You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

954 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. if ((i & 7) != 0)
  56. tprintf(s->avctx, "\n");
  57. }
  58. #endif
  59. static int wma_decode_init(AVCodecContext * avctx)
  60. {
  61. WMACodecContext *s = avctx->priv_data;
  62. int i, flags2;
  63. uint8_t *extradata;
  64. s->avctx = avctx;
  65. /* extract flag infos */
  66. flags2 = 0;
  67. extradata = avctx->extradata;
  68. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  69. flags2 = AV_RL16(extradata+2);
  70. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  71. flags2 = AV_RL16(extradata+4);
  72. }
  73. s->use_exp_vlc = flags2 & 0x0001;
  74. s->use_bit_reservoir = flags2 & 0x0002;
  75. s->use_variable_block_len = flags2 & 0x0004;
  76. if(ff_wma_init(avctx, flags2)<0)
  77. return -1;
  78. /* init MDCT */
  79. for(i = 0; i < s->nb_block_sizes; i++)
  80. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  81. if (s->use_noise_coding) {
  82. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  83. ff_wma_hgain_huffbits, 1, 1,
  84. ff_wma_hgain_huffcodes, 2, 2, 0);
  85. }
  86. if (s->use_exp_vlc) {
  87. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  88. ff_aac_scalefactor_bits, 1, 1,
  89. ff_aac_scalefactor_code, 4, 4, 0);
  90. } else {
  91. wma_lsp_to_curve_init(s, s->frame_len);
  92. }
  93. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  94. avcodec_get_frame_defaults(&s->frame);
  95. avctx->coded_frame = &s->frame;
  96. return 0;
  97. }
  98. /**
  99. * compute x^-0.25 with an exponent and mantissa table. We use linear
  100. * interpolation to reduce the mantissa table size at a small speed
  101. * expense (linear interpolation approximately doubles the number of
  102. * bits of precision).
  103. */
  104. static inline float pow_m1_4(WMACodecContext *s, float x)
  105. {
  106. union {
  107. float f;
  108. unsigned int v;
  109. } u, t;
  110. unsigned int e, m;
  111. float a, b;
  112. u.f = x;
  113. e = u.v >> 23;
  114. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  115. /* build interpolation scale: 1 <= t < 2. */
  116. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  117. a = s->lsp_pow_m_table1[m];
  118. b = s->lsp_pow_m_table2[m];
  119. return s->lsp_pow_e_table[e] * (a + b * t.f);
  120. }
  121. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  122. {
  123. float wdel, a, b;
  124. int i, e, m;
  125. wdel = M_PI / frame_len;
  126. for(i=0;i<frame_len;i++)
  127. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  128. /* tables for x^-0.25 computation */
  129. for(i=0;i<256;i++) {
  130. e = i - 126;
  131. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  132. }
  133. /* NOTE: these two tables are needed to avoid two operations in
  134. pow_m1_4 */
  135. b = 1.0;
  136. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  137. m = (1 << LSP_POW_BITS) + i;
  138. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  139. a = pow(a, -0.25);
  140. s->lsp_pow_m_table1[i] = 2 * a - b;
  141. s->lsp_pow_m_table2[i] = b - a;
  142. b = a;
  143. }
  144. }
  145. /**
  146. * NOTE: We use the same code as Vorbis here
  147. * @todo optimize it further with SSE/3Dnow
  148. */
  149. static void wma_lsp_to_curve(WMACodecContext *s,
  150. float *out, float *val_max_ptr,
