You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1504 lines
50KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #include "huffman.h"
  35. #define VLC_BITS 11
  36. #if HAVE_BIGENDIAN
  37. #define B 3
  38. #define G 2
  39. #define R 1
  40. #define A 0
  41. #else
  42. #define B 0
  43. #define G 1
  44. #define R 2
  45. #define A 3
  46. #endif
  47. typedef enum Predictor {
  48. LEFT= 0,
  49. PLANE,
  50. MEDIAN,
  51. } Predictor;
  52. typedef struct HYuvContext {
  53. AVCodecContext *avctx;
  54. Predictor predictor;
  55. GetBitContext gb;
  56. PutBitContext pb;
  57. int interlaced;
  58. int decorrelate;
  59. int bitstream_bpp;
  60. int version;
  61. int yuy2; //use yuy2 instead of 422P
  62. int bgr32; //use bgr32 instead of bgr24
  63. int width, height;
  64. int flags;
  65. int context;
  66. int picture_number;
  67. int last_slice_end;
  68. uint8_t *temp[3];
  69. uint64_t stats[3][256];
  70. uint8_t len[3][256];
  71. uint32_t bits[3][256];
  72. uint32_t pix_bgr_map[1<<VLC_BITS];
  73. VLC vlc[6]; //Y,U,V,YY,YU,YV
  74. AVFrame picture;
  75. uint8_t *bitstream_buffer;
  76. unsigned int bitstream_buffer_size;
  77. DSPContext dsp;
  78. } HYuvContext;
  79. #define classic_shift_luma_table_size 42
  80. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  81. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  82. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  83. 69,68, 0
  84. };
  85. #define classic_shift_chroma_table_size 59
  86. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  87. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  88. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  89. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  90. };
  91. static const unsigned char classic_add_luma[256] = {
  92. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  93. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  94. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  95. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  96. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  97. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  98. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  99. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  100. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  101. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  102. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  103. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  104. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  105. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  106. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  107. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  108. };
  109. static const unsigned char classic_add_chroma[256] = {
  110. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  111. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  112. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  113. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  114. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  115. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  116. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  117. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  118. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  119. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  120. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  121. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  122. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  123. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  124. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  125. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  126. };
  127. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  128. uint8_t *src, int w, int left)
  129. {
  130. int i;
  131. if (w < 32) {
  132. for (i = 0; i < w; i++) {
  133. const int temp = src[i];
  134. dst[i] = temp - left;
  135. left = temp;
  136. }
  137. return left;
  138. } else {
  139. for (i = 0; i < 16; i++) {
  140. const int temp = src[i];
  141. dst[i] = temp - left;
  142. left = temp;
  143. }
  144. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  145. return src[w-1];
  146. }
  147. }
  148. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  149. uint8_t *src, int w,
