You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

622 lines
18KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "libavutil/mem.h"
  34. #include "avcodec.h"
  35. #include "bytestream.h"
  36. #define BITSTREAM_READER_LE
  37. #include "get_bits.h"
  38. #define RUNTIME_GAMMA 0
  39. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  40. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  41. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  42. #define PALETTE_COUNT 256
  43. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  44. #define PALETTES_MAX 256
  45. typedef struct XanContext {
  46. AVCodecContext *avctx;
  47. AVFrame last_frame;
  48. AVFrame current_frame;
  49. const unsigned char *buf;
  50. int size;
  51. /* scratch space */
  52. unsigned char *buffer1;
  53. int buffer1_size;
  54. unsigned char *buffer2;
  55. int buffer2_size;
  56. unsigned *palettes;
  57. int palettes_count;
  58. int cur_palette;
  59. int frame_size;
  60. } XanContext;
  61. static av_cold int xan_decode_init(AVCodecContext *avctx)
  62. {
  63. XanContext *s = avctx->priv_data;
  64. s->avctx = avctx;
  65. s->frame_size = 0;
  66. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  67. s->buffer1_size = avctx->width * avctx->height;
  68. s->buffer1 = av_malloc(s->buffer1_size);
  69. if (!s->buffer1)
  70. return AVERROR(ENOMEM);
  71. s->buffer2_size = avctx->width * avctx->height;
  72. s->buffer2 = av_malloc(s->buffer2_size + 130);
  73. if (!s->buffer2) {
  74. av_freep(&s->buffer1);
  75. return AVERROR(ENOMEM);
  76. }
  77. return 0;
  78. }
  79. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  80. const unsigned char *src, int src_len)
  81. {
  82. unsigned char byte = *src++;
  83. unsigned char ival = byte + 0x16;
  84. const unsigned char * ptr = src + byte*2;
  85. int ptr_len = src_len - 1 - byte*2;
  86. unsigned char val = ival;
  87. unsigned char *dest_end = dest + dest_len;
  88. GetBitContext gb;
  89. if (ptr_len < 0)
  90. return AVERROR_INVALIDDATA;
  91. init_get_bits(&gb, ptr, ptr_len * 8);
  92. while (val != 0x16) {
  93. unsigned idx = val - 0x17 + get_bits1(&gb) * byte;
  94. if (idx >= 2 * byte)
  95. return -1;
  96. val = src[idx];
  97. if (val < 0x16) {
  98. if (dest >= dest_end)
  99. return 0;
  100. *dest++ = val;
  101. val = ival;
  102. }
  103. }
  104. return 0;
  105. }
  106. /**
  107. * unpack simple compression
  108. *
  109. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  110. */
  111. static void xan_unpack(unsigned char *dest, int dest_len,
  112. const unsigned char *src, int src_len)
  113. {
  114. unsigned char opcode;
  115. int size;
  116. unsigned char *dest_org = dest;
  117. unsigned char *dest_end = dest + dest_len;
  118. const unsigned char *src_end = src + src_len;
  119. while (dest < dest_end && src < src_end) {
  120. opcode = *src++;
  121. if (opcode < 0xe0) {
  122. int size2, back;
  123. if ((opcode & 0x80) == 0) {
  124. size = opcode & 3;
  125. back = ((opcode & 0x60) << 3) + *src++ + 1;
  126. size2 = ((opcode & 0x1c) >> 2) + 3;
  127. } else if ((opcode & 0x40) == 0) {
  128. size = *src >> 6;
  129. back = (bytestream_get_be16(&src) & 0x3fff) + 1;
  130. size2 = (opcode & 0x3f) + 4;
  131. } else {
  132. size = opcode & 3;
  133. back = ((opcode & 0x10) << 12) + bytestream_get_be16(&src) + 1;
  134. size2 = ((opcode & 0x0c) << 6) + *src++ + 5;
  135. }
  136. if (dest_end - dest < size + size2 ||
  137. dest + size - dest_org < back ||
  138. src_end - src < size)
  139. return;
  140. memcpy(dest, src, size); dest += size; src += size;
  141. av_memcpy_backptr(dest, back, size2);
  142. dest += size2;
  143. } else {
  144. int finish = opcode >= 0xfc;
  145. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  146. if (dest_end - dest < size || src_end - src < size)
  147. return;
  148. memcpy(dest, src, size); dest += size; src += size;