  151. int n, float *lsp)
  152. {
  153. int i, j;
  154. float p, q, w, v, val_max;
  155. val_max = 0;
  156. for(i=0;i<n;i++) {
  157. p = 0.5f;
  158. q = 0.5f;
  159. w = s->lsp_cos_table[i];
  160. for(j=1;j<NB_LSP_COEFS;j+=2){
  161. q *= w - lsp[j - 1];
  162. p *= w - lsp[j];
  163. }
  164. p *= p * (2.0f - w);
  165. q *= q * (2.0f + w);
  166. v = p + q;
  167. v = pow_m1_4(s, v);
  168. if (v > val_max)
  169. val_max = v;
  170. out[i] = v;
  171. }
  172. *val_max_ptr = val_max;
  173. }
  174. /**
  175. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  176. */
  177. static void decode_exp_lsp(WMACodecContext *s, int ch)
  178. {
  179. float lsp_coefs[NB_LSP_COEFS];
  180. int val, i;
  181. for(i = 0; i < NB_LSP_COEFS; i++) {
  182. if (i == 0 || i >= 8)
  183. val = get_bits(&s->gb, 3);
  184. else
  185. val = get_bits(&s->gb, 4);
  186. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  187. }
  188. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  189. s->block_len, lsp_coefs);
  190. }
  191. /** pow(10, i / 16.0) for i in -60..95 */
  192. static const float pow_tab[] = {
  193. 1.7782794100389e-04, 2.0535250264571e-04,
  194. 2.3713737056617e-04, 2.7384196342644e-04,
  195. 3.1622776601684e-04, 3.6517412725484e-04,
  196. 4.2169650342858e-04, 4.8696752516586e-04,
  197. 5.6234132519035e-04, 6.4938163157621e-04,
  198. 7.4989420933246e-04, 8.6596432336006e-04,
  199. 1.0000000000000e-03, 1.1547819846895e-03,
  200. 1.3335214321633e-03, 1.5399265260595e-03,
  201. 1.7782794100389e-03, 2.0535250264571e-03,
  202. 2.3713737056617e-03, 2.7384196342644e-03,
  203. 3.1622776601684e-03, 3.6517412725484e-03,
  204. 4.2169650342858e-03, 4.8696752516586e-03,
  205. 5.6234132519035e-03, 6.4938163157621e-03,
  206. 7.4989420933246e-03, 8.6596432336006e-03,
  207. 1.0000000000000e-02, 1.1547819846895e-02,
  208. 1.3335214321633e-02, 1.5399265260595e-02,
  209. 1.7782794100389e-02, 2.0535250264571e-02,
  210. 2.3713737056617e-02, 2.7384196342644e-02,
  211. 3.1622776601684e-02, 3.6517412725484e-02,
  212. 4.2169650342858e-02, 4.8696752516586e-02,
  213. 5.6234132519035e-02, 6.4938163157621e-02,
  214. 7.4989420933246e-02, 8.6596432336007e-02,
  215. 1.0000000000000e-01, 1.1547819846895e-01,
  216. 1.3335214321633e-01, 1.5399265260595e-01,
  217. 1.7782794100389e-01, 2.0535250264571e-01,
  218. 2.3713737056617e-01, 2.7384196342644e-01,
  219. 3.1622776601684e-01, 3.6517412725484e-01,
  220. 4.2169650342858e-01, 4.8696752516586e-01,
  221. 5.6234132519035e-01, 6.4938163157621e-01,
  222. 7.4989420933246e-01, 8.6596432336007e-01,
  223. 1.0000000000000e+00, 1.1547819846895e+00,
  224. 1.3335214321633e+00, 1.5399265260595e+00,
  225. 1.7782794100389e+00, 2.0535250264571e+00,
  226. 2.3713737056617e+00, 2.7384196342644e+00,
  227. 3.1622776601684e+00, 3.6517412725484e+00,
  228. 4.2169650342858e+00, 4.8696752516586e+00,
  229. 5.6234132519035e+00, 6.4938163157621e+00,
  230. 7.4989420933246e+00, 8.6596432336007e+00,
  231. 1.0000000000000e+01, 1.1547819846895e+01,
  232. 1.3335214321633e+01, 1.5399265260595e+01,
  233. 1.7782794100389e+01, 2.0535250264571e+01,
  234. 2.3713737056617e+01, 2.7384196342644e+01,
  235. 3.1622776601684e+01, 3.6517412725484e+01,
  236. 4.2169650342858e+01, 4.8696752516586e+01,
  237. 5.6234132519035e+01, 6.4938163157621e+01,