  150. int *red, int *green, int *blue)
  151. {
  152. int i;
  153. int r,g,b;
  154. r = *red;
  155. g = *green;
  156. b = *blue;
  157. for (i = 0; i < FFMIN(w, 4); i++) {
  158. const int rt = src[i * 4 + R];
  159. const int gt = src[i * 4 + G];
  160. const int bt = src[i * 4 + B];
  161. dst[i * 4 + R] = rt - r;
  162. dst[i * 4 + G] = gt - g;
  163. dst[i * 4 + B] = bt - b;
  164. r = rt;
  165. g = gt;
  166. b = bt;
  167. }
  168. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  169. *red = src[(w - 1) * 4 + R];
  170. *green = src[(w - 1) * 4 + G];
  171. *blue = src[(w - 1) * 4 + B];
  172. }
  173. static int read_len_table(uint8_t *dst, GetBitContext *gb)
  174. {
  175. int i, val, repeat;
  176. for (i = 0; i < 256;) {
  177. repeat = get_bits(gb, 3);
  178. val = get_bits(gb, 5);
  179. if (repeat == 0)
  180. repeat = get_bits(gb, 8);
  181. if (i + repeat > 256 || get_bits_left(gb) < 0) {
  182. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  183. return -1;
  184. }
  185. while (repeat--)
  186. dst[i++] = val;
  187. }
  188. return 0;
  189. }
  190. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table)
  191. {
  192. int len, index;
  193. uint32_t bits = 0;
  194. for (len = 32; len > 0; len--) {
  195. for (index = 0; index < 256; index++) {
  196. if (len_table[index] == len)
  197. dst[index] = bits++;
  198. }
  199. if (bits & 1) {
  200. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  201. return -1;
  202. }
  203. bits >>= 1;
  204. }
  205. return 0;
  206. }
  207. static void generate_joint_tables(HYuvContext *s)
  208. {
  209. uint16_t symbols[1 << VLC_BITS];
  210. uint16_t bits[1 << VLC_BITS];
  211. uint8_t len[1 << VLC_BITS];
  212. if (s->bitstream_bpp < 24) {
  213. int p, i, y, u;
  214. for (p = 0; p < 3; p++) {
  215. for (i = y = 0; y < 256; y++) {
  216. int len0 = s->len[0][y];
  217. int limit = VLC_BITS - len0;
  218. if(limit <= 0)
  219. continue;
  220. for (u = 0; u < 256; u++) {
  221. int len1 = s->len[p][u];
  222. if (len1 > limit)
  223. continue;
  224. len[i] = len0 + len1;
  225. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  226. symbols[i] = (y << 8) + u;
  227. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  228. i++;
  229. }
  230. }
  231. ff_free_vlc(&s->vlc[3 + p]);
  232. ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
  233. bits, 2, 2, symbols, 2, 2, 0);
  234. }
  235. } else {
  236. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  237. int i, b, g, r, code;
  238. int p0 = s->decorrelate;
  239. int p1 = !s->decorrelate;
  240. // restrict the range to +/-16 because that's pretty much guaranteed to
  241. // cover all the combinations that fit in 11 bits total, and it doesn't
  242. // matter if we miss a few rare codes.
  243. for (i = 0, g = -16; g < 16; g++) {
  244. int len0 = s->len[p0][g & 255];
  245. int limit0 = VLC_BITS - len0;
  246. if (limit0 < 2)
  247. continue;
  248. for (b = -16; b < 16; b++) {
  249. int len1 = s->len[p1][b & 255];
  250. int limit1 = limit0 - len1;
  251. if (limit1 < 1)
  252. continue;
  253. code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
  254. for (r = -16; r < 16; r++) {
  255. int len2 = s->len[2][r & 255];
  256. if (len2 > limit1)
  257. continue;
  258. len[i] = len0 + len1 + len2;
  259. bits[i] = (code << len2) + s->bits[2][r & 255];
  260. if (s->decorrelate) {
  261. map[i][G] = g;
  262. map[i][B] = g + b;
  263. map[i][R] = g + r;
  264. } else {
  265. map[i][B] = g;
  266. map[i][G] = b;
  267. map[i][R] = r;
  268. }
  269. i++;
  270. }
  271. }
  272. }
  273. ff_free_vlc(&s->vlc[3]);
  274. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  275. }
  276. }
  277. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
  278. {
  279. GetBitContext gb;
  280. int i;
  281. init_get_bits(&gb, src, length * 8);
  282. for (i = 0; i < 3; i++) {
  283. if (read_len_table(s->len[i], &gb) < 0)
  284. return -1;
  285. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  286. return -1;
  287. }
  288. ff_free_vlc(&s->vlc[i]);
  289. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  290. s->bits[i], 4, 4, 0);
  291. }
  292. generate_joint_tables(s);
  293. return (get_bits_count(&gb) + 7) / 8;
  294. }
  295. static int read_old_huffman_tables(HYuvContext *s)
  296. {
  297. GetBitContext gb;
  298. int i;