  149. if (finish)
  150. return;
  151. }
  152. }
  153. }
  154. static inline void xan_wc3_output_pixel_run(XanContext *s,
  155. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  156. {
  157. int stride;
  158. int line_inc;
  159. int index;
  160. int current_x;
  161. int width = s->avctx->width;
  162. unsigned char *palette_plane;
  163. palette_plane = s->current_frame.data[0];
  164. stride = s->current_frame.linesize[0];
  165. line_inc = stride - width;
  166. index = y * stride + x;
  167. current_x = x;
  168. while (pixel_count && index < s->frame_size) {
  169. int count = FFMIN(pixel_count, width - current_x);
  170. memcpy(palette_plane + index, pixel_buffer, count);
  171. pixel_count -= count;
  172. index += count;
  173. pixel_buffer += count;
  174. current_x += count;
  175. if (current_x >= width) {
  176. index += line_inc;
  177. current_x = 0;
  178. }
  179. }
  180. }
  181. static inline void xan_wc3_copy_pixel_run(XanContext *s, int x, int y,
  182. int pixel_count, int motion_x,
  183. int motion_y)
  184. {
  185. int stride;
  186. int line_inc;
  187. int curframe_index, prevframe_index;
  188. int curframe_x, prevframe_x;
  189. int width = s->avctx->width;
  190. unsigned char *palette_plane, *prev_palette_plane;
  191. if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  192. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  193. return;
  194. palette_plane = s->current_frame.data[0];
  195. prev_palette_plane = s->last_frame.data[0];
  196. if (!prev_palette_plane)
  197. prev_palette_plane = palette_plane;
  198. stride = s->current_frame.linesize[0];
  199. line_inc = stride - width;
  200. curframe_index = y * stride + x;
  201. curframe_x = x;
  202. prevframe_index = (y + motion_y) * stride + x + motion_x;
  203. prevframe_x = x + motion_x;
  204. while (pixel_count &&
  205. curframe_index < s->frame_size &&
  206. prevframe_index < s->frame_size) {
  207. int count = FFMIN3(pixel_count, width - curframe_x,
  208. width - prevframe_x);
  209. memcpy(palette_plane + curframe_index,
  210. prev_palette_plane + prevframe_index, count);
  211. pixel_count -= count;
  212. curframe_index += count;
  213. prevframe_index += count;
  214. curframe_x += count;
  215. prevframe_x += count;
  216. if (curframe_x >= width) {
  217. curframe_index += line_inc;
  218. curframe_x = 0;
  219. }
  220. if (prevframe_x >= width) {
  221. prevframe_index += line_inc;
  222. prevframe_x = 0;
  223. }
  224. }
  225. }
  226. static int xan_wc3_decode_frame(XanContext *s) {
  227. int width = s->avctx->width;
  228. int height = s->avctx->height;
  229. int total_pixels = width * height;
  230. unsigned char opcode;
  231. unsigned char flag = 0;
  232. int size = 0;
  233. int motion_x, motion_y;
  234. int x, y;
  235. unsigned char *opcode_buffer = s->buffer1;
  236. unsigned char *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  237. int opcode_buffer_size = s->buffer1_size;
  238. const unsigned char *imagedata_buffer = s->buffer2;
  239. /* pointers to segments inside the compressed chunk */
  240. const unsigned char *huffman_segment;
  241. const unsigned char *size_segment;
  242. const unsigned char *vector_segment;
  243. const unsigned char *imagedata_segment;
  244. int huffman_offset, size_offset, vector_offset, imagedata_offset,
  245. imagedata_size;
  246. if (s->size < 8)
  247. return AVERROR_INVALIDDATA;
  248. huffman_offset = AV_RL16(&s->buf[0]);
  249. size_offset = AV_RL16(&s->buf[2]);
  250. vector_offset = AV_RL16(&s->buf[4]);
  251. imagedata_offset = AV_RL16(&s->buf[6]);
  252. if (huffman_offset >= s->size ||
  253. size_offset >= s->size ||
  254. vector_offset >= s->size ||
  255. imagedata_offset >= s->size)
  256. return AVERROR_INVALIDDATA;
  257. huffman_segment = s->buf + huffman_offset;
  258. size_segment = s->buf + size_offset;