  238. 7.4989420933246e+01, 8.6596432336007e+01,
  239. 1.0000000000000e+02, 1.1547819846895e+02,
  240. 1.3335214321633e+02, 1.5399265260595e+02,
  241. 1.7782794100389e+02, 2.0535250264571e+02,
  242. 2.3713737056617e+02, 2.7384196342644e+02,
  243. 3.1622776601684e+02, 3.6517412725484e+02,
  244. 4.2169650342858e+02, 4.8696752516586e+02,
  245. 5.6234132519035e+02, 6.4938163157621e+02,
  246. 7.4989420933246e+02, 8.6596432336007e+02,
  247. 1.0000000000000e+03, 1.1547819846895e+03,
  248. 1.3335214321633e+03, 1.5399265260595e+03,
  249. 1.7782794100389e+03, 2.0535250264571e+03,
  250. 2.3713737056617e+03, 2.7384196342644e+03,
  251. 3.1622776601684e+03, 3.6517412725484e+03,
  252. 4.2169650342858e+03, 4.8696752516586e+03,
  253. 5.6234132519035e+03, 6.4938163157621e+03,
  254. 7.4989420933246e+03, 8.6596432336007e+03,
  255. 1.0000000000000e+04, 1.1547819846895e+04,
  256. 1.3335214321633e+04, 1.5399265260595e+04,
  257. 1.7782794100389e+04, 2.0535250264571e+04,
  258. 2.3713737056617e+04, 2.7384196342644e+04,
  259. 3.1622776601684e+04, 3.6517412725484e+04,
  260. 4.2169650342858e+04, 4.8696752516586e+04,
  261. 5.6234132519035e+04, 6.4938163157621e+04,
  262. 7.4989420933246e+04, 8.6596432336007e+04,
  263. 1.0000000000000e+05, 1.1547819846895e+05,
  264. 1.3335214321633e+05, 1.5399265260595e+05,
  265. 1.7782794100389e+05, 2.0535250264571e+05,
  266. 2.3713737056617e+05, 2.7384196342644e+05,
  267. 3.1622776601684e+05, 3.6517412725484e+05,
  268. 4.2169650342858e+05, 4.8696752516586e+05,
  269. 5.6234132519035e+05, 6.4938163157621e+05,
  270. 7.4989420933246e+05, 8.6596432336007e+05,
  271. };
  272. /**
  273. * decode exponents coded with VLC codes
  274. */
  275. static int decode_exp_vlc(WMACodecContext *s, int ch)
  276. {
  277. int last_exp, n, code;
  278. const uint16_t *ptr;
  279. float v, max_scale;
  280. uint32_t *q, *q_end, iv;
  281. const float *ptab = pow_tab + 60;
  282. const uint32_t *iptab = (const uint32_t*)ptab;
  283. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  284. q = (uint32_t *)s->exponents[ch];
  285. q_end = q + s->block_len;
  286. max_scale = 0;
  287. if (s->version == 1) {
  288. last_exp = get_bits(&s->gb, 5) + 10;
  289. v = ptab[last_exp];
  290. iv = iptab[last_exp];
  291. max_scale = v;
  292. n = *ptr++;
  293. switch (n & 3) do {
  294. case 0: *q++ = iv;
  295. case 3: *q++ = iv;
  296. case 2: *q++ = iv;
  297. case 1: *q++ = iv;
  298. } while ((n -= 4) > 0);
  299. }else
  300. last_exp = 36;
  301. while (q < q_end) {
  302. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  303. if (code < 0){
  304. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  305. return -1;
  306. }
  307. /* NOTE: this offset is the same as MPEG4 AAC ! */
  308. last_exp += code - 60;
  309. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  310. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  311. last_exp);
  312. return -1;
  313. }
  314. v = ptab[last_exp];
  315. iv = iptab[last_exp];
  316. if (v > max_scale)
  317. max_scale = v;
  318. n = *ptr++;
  319. switch (n & 3) do {
  320. case 0: *q++ = iv;
  321. case 3: *q++ = iv;
  322. case 2: *q++ = iv;
  323. case 1: *q++ = iv;
  324. } while ((n -= 4) > 0);
  325. }
  326. s->max_exponent[ch] = max_scale;
  327. return 0;
  328. }
  329. /**
  330. * Apply MDCT window and add into output.