  299. init_get_bits(&gb, classic_shift_luma,
  300. classic_shift_luma_table_size * 8);
  301. if (read_len_table(s->len[0], &gb) < 0)
  302. return -1;
  303. init_get_bits(&gb, classic_shift_chroma,
  304. classic_shift_chroma_table_size * 8);
  305. if (read_len_table(s->len[1], &gb) < 0)
  306. return -1;
  307. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  308. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  309. if (s->bitstream_bpp >= 24) {
  310. memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
  311. memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
  312. }
  313. memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
  314. memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
  315. for (i = 0; i < 3; i++) {
  316. ff_free_vlc(&s->vlc[i]);
  317. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  318. s->bits[i], 4, 4, 0);
  319. }
  320. generate_joint_tables(s);
  321. return 0;
  322. }
  323. static av_cold void alloc_temp(HYuvContext *s)
  324. {
  325. int i;
  326. if (s->bitstream_bpp<24) {
  327. for (i=0; i<3; i++) {
  328. s->temp[i]= av_malloc(s->width + 16);
  329. }
  330. } else {
  331. s->temp[0]= av_mallocz(4*s->width + 16);
  332. }
  333. }
  334. static av_cold int common_init(AVCodecContext *avctx)
  335. {
  336. HYuvContext *s = avctx->priv_data;
  337. s->avctx = avctx;
  338. s->flags = avctx->flags;
  339. ff_dsputil_init(&s->dsp, avctx);
  340. s->width = avctx->width;
  341. s->height = avctx->height;
  342. assert(s->width>0 && s->height>0);
  343. return 0;
  344. }
  345. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  346. static av_cold int decode_init(AVCodecContext *avctx)
  347. {
  348. HYuvContext *s = avctx->priv_data;
  349. common_init(avctx);
  350. memset(s->vlc, 0, 3 * sizeof(VLC));
  351. avctx->coded_frame = &s->picture;
  352. s->interlaced = s->height > 288;
  353. s->bgr32 = 1;
  354. if (avctx->extradata_size) {
  355. if ((avctx->bits_per_coded_sample & 7) &&
  356. avctx->bits_per_coded_sample != 12)
  357. s->version = 1; // do such files exist at all?
  358. else
  359. s->version = 2;
  360. } else
  361. s->version = 0;
  362. if (s->version == 2) {
  363. int method, interlace;
  364. if (avctx->extradata_size < 4)
  365. return -1;
  366. method = ((uint8_t*)avctx->extradata)[0];
  367. s->decorrelate = method & 64 ? 1 : 0;
  368. s->predictor = method & 63;
  369. s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
  370. if (s->bitstream_bpp == 0)
  371. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  372. interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  373. s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
  374. s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  375. if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  376. avctx->extradata_size - 4) < 0)
  377. return -1;
  378. }else{
  379. switch (avctx->bits_per_coded_sample & 7) {
  380. case 1:
  381. s->predictor = LEFT;
  382. s->decorrelate = 0;
  383. break;
  384. case 2:
  385. s->predictor = LEFT;
  386. s->decorrelate = 1;
  387. break;
  388. case 3:
  389. s->predictor = PLANE;
  390. s->decorrelate = avctx->bits_per_coded_sample >= 24;
  391. break;
  392. case 4:
  393. s->predictor = MEDIAN;
  394. s->decorrelate = 0;
  395. break;
  396. default:
  397. s->predictor = LEFT; //OLD
  398. s->decorrelate = 0;
  399. break;
  400. }
  401. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  402. s->context = 0;
  403. if (read_old_huffman_tables(s) < 0)
  404. return -1;
  405. }
  406. switch (s->bitstream_bpp) {
  407. case 12:
  408. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  409. break;
  410. case 16:
  411. if (s->yuy2) {
  412. avctx->pix_fmt = AV_PIX_FMT_YUYV422;
  413. } else {
  414. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  415. }
  416. break;
  417. case 24:
  418. case 32:
  419. if (s->bgr32) {
  420. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  421. } else {
  422. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  423. }
  424. break;
  425. default:
  426. return AVERROR_INVALIDDATA;
  427. }
  428. alloc_temp(s);
  429. return 0;
  430. }
  431. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  432. {
  433. HYuvContext *s = avctx->priv_data;
  434. int i;
  435. avctx->coded_frame= &s->picture;
  436. alloc_temp(s);