  259. vector_segment = s->buf + vector_offset;
  260. imagedata_segment = s->buf + imagedata_offset;
  261. if (xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  262. huffman_segment, s->size - huffman_offset) < 0)
  263. return AVERROR_INVALIDDATA;
  264. if (imagedata_segment[0] == 2) {
  265. xan_unpack(s->buffer2, s->buffer2_size,
  266. &imagedata_segment[1], s->size - imagedata_offset - 1);
  267. imagedata_size = s->buffer2_size;
  268. } else {
  269. imagedata_size = s->size - imagedata_offset - 1;
  270. imagedata_buffer = &imagedata_segment[1];
  271. }
  272. /* use the decoded data segments to build the frame */
  273. x = y = 0;
  274. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  275. opcode = *opcode_buffer++;
  276. size = 0;
  277. switch (opcode) {
  278. case 0:
  279. flag ^= 1;
  280. continue;
  281. case 1:
  282. case 2:
  283. case 3:
  284. case 4:
  285. case 5:
  286. case 6:
  287. case 7:
  288. case 8:
  289. size = opcode;
  290. break;
  291. case 12:
  292. case 13:
  293. case 14:
  294. case 15:
  295. case 16:
  296. case 17:
  297. case 18:
  298. size += (opcode - 10);
  299. break;
  300. case 9:
  301. case 19:
  302. size = *size_segment++;
  303. break;
  304. case 10:
  305. case 20:
  306. size = AV_RB16(&size_segment[0]);
  307. size_segment += 2;
  308. break;
  309. case 11:
  310. case 21:
  311. size = AV_RB24(size_segment);
  312. size_segment += 3;
  313. break;
  314. }
  315. if (size > total_pixels)
  316. break;
  317. if (opcode < 12) {
  318. flag ^= 1;
  319. if (flag) {
  320. /* run of (size) pixels is unchanged from last frame */
  321. xan_wc3_copy_pixel_run(s, x, y, size, 0, 0);
  322. } else {
  323. /* output a run of pixels from imagedata_buffer */
  324. if (imagedata_size < size)
  325. break;
  326. xan_wc3_output_pixel_run(s, imagedata_buffer, x, y, size);
  327. imagedata_buffer += size;
  328. imagedata_size -= size;
  329. }
  330. } else {
  331. /* run-based motion compensation from last frame */
  332. motion_x = sign_extend(*vector_segment >> 4, 4);
  333. motion_y = sign_extend(*vector_segment & 0xF, 4);
  334. vector_segment++;
  335. /* copy a run of pixels from the previous frame */
  336. xan_wc3_copy_pixel_run(s, x, y, size, motion_x, motion_y);
  337. flag = 0;
  338. }
  339. /* coordinate accounting */
  340. total_pixels -= size;
  341. y += (x + size) / width;
  342. x = (x + size) % width;
  343. }
  344. return 0;
  345. }
  346. #if RUNTIME_GAMMA
  347. static inline unsigned mul(unsigned a, unsigned b)
  348. {
  349. return (a * b) >> 16;
  350. }
  351. static inline unsigned pow4(unsigned a)
  352. {
  353. unsigned square = mul(a, a);
  354. return mul(square, square);
  355. }
  356. static inline unsigned pow5(unsigned a)
  357. {
  358. return mul(pow4(a), a);
  359. }
  360. static uint8_t gamma_corr(uint8_t in) {
  361. unsigned lo, hi = 0xff40, target;
  362. int i = 15;
  363. in = (in << 2) | (in >> 6);
  364. /* equivalent float code:
  365. if (in >= 252)
  366. return 253;
  367. return round(pow(in / 256.0, 0.8) * 256);
  368. */
  369. lo = target = in << 8;
  370. do {
  371. unsigned mid = (lo + hi) >> 1;
  372. unsigned pow = pow5(mid);
  373. if (pow > target) hi = mid;
  374. else lo = mid;
  375. } while (--i);
  376. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  377. }
  378. #else
  379. /**
  380. * This is a gamma correction that xan3 applies to all palette entries.
  381. *
  382. * There is a peculiarity, namely that the values are clamped to 253 -
  383. * it seems likely that this table was calculated by a buggy fixed-point
  384. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  385. * example.
  386. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  387. * and thus pow(x, 0.8) is still easy to calculate.
  388. * Also, the input values are first rotated to the left by 2.