  331. *
  332. * We ensure that when the windows overlap their squared sum
  333. * is always 1 (MDCT reconstruction rule).
  334. */
  335. static void wma_window(WMACodecContext *s, float *out)
  336. {
  337. float *in = s->output;
  338. int block_len, bsize, n;
  339. /* left part */
  340. if (s->block_len_bits <= s->prev_block_len_bits) {
  341. block_len = s->block_len;
  342. bsize = s->frame_len_bits - s->block_len_bits;
  343. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  344. out, block_len);
  345. } else {
  346. block_len = 1 << s->prev_block_len_bits;
  347. n = (s->block_len - block_len) / 2;
  348. bsize = s->frame_len_bits - s->prev_block_len_bits;
  349. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  350. out+n, block_len);
  351. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  352. }
  353. out += s->block_len;
  354. in += s->block_len;
  355. /* right part */
  356. if (s->block_len_bits <= s->next_block_len_bits) {
  357. block_len = s->block_len;
  358. bsize = s->frame_len_bits - s->block_len_bits;
  359. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  360. } else {
  361. block_len = 1 << s->next_block_len_bits;
  362. n = (s->block_len - block_len) / 2;
  363. bsize = s->frame_len_bits - s->next_block_len_bits;
  364. memcpy(out, in, n*sizeof(float));
  365. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  366. memset(out+n+block_len, 0, n*sizeof(float));
  367. }
  368. }
  369. /**
  370. * @return 0 if OK. 1 if last block of frame. return -1 if
  371. * unrecorrable error.
  372. */
  373. static int wma_decode_block(WMACodecContext *s)
  374. {
  375. int n, v, a, ch, bsize;
  376. int coef_nb_bits, total_gain;
  377. int nb_coefs[MAX_CHANNELS];
  378. float mdct_norm;
  379. FFTContext *mdct;
  380. #ifdef TRACE
  381. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  382. #endif
  383. /* compute current block length */
  384. if (s->use_variable_block_len) {
  385. n = av_log2(s->nb_block_sizes - 1) + 1;
  386. if (s->reset_block_lengths) {
  387. s->reset_block_lengths = 0;
  388. v = get_bits(&s->gb, n);
  389. if (v >= s->nb_block_sizes){
  390. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  391. return -1;
  392. }
  393. s->prev_block_len_bits = s->frame_len_bits - v;
  394. v = get_bits(&s->gb, n);
  395. if (v >= s->nb_block_sizes){
  396. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  397. return -1;
  398. }
  399. s->block_len_bits = s->frame_len_bits - v;
  400. } else {
  401. /* update block lengths */
  402. s->prev_block_len_bits = s->block_len_bits;
  403. s->block_len_bits = s->next_block_len_bits;
  404. }
  405. v = get_bits(&s->gb, n);
  406. if (v >= s->nb_block_sizes){
  407. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  408. return -1;
  409. }
  410. s->next_block_len_bits = s->frame_len_bits - v;
  411. } else {
  412. /* fixed block len */
  413. s->next_block_len_bits = s->frame_len_bits;
  414. s->prev_block_len_bits = s->frame_len_bits;
  415. s->block_len_bits = s->frame_len_bits;
  416. }
  417. /* now check if the block length is coherent with the frame length */
  418. s->block_len = 1 << s->block_len_bits;
  419. if ((s->block_pos + s->block_len) > s->frame_len){
  420. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  421. return -1;
  422. }
  423. if (s->avctx->channels == 2) {
  424. s->ms_stereo = get_bits1(&s->gb);
  425. }
  426. v = 0;
  427. for(ch = 0; ch < s->avctx->channels; ch++) {
  428. a = get_bits1(&s->gb);
  429. s->channel_coded[ch] = a;