  437. for (i = 0; i < 6; i++)
  438. s->vlc[i].table = NULL;
  439. if (s->version == 2) {
  440. if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  441. avctx->extradata_size) < 0)
  442. return -1;
  443. } else {
  444. if (read_old_huffman_tables(s) < 0)
  445. return -1;
  446. }
  447. return 0;
  448. }
  449. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  450. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  451. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  452. {
  453. int i;
  454. int index = 0;
  455. for (i = 0; i < 256;) {
  456. int val = len[i];
  457. int repeat = 0;
  458. for (; i < 256 && len[i] == val && repeat < 255; i++)
  459. repeat++;
  460. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  461. if ( repeat > 7) {
  462. buf[index++] = val;
  463. buf[index++] = repeat;
  464. } else {
  465. buf[index++] = val | (repeat << 5);
  466. }
  467. }
  468. return index;
  469. }
  470. static av_cold int encode_init(AVCodecContext *avctx)
  471. {
  472. HYuvContext *s = avctx->priv_data;
  473. int i, j;
  474. common_init(avctx);
  475. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  476. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  477. s->version = 2;
  478. avctx->coded_frame = &s->picture;
  479. switch (avctx->pix_fmt) {
  480. case AV_PIX_FMT_YUV420P:
  481. s->bitstream_bpp = 12;
  482. break;
  483. case AV_PIX_FMT_YUV422P:
  484. s->bitstream_bpp = 16;
  485. break;
  486. case AV_PIX_FMT_RGB32:
  487. s->bitstream_bpp = 24;
  488. break;
  489. default:
  490. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  491. return -1;
  492. }
  493. avctx->bits_per_coded_sample = s->bitstream_bpp;
  494. s->decorrelate = s->bitstream_bpp >= 24;
  495. s->predictor = avctx->prediction_method;
  496. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  497. if (avctx->context_model == 1) {
  498. s->context = avctx->context_model;
  499. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  500. av_log(avctx, AV_LOG_ERROR,
  501. "context=1 is not compatible with "
  502. "2 pass huffyuv encoding\n");
  503. return -1;
  504. }
  505. }else s->context= 0;
  506. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  507. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  508. av_log(avctx, AV_LOG_ERROR,
  509. "Error: YV12 is not supported by huffyuv; use "
  510. "vcodec=ffvhuff or format=422p\n");
  511. return -1;
  512. }
  513. if (avctx->context_model) {
  514. av_log(avctx, AV_LOG_ERROR,
  515. "Error: per-frame huffman tables are not supported "
  516. "by huffyuv; use vcodec=ffvhuff\n");
  517. return -1;
  518. }
  519. if (s->interlaced != ( s->height > 288 ))
  520. av_log(avctx, AV_LOG_INFO,
  521. "using huffyuv 2.2.0 or newer interlacing flag\n");
  522. }
  523. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  524. av_log(avctx, AV_LOG_ERROR,
  525. "Error: RGB is incompatible with median predictor\n");
  526. return -1;
  527. }
  528. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  529. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  530. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  531. if (s->context)
  532. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  533. ((uint8_t*)avctx->extradata)[3] = 0;
  534. s->avctx->extradata_size = 4;
  535. if (avctx->stats_in) {
  536. char *p = avctx->stats_in;
  537. for (i = 0; i < 3; i++)
  538. for (j = 0; j < 256; j++)
  539. s->stats[i][j] = 1;
  540. for (;;) {
  541. for (i = 0; i < 3; i++) {
  542. char *next;
  543. for (j = 0; j < 256; j++) {
  544. s->stats[i][j] += strtol(p, &next, 0);
  545. if (next == p) return -1;
  546. p = next;
  547. }
  548. }
  549. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  550. }
  551. } else {
  552. for (i = 0; i < 3; i++)
  553. for (j = 0; j < 256; j++) {
  554. int d = FFMIN(j, 256 - j);
  555. s->stats[i][j] = 100000000 / (d + 1);
  556. }
  557. }
  558. for (i = 0; i < 3; i++) {
  559. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  560. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  561. return -1;
  562. }
  563. s->avctx->extradata_size +=
  564. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  565. }
  566. if (s->context) {
  567. for (i = 0; i < 3; i++) {
  568. int pels = s->width * s->height / (i ? 40 : 10);
  569. for (j = 0; j < 256; j++) {
