcSliceH - 1) * srcStride[3];
  1048. dst2[0] += ( c->dstH - 1) * dstStride[0];
  1049. dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
  1050. dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
  1051. dst2[3] += ( c->dstH - 1) * dstStride[3];
  1052. reset_ptr(src2, c->srcFormat);
  1053. reset_ptr((const uint8_t **) dst2, c->dstFormat);
  1054. /* reset slice direction at end of frame */
  1055. if (!srcSliceY)
  1056. c->sliceDir = 0;
  1057. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
  1058. srcSliceH, dst2, dstStride2);
  1059. }
  1060. }
  1061. /* Convert the palette to the same packed 32-bit format as the palette */
  1062. void sws_convertPalette8ToPacked32(const uint8_t *src, uint8_t *dst,
  1063. int num_pixels, const uint8_t *palette)
  1064. {
  1065. int i;
  1066. for (i = 0; i < num_pixels; i++)
  1067. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i]];
  1068. }
  1069. /* Palette format: ABCD -> dst format: ABC */
  1070. void sws_convertPalette8ToPacked24(const uint8_t *src, uint8_t *dst,
  1071. int num_pixels, const uint8_t *palette)
  1072. {
  1073. int i;
  1074. for (i = 0; i < num_pixels; i++) {
  1075. //FIXME slow?
  1076. dst[0] = palette[src[i] * 4 + 0];
  1077. dst[1] = palette[src[i] * 4 + 1];
  1078. dst[2] = palette[src[i] * 4 + 2];
  1079. dst += 3;
  1080. }
  1081. }