  430. v |= a;
  431. }
  432. bsize = s->frame_len_bits - s->block_len_bits;
  433. /* if no channel coded, no need to go further */
  434. /* XXX: fix potential framing problems */
  435. if (!v)
  436. goto next;
  437. /* read total gain and extract corresponding number of bits for
  438. coef escape coding */
  439. total_gain = 1;
  440. for(;;) {
  441. a = get_bits(&s->gb, 7);
  442. total_gain += a;
  443. if (a != 127)
  444. break;
  445. }
  446. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  447. /* compute number of coefficients */
  448. n = s->coefs_end[bsize] - s->coefs_start;
  449. for(ch = 0; ch < s->avctx->channels; ch++)
  450. nb_coefs[ch] = n;
  451. /* complex coding */
  452. if (s->use_noise_coding) {
  453. for(ch = 0; ch < s->avctx->channels; ch++) {
  454. if (s->channel_coded[ch]) {
  455. int i, n, a;
  456. n = s->exponent_high_sizes[bsize];
  457. for(i=0;i<n;i++) {
  458. a = get_bits1(&s->gb);
  459. s->high_band_coded[ch][i] = a;
  460. /* if noise coding, the coefficients are not transmitted */
  461. if (a)
  462. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  463. }
  464. }
  465. }
  466. for(ch = 0; ch < s->avctx->channels; ch++) {
  467. if (s->channel_coded[ch]) {
  468. int i, n, val, code;
  469. n = s->exponent_high_sizes[bsize];
  470. val = (int)0x80000000;
  471. for(i=0;i<n;i++) {
  472. if (s->high_band_coded[ch][i]) {
  473. if (val == (int)0x80000000) {
  474. val = get_bits(&s->gb, 7) - 19;
  475. } else {
  476. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  477. if (code < 0){
  478. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  479. return -1;
  480. }
  481. val += code - 18;
  482. }
  483. s->high_band_values[ch][i] = val;
  484. }
  485. }
  486. }
  487. }
  488. }
  489. /* exponents can be reused in short blocks. */
  490. if ((s->block_len_bits == s->frame_len_bits) ||
  491. get_bits1(&s->gb)) {
  492. for(ch = 0; ch < s->avctx->channels; ch++) {
  493. if (s->channel_coded[ch]) {
  494. if (s->use_exp_vlc) {
  495. if (decode_exp_vlc(s, ch) < 0)
  496. return -1;
  497. } else {
  498. decode_exp_lsp(s, ch);
  499. }
  500. s->exponents_bsize[ch] = bsize;
  501. }
  502. }
  503. }
  504. /* parse spectral coefficients : just RLE encoding */
  505. for (ch = 0; ch < s->avctx->channels; ch++) {
  506. if (s->channel_coded[ch]) {
  507. int tindex;
  508. WMACoef* ptr = &s->coefs1[ch][0];
  509. /* special VLC tables are used for ms stereo because
  510. there is potentially less energy there */
  511. tindex = (ch == 1 && s->ms_stereo);
  512. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  513. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  514. s->level_table[tindex], s->run_table[tindex],
  515. 0, ptr, 0, nb_coefs[ch],
  516. s->block_len, s->frame_len_bits, coef_nb_bits);
  517. }
  518. if (s->version == 1 && s->avctx->channels >= 2) {
  519. align_get_bits(&s->gb);
  520. }
  521. }
  522. /* normalize */
  523. {
  524. int n4 = s->block_len / 2;
  525. mdct_norm = 1.0 / (float)n4;
  526. if (s->version == 1) {
  527. mdct_norm *= sqrt(n4);
  528. }
  529. }
  530. /* finally compute the MDCT coefficients */
  531. for (ch = 0; ch < s->avctx->channels; ch++) {
  532. if (s->channel_coded[ch]) {
  533. WMACoef *coefs1;
  534. float *coefs, *exponents, mult, mult1, noise;
  535. int i, j, n, n1, last_high_band, esize;
  536. float exp_power[HIGH_BAND_MAX_SIZE];
  537. coefs1 = s->coefs1[ch];
  538. exponents = s->exponents[ch];
  539. esize = s->exponents_bsize[ch];