  570. int d = FFMIN(j, 256 - j);
  571. s->stats[i][j] = pels/(d + 1);
  572. }
  573. }
  574. } else {
  575. for (i = 0; i < 3; i++)
  576. for (j = 0; j < 256; j++)
  577. s->stats[i][j]= 0;
  578. }
  579. alloc_temp(s);
  580. s->picture_number=0;
  581. return 0;
  582. }
  583. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  584. /* TODO instead of restarting the read when the code isn't in the first level
  585. * of the joint table, jump into the 2nd level of the individual table. */
  586. #define READ_2PIX(dst0, dst1, plane1){\
  587. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  588. if(code != 0xffff){\
  589. dst0 = code>>8;\
  590. dst1 = code;\
  591. }else{\
  592. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  593. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  594. }\
  595. }
  596. static void decode_422_bitstream(HYuvContext *s, int count)
  597. {
  598. int i;
  599. count /= 2;
  600. if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
  601. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  602. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  603. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  604. }
  605. } else {
  606. for (i = 0; i < count; i++) {
  607. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  608. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  609. }
  610. }
  611. }
  612. static void decode_gray_bitstream(HYuvContext *s, int count)
  613. {
  614. int i;
  615. count/=2;
  616. if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
  617. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  618. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  619. }
  620. } else {
  621. for(i=0; i<count; i++){
  622. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  623. }
  624. }
  625. }
  626. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  627. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  628. {
  629. int i;
  630. const uint8_t *y = s->temp[0] + offset;
  631. const uint8_t *u = s->temp[1] + offset / 2;
  632. const uint8_t *v = s->temp[2] + offset / 2;
  633. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  634. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  635. return -1;
  636. }
  637. #define LOAD4\
  638. int y0 = y[2 * i];\
  639. int y1 = y[2 * i + 1];\
  640. int u0 = u[i];\
  641. int v0 = v[i];
  642. count /= 2;
  643. if (s->flags & CODEC_FLAG_PASS1) {
  644. for(i = 0; i < count; i++) {
  645. LOAD4;
  646. s->stats[0][y0]++;
  647. s->stats[1][u0]++;
  648. s->stats[0][y1]++;
  649. s->stats[2][v0]++;
  650. }
  651. }
  652. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  653. return 0;
  654. if (s->context) {
  655. for (i = 0; i < count; i++) {
  656. LOAD4;
  657. s->stats[0][y0]++;
  658. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  659. s->stats[1][u0]++;
  660. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  661. s->stats[0][y1]++;
  662. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  663. s->stats[2][v0]++;
  664. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  665. }
  666. } else {
  667. for(i = 0; i < count; i++) {
  668. LOAD4;
  669. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  670. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  671. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  672. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  673. }
  674. }
  675. return 0;
  676. }
  677. static int encode_gray_bitstream(HYuvContext *s, int count)
  678. {
  679. int i;
  680. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  681. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  682. return -1;
  683. }
  684. #define LOAD2\
  685. int y0 = s->temp[0][2 * i];\
  686. int y1 = s->temp[0][2 * i + 1];
  687. #define STAT2\
  688. s->stats[0][y0]++;\
  689. s->stats[0][y1]++;
  690. #define WRITE2\
  691. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  692. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  693. count /= 2;
  694. if (s->flags & CODEC_FLAG_PASS1) {
  695. for (i = 0; i < count; i++) {
  696. LOAD2;
  697. STAT2;
  698. }
  699. }
  700. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  701. return 0;
  702. if (s->context) {
  703. for (i = 0; i < count; i++) {
  704. LOAD2;
  705. STAT2;
  706. WRITE2;
  707. }
  708. } else {
  709. for (i = 0; i < count; i++) {