  389. */
  390. static const uint8_t gamma_lookup[256] = {
  391. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  392. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  393. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  394. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  395. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  396. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  397. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  398. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  399. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  400. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  401. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  402. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  403. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  404. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  405. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  406. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  407. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  408. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  409. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  410. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  411. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  412. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  413. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  414. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  415. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  416. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  417. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  418. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  419. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  420. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  421. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  422. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  423. };
  424. #endif
  425. static int xan_decode_frame(AVCodecContext *avctx,
  426. void *data, int *data_size,
  427. AVPacket *avpkt)
  428. {
  429. const uint8_t *buf = avpkt->data;
  430. int ret, buf_size = avpkt->size;
  431. XanContext *s = avctx->priv_data;
  432. if (avctx->codec->id == AV_CODEC_ID_XAN_WC3) {
  433. const uint8_t *buf_end = buf + buf_size;
  434. int tag = 0;
  435. while (buf_end - buf > 8 && tag != VGA__TAG) {
  436. unsigned *tmpptr;
  437. uint32_t new_pal;
  438. int size;
  439. int i;
  440. tag = bytestream_get_le32(&buf);
  441. size = bytestream_get_be32(&buf);
  442. size = FFMIN(size, buf_end - buf);
  443. switch (tag) {
  444. case PALT_TAG:
  445. if (size < PALETTE_SIZE)
  446. return AVERROR_INVALIDDATA;
  447. if (s->palettes_count >= PALETTES_MAX)
  448. return AVERROR_INVALIDDATA;
  449. tmpptr = av_realloc(s->palettes,
  450. (s->palettes_count + 1) * AVPALETTE_SIZE);
  451. if (!tmpptr)
  452. return AVERROR(ENOMEM);
  453. s->palettes = tmpptr;
  454. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  455. for (i = 0; i < PALETTE_COUNT; i++) {
  456. #if RUNTIME_GAMMA
  457. int r = gamma_corr(*buf++);
  458. int g = gamma_corr(*buf++);
  459. int b = gamma_corr(*buf++);
  460. #else
  461. int r = gamma_lookup[*buf++];
  462. int g = gamma_lookup[*buf++];
  463. int b = gamma_lookup[*buf++];
  464. #endif
  465. *tmpptr++ = (r << 16) | (g << 8) | b;
  466. }
  467. s->palettes_count++;
  468. break;
  469. case SHOT_TAG:
  470. if (size < 4)
  471. return AVERROR_INVALIDDATA;
  472. new_pal = bytestream_get_le32(&buf);
  473. if (new_pal < s->palettes_count) {
  474. s->cur_palette = new_pal;
  475. } else
  476. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  477. break;
  478. case VGA__TAG:
  479. break;
  480. default:
  481. buf += size;
  482. break;
  483. }
  484. }
  485. buf_size = buf_end - buf;
  486. }
  487. if (s->palettes_count <= 0) {
  488. av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  489. return AVERROR_INVALIDDATA;
  490. }
  491. if ((ret = avctx->get_buffer(avctx, &s->current_frame))) {
  492. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  493. return ret;
  494. }
  495. s->current_frame.reference = 3;
  496. if (!s->frame_size)
  497. s->frame_size = s->current_frame.linesize[0] * s->avctx->height;
  498. memcpy(s->current_frame.data[1],
  499. s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  500. s->buf = buf;
  501. s->size = buf_size;
  502. if (xan_wc3_decode_frame(s) < 0)
  503. return AVERROR_INVALIDDATA;
  504. /* release the last frame if it is allocated */
  505. if (s->last_frame.data[0])
  506. avctx->release_buffer(avctx, &s->last_frame);
  507. *data_size = sizeof(AVFrame);
  508. *(AVFrame*)data = s->current_frame;
  509. /* shuffle frames */
  510. FFSWAP(AVFrame, s->current_frame, s->last_frame);
  511. /* always report that the buffer was completely consumed */
  512. return buf_size;
  513. }
  514. static av_cold int xan_decode_end(AVCodecContext *avctx)
  515. {
  516. XanContext *s = avctx->priv_data;
  517. /* release the frames */
  518. if (s->last_frame.data[0])
  519. avctx->release_buffer(avctx, &s->last_frame);
  520. if (s->current_frame.data[0])
  521. avctx->release_buffer(avctx, &s->current_frame);
  522. av_freep(&s->buffer1);
  523. av_freep(&s->buffer2);
  524. av_freep(&s->palettes);
  525. return 0;
  526. }
  527. AVCodec ff_xan_wc3_decoder = {
  528. .name = "xan_wc3",
  529. .type = AVMEDIA_TYPE_VIDEO,
  530. .id = AV_CODEC_ID_XAN_WC3,
  531. .priv_data_size = sizeof(XanContext),
  532. .init = xan_decode_init,
  533. .close = xan_decode_end,
  534. .decode = xan_decode_frame,
  535. .capabilities = CODEC_CAP_DR1,
  536. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  537. };