  540. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  541. mult *= mdct_norm;
  542. coefs = s->coefs[ch];
  543. if (s->use_noise_coding) {
  544. mult1 = mult;
  545. /* very low freqs : noise */
  546. for(i = 0;i < s->coefs_start; i++) {
  547. *coefs++ = s->noise_table[s->noise_index] *
  548. exponents[i<<bsize>>esize] * mult1;
  549. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  550. }
  551. n1 = s->exponent_high_sizes[bsize];
  552. /* compute power of high bands */
  553. exponents = s->exponents[ch] +
  554. (s->high_band_start[bsize]<<bsize>>esize);
  555. last_high_band = 0; /* avoid warning */
  556. for(j=0;j<n1;j++) {
  557. n = s->exponent_high_bands[s->frame_len_bits -
  558. s->block_len_bits][j];
  559. if (s->high_band_coded[ch][j]) {
  560. float e2, v;
  561. e2 = 0;
  562. for(i = 0;i < n; i++) {
  563. v = exponents[i<<bsize>>esize];
  564. e2 += v * v;
  565. }
  566. exp_power[j] = e2 / n;
  567. last_high_band = j;
  568. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  569. }
  570. exponents += n<<bsize>>esize;
  571. }
  572. /* main freqs and high freqs */
  573. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  574. for(j=-1;j<n1;j++) {
  575. if (j < 0) {
  576. n = s->high_band_start[bsize] -
  577. s->coefs_start;
  578. } else {
  579. n = s->exponent_high_bands[s->frame_len_bits -
  580. s->block_len_bits][j];
  581. }
  582. if (j >= 0 && s->high_band_coded[ch][j]) {
  583. /* use noise with specified power */
  584. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  585. /* XXX: use a table */
  586. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  587. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  588. mult1 *= mdct_norm;
  589. for(i = 0;i < n; i++) {
  590. noise = s->noise_table[s->noise_index];
  591. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  592. *coefs++ = noise *
  593. exponents[i<<bsize>>esize] * mult1;
  594. }
  595. exponents += n<<bsize>>esize;
  596. } else {
  597. /* coded values + small noise */
  598. for(i = 0;i < n; i++) {
  599. noise = s->noise_table[s->noise_index];
  600. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  601. *coefs++ = ((*coefs1++) + noise) *
  602. exponents[i<<bsize>>esize] * mult;
  603. }
  604. exponents += n<<bsize>>esize;
  605. }
  606. }
  607. /* very high freqs : noise */
  608. n = s->block_len - s->coefs_end[bsize];
  609. mult1 = mult * exponents[((-1<<bsize))>>esize];
  610. for(i = 0; i < n; i++) {
  611. *coefs++ = s->noise_table[s->noise_index] * mult1;
  612. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  613. }
  614. } else {
  615. /* XXX: optimize more */
  616. for(i = 0;i < s->coefs_start; i++)
  617. *coefs++ = 0.0;
  618. n = nb_coefs[ch];
  619. for(i = 0;i < n; i++) {
  620. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  621. }
  622. n = s->block_len - s->coefs_end[bsize];
  623. for(i = 0;i < n; i++)
  624. *coefs++ = 0.0;
  625. }
  626. }
  627. }
  628. #ifdef TRACE
  629. for (ch = 0; ch < s->avctx->channels; ch++) {
  630. if (s->channel_coded[ch]) {
  631. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  632. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  633. }
  634. }
  635. #endif
  636. if (s->ms_stereo && s->channel_coded[1]) {
  637. /* nominal case for ms stereo: we do it before mdct */
  638. /* no need to optimize this case because it should almost
  639. never happen */
  640. if (!s->channel_coded[0]) {
  641. tprintf(s->avctx, "rare ms-stereo case happened\n");