  710. LOAD2;
  711. WRITE2;
  712. }
  713. }
  714. return 0;
  715. }
  716. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  717. static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
  718. int decorrelate, int alpha)
  719. {
  720. int i;
  721. for (i = 0; i < count; i++) {
  722. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  723. if (code != -1) {
  724. *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
  725. } else if(decorrelate) {
  726. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  727. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
  728. s->temp[0][4 * i + G];
  729. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
  730. s->temp[0][4 * i + G];
  731. } else {
  732. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  733. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  734. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  735. }
  736. if (alpha)
  737. s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  738. }
  739. }
  740. static void decode_bgr_bitstream(HYuvContext *s, int count)
  741. {
  742. if (s->decorrelate) {
  743. if (s->bitstream_bpp==24)
  744. decode_bgr_1(s, count, 1, 0);
  745. else
  746. decode_bgr_1(s, count, 1, 1);
  747. } else {
  748. if (s->bitstream_bpp==24)
  749. decode_bgr_1(s, count, 0, 0);
  750. else
  751. decode_bgr_1(s, count, 0, 1);
  752. }
  753. }
  754. static int encode_bgr_bitstream(HYuvContext *s, int count)
  755. {
  756. int i;
  757. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 3 * 4 * count) {
  758. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  759. return -1;
  760. }
  761. #define LOAD3\
  762. int g = s->temp[0][4 * i + G];\
  763. int b = (s->temp[0][4 * i + B] - g) & 0xff;\
  764. int r = (s->temp[0][4 * i + R] - g) & 0xff;
  765. #define STAT3\
  766. s->stats[0][b]++;\
  767. s->stats[1][g]++;\
  768. s->stats[2][r]++;
  769. #define WRITE3\
  770. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  771. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  772. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  773. if ((s->flags & CODEC_FLAG_PASS1) &&
  774. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  775. for (i = 0; i < count; i++) {
  776. LOAD3;
  777. STAT3;
  778. }
  779. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  780. for (i = 0; i < count; i++) {
  781. LOAD3;
  782. STAT3;
  783. WRITE3;
  784. }
  785. } else {
  786. for (i = 0; i < count; i++) {
  787. LOAD3;
  788. WRITE3;
  789. }
  790. }
  791. return 0;
  792. }
  793. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  794. static void draw_slice(HYuvContext *s, int y)
  795. {
  796. int h, cy, i;
  797. int offset[AV_NUM_DATA_POINTERS];
  798. if (s->avctx->draw_horiz_band==NULL)
  799. return;
  800. h = y - s->last_slice_end;
  801. y -= h;
  802. if (s->bitstream_bpp == 12) {
  803. cy = y>>1;
  804. } else {
  805. cy = y;
  806. }
  807. offset[0] = s->picture.linesize[0]*y;
  808. offset[1] = s->picture.linesize[1]*cy;
  809. offset[2] = s->picture.linesize[2]*cy;
  810. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  811. offset[i] = 0;
  812. emms_c();
  813. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  814. s->last_slice_end = y + h;
  815. }
  816. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  817. AVPacket *avpkt)
  818. {
  819. const uint8_t *buf = avpkt->data;
  820. int buf_size = avpkt->size;
  821. HYuvContext *s = avctx->priv_data;
  822. const int width = s->width;
  823. const int width2 = s->width>>1;
  824. const int height = s->height;
  825. int fake_ystride, fake_ustride, fake_vstride;
  826. AVFrame * const p = &s->picture;
  827. int table_size = 0;
  828. AVFrame *picture = data;
  829. av_fast_malloc(&s->bitstream_buffer,
  830. &s->bitstream_buffer_size,
  831. buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  832. if (!s->bitstream_buffer)
  833. return AVERROR(ENOMEM);
  834. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  835. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
  836. (const uint32_t*)buf, buf_size / 4);
  837. if (p->data[0])
  838. ff_thread_release_buffer(avctx, p);
  839. p->reference = 0;
  840. if (ff_thread_get_buffer(avctx, p) < 0) {
  841. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  842. return -1;
  843. }
  844. if (s->context) {
  845. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  846. if (table_size < 0)
  847. return -1;
  848. }
  849. if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
  850. return -1;
  851. init_get_bits(&s->gb, s->bitstream_buffer+table_size,
  852. (buf_size-table_size) * 8);
  853. fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
  854. fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
  855. fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
  856. s->last_slice_end = 0;
  857. if (s->bitstream_bpp < 24) {
  858. int y, cy;
  859. int lefty, leftu, leftv;
  860. int lefttopy, lefttopu, lefttopv;
  861. if (s->yuy2) {
  862. p->data[0][3] = get_bits(&s->gb, 8);
  863. p->data[0][2] = get_bits(&s->gb, 8);
  864. p->data[0][1] = get_bits(&s->gb, 8);
  865. p->data[0][0] = get_bits(&s->gb, 8);
  866. av_log(avctx, AV_LOG_ERROR,
  867. "YUY2 output is not implemented yet\n");
  868. return -1;
  869. } else {
  870. leftv = p->data[2][0] = get_bits(&s->gb, 8);
  871. lefty = p->data[0][1] = get_bits(&s->gb, 8);
  872. leftu = p->data[1][0] = get_bits(&s->gb, 8);
  873. p->data[0][0] = get_bits(&s->gb, 8);
  874. switch (s->predictor) {
  875. case LEFT:
  876. case PLANE:
  877. decode_422_bitstream(s, width-2);
  878. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  879. if (!(s->flags&CODEC_FLAG_GRAY)) {
  880. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  881. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  882. }
  883. for (cy = y = 1; y < s->height; y++, cy++) {
  884. uint8_t *ydst, *udst, *vdst;
  885. if (s->bitstream_bpp == 12) {
  886. decode_gray_bitstream(s, width);
  887. ydst = p->data[0] + p->linesize[0] * y;
  888. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  889. if (s->predictor == PLANE) {
  890. if (y > s->interlaced)
  891. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  892. }
  893. y++;
  894. if (y >= s->height) break;
  895. }
  896. draw_slice(s, y);
  897. ydst = p->data[0] + p->linesize[0]*y;
  898. udst = p->data[1] + p->linesize[1]*cy;
  899. vdst = p->data[2] + p->linesize[2]*cy;
  900. decode_422_bitstream(s, width);
  901. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  902. if (!(s->flags & CODEC_FLAG_GRAY)) {
  903. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  904. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  905. }
  906. if (s->predictor == PLANE) {
  907. if (cy > s->interlaced) {
  908. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  909. if (!(s->flags & CODEC_FLAG_GRAY)) {
  910. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  911. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  912. }
  913. }
  914. }
  915. }
  916. draw_slice(s, height);
  917. break;
  918. case MEDIAN:
  919. /* first line except first 2 pixels is left predicted */
  920. decode_422_bitstream(s, width - 2);
  921. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
  922. if (!(s->flags & CODEC_FLAG_GRAY)) {
  923. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  924. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  925. }
  926. cy = y = 1;
  927. /* second line is left predicted for interlaced case */
  928. if (s->interlaced) {
  929. decode_422_bitstream(s, width);
  930. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  931. if (!(s->flags & CODEC_FLAG_GRAY)) {
  932. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  933. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  934. }
  935. y++; cy++;
  936. }
  937. /* next 4 pixels are left predicted too */
  938. decode_422_bitstream(s, 4);
  939. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  940. if (!(s->flags&CODEC_FLAG_GRAY)) {
  941. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  942. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  943. }
  944. /* next line except the first 4 pixels is median predicted */
  945. lefttopy = p->data[0][3];
  946. decode_422_bitstream(s, width - 4);
  947. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  948. if (!(s->flags&CODEC_FLAG_GRAY)) {
  949. lefttopu = p->data[1][1];
  950. lefttopv = p->data[2][1];
  951. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
  952. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
  953. }
  954. y++; cy++;
  955. for (; y<height; y++, cy++) {
  956. uint8_t *ydst, *udst, *vdst;
  957. if (s->bitstream_bpp == 12) {