  642. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  643. s->channel_coded[0] = 1;
  644. }
  645. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  646. }
  647. next:
  648. mdct = &s->mdct_ctx[bsize];
  649. for (ch = 0; ch < s->avctx->channels; ch++) {
  650. int n4, index;
  651. n4 = s->block_len / 2;
  652. if(s->channel_coded[ch]){
  653. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  654. }else if(!(s->ms_stereo && ch==1))
  655. memset(s->output, 0, sizeof(s->output));
  656. /* multiply by the window and add in the frame */
  657. index = (s->frame_len / 2) + s->block_pos - n4;
  658. wma_window(s, &s->frame_out[ch][index]);
  659. }
  660. /* update block number */
  661. s->block_num++;
  662. s->block_pos += s->block_len;
  663. if (s->block_pos >= s->frame_len)
  664. return 1;
  665. else
  666. return 0;
  667. }
  668. /* decode a frame of frame_len samples */
  669. static int wma_decode_frame(WMACodecContext *s, float **samples,
  670. int samples_offset)
  671. {
  672. int ret, ch;
  673. #ifdef TRACE
  674. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  675. #endif
  676. /* read each block */
  677. s->block_num = 0;
  678. s->block_pos = 0;
  679. for(;;) {
  680. ret = wma_decode_block(s);
  681. if (ret < 0)
  682. return -1;
  683. if (ret)
  684. break;
  685. }
  686. for (ch = 0; ch < s->avctx->channels; ch++) {
  687. /* copy current block to output */
  688. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  689. s->frame_len * sizeof(*s->frame_out[ch]));
  690. /* prepare for next block */
  691. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  692. s->frame_len * sizeof(*s->frame_out[ch]));
  693. #ifdef TRACE
  694. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  695. #endif
  696. }
  697. return 0;
  698. }
  699. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  700. int *got_frame_ptr, AVPacket *avpkt)
  701. {
  702. const uint8_t *buf = avpkt->data;
  703. int buf_size = avpkt->size;
  704. WMACodecContext *s = avctx->priv_data;
  705. int nb_frames, bit_offset, i, pos, len, ret;
  706. uint8_t *q;
  707. float **samples;
  708. int samples_offset;
  709. tprintf(avctx, "***decode_superframe:\n");
  710. if(buf_size==0){
  711. s->last_superframe_len = 0;
  712. return 0;
  713. }
  714. if (buf_size < avctx->block_align) {
  715. av_log(avctx, AV_LOG_ERROR,
  716. "Input packet size too small (%d < %d)\n",
  717. buf_size, avctx->block_align);
  718. return AVERROR_INVALIDDATA;
  719. }
  720. buf_size = avctx->block_align;
  721. init_get_bits(&s->gb, buf, buf_size*8);
  722. if (s->use_bit_reservoir) {
  723. /* read super frame header */
  724. skip_bits(&s->gb, 4); /* super frame index */
  725. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  726. } else {
  727. nb_frames = 1;
  728. }
  729. /* get output buffer */
  730. s->frame.nb_samples = nb_frames * s->frame_len;
  731. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  732. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  733. return ret;
  734. }
  735. samples = (float **)s->frame.extended_data;
  736. samples_offset = 0;
  737. if (s->use_bit_reservoir) {
  738. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  739. if (bit_offset > get_bits_left(&s->gb)) {
  740. av_log(avctx, AV_LOG_ERROR,
  741. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  742. bit_offset, get_bits_left(&s->gb), buf_size);
  743. goto fail;
  744. }
  745. if (s->last_superframe_len > 0) {
  746. /* add bit_offset bits to last frame */
  747. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  748. MAX_CODED_SUPERFRAME_SIZE)
  749. goto fail;
  750. q = s->last_superframe + s->last_superframe_len;
  751. len = bit_offset;
  752. while (len > 7) {
  753. *q++ = (get_bits)(&s->gb, 8);
  754. len -= 8;
  755. }
  756. if (len > 0) {
  757. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  758. }
  759. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  760. /* XXX: bit_offset bits into last frame */
  761. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  762. /* skip unused bits */
  763. if (s->last_bitoffset > 0)
  764. skip_bits(&s->gb, s->last_bitoffset);
  765. /* this frame is stored in the last superframe and in the
  766. current one */
  767. if (wma_decode_frame(s, samples, samples_offset) < 0)
  768. goto fail;
  769. samples_offset += s->frame_len;
  770. nb_frames--;
  771. }
  772. /* read each frame starting from bit_offset */
  773. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  774. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  775. return AVERROR_INVALIDDATA;
  776. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  777. len = pos & 7;
  778. if (len > 0)
  779. skip_bits(&s->gb, len);
  780. s->reset_block_lengths = 1;
  781. for(i=0;i<nb_frames;i++) {
  782. if (wma_decode_frame(s, samples, samples_offset) < 0)
  783. goto fail;
  784. samples_offset += s->frame_len;
  785. }
  786. /* we copy the end of the frame in the last frame buffer */
  787. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  788. s->last_bitoffset = pos & 7;
  789. pos >>= 3;
  790. len = buf_size - pos;
  791. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  792. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  793. goto fail;
  794. }
  795. s->last_superframe_len = len;
  796. memcpy(s->last_superframe, buf + pos, len);
  797. } else {
  798. /* single frame decode */
  799. if (wma_decode_frame(s, samples, samples_offset) < 0)
  800. goto fail;
  801. samples_offset += s->frame_len;
  802. }
  803. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  804. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  805. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  806. *got_frame_ptr = 1;
  807. *(AVFrame *)data = s->frame;
  808. return avctx->block_align;
  809. fail:
  810. /* when error, we reset the bit reservoir */
  811. s->last_superframe_len = 0;
  812. return -1;
  813. }
  814. static av_cold void flush(AVCodecContext *avctx)
  815. {
  816. WMACodecContext *s = avctx->priv_data;
  817. s->last_bitoffset=
  818. s->last_superframe_len= 0;
  819. }
  820. AVCodec ff_wmav1_decoder = {
  821. .name = "wmav1",
  822. .type = AVMEDIA_TYPE_AUDIO,
  823. .id = AV_CODEC_ID_WMAV1,
  824. .priv_data_size = sizeof(WMACodecContext),
  825. .init = wma_decode_init,
  826. .close = ff_wma_end,
  827. .decode = wma_decode_superframe,
  828. .flush = flush,
  829. .capabilities = CODEC_CAP_DR1,
  830. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  831. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  832. AV_SAMPLE_FMT_NONE },
  833. };
  834. AVCodec ff_wmav2_decoder = {
  835. .name = "wmav2",
  836. .type = AVMEDIA_TYPE_AUDIO,
  837. .id = AV_CODEC_ID_WMAV2,
  838. .priv_data_size = sizeof(WMACodecContext),
  839. .init = wma_decode_init,
  840. .close = ff_wma_end,
  841. .decode = wma_decode_superframe,
  842. .flush = flush,
  843. .capabilities = CODEC_CAP_DR1,
  844. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  845. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  846. AV_SAMPLE_FMT_NONE },
  847. };