  958. while (2 * cy > y) {
  959. decode_gray_bitstream(s, width);
  960. ydst = p->data[0] + p->linesize[0] * y;
  961. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  962. y++;
  963. }
  964. if (y >= height) break;
  965. }
  966. draw_slice(s, y);
  967. decode_422_bitstream(s, width);
  968. ydst = p->data[0] + p->linesize[0] * y;
  969. udst = p->data[1] + p->linesize[1] * cy;
  970. vdst = p->data[2] + p->linesize[2] * cy;
  971. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  972. if (!(s->flags & CODEC_FLAG_GRAY)) {
  973. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  974. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  975. }
  976. }
  977. draw_slice(s, height);
  978. break;
  979. }
  980. }
  981. } else {
  982. int y;
  983. int leftr, leftg, leftb, lefta;
  984. const int last_line = (height - 1) * p->linesize[0];
  985. if (s->bitstream_bpp == 32) {
  986. lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
  987. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  988. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  989. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  990. } else {
  991. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  992. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  993. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  994. lefta = p->data[0][last_line+A] = 255;
  995. skip_bits(&s->gb, 8);
  996. }
  997. if (s->bgr32) {
  998. switch (s->predictor) {
  999. case LEFT:
  1000. case PLANE:
  1001. decode_bgr_bitstream(s, width - 1);
  1002. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
  1003. for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
  1004. decode_bgr_bitstream(s, width);
  1005. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1006. if (s->predictor == PLANE) {
  1007. if (s->bitstream_bpp != 32) lefta = 0;
  1008. if ((y & s->interlaced) == 0 &&
  1009. y < s->height - 1 - s->interlaced) {
  1010. s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
  1011. p->data[0] + p->linesize[0] * y +
  1012. fake_ystride, fake_ystride);
  1013. }
  1014. }
  1015. }
  1016. // just 1 large slice as this is not possible in reverse order
  1017. draw_slice(s, height);
  1018. break;
  1019. default:
  1020. av_log(avctx, AV_LOG_ERROR,
  1021. "prediction type not supported!\n");
  1022. }
  1023. }else{
  1024. av_log(avctx, AV_LOG_ERROR,
  1025. "BGR24 output is not implemented yet\n");
  1026. return -1;
  1027. }
  1028. }
  1029. emms_c();
  1030. *picture = *p;
  1031. *data_size = sizeof(AVFrame);
  1032. return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
  1033. }
  1034. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1035. static int common_end(HYuvContext *s)
  1036. {
  1037. int i;
  1038. for(i = 0; i < 3; i++) {
  1039. av_freep(&s->temp[i]);
  1040. }
  1041. return 0;
  1042. }
  1043. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1044. static av_cold int decode_end(AVCodecContext *avctx)
  1045. {
  1046. HYuvContext *s = avctx->priv_data;
  1047. int i;
  1048. if (s->picture.data[0])
  1049. avctx->release_buffer(avctx, &s->picture);
  1050. common_end(s);
  1051. av_freep(&s->bitstream_buffer);
  1052. for (i = 0; i < 6; i++) {
  1053. ff_free_vlc(&s->vlc[i]);
  1054. }
  1055. return 0;
  1056. }
  1057. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1058. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1059. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1060. const AVFrame *pict, int *got_packet)
  1061. {
  1062. HYuvContext *s = avctx->priv_data;
  1063. const int width = s->width;
  1064. const int width2 = s->width>>1;
  1065. const int height = s->height;
  1066. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1067. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1068. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1069. AVFrame * const p = &s->picture;
  1070. int i, j, size = 0, ret;
  1071. if (!pkt->data &&
  1072. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  1073. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  1074. return ret;
  1075. }
  1076. *p = *pict;
  1077. p->pict_type = AV_PICTURE_TYPE_I;
  1078. p->key_frame = 1;
  1079. if (s->context) {
  1080. for (i = 0; i < 3; i++) {
  1081. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  1082. if (generate_bits_table(s->bits[i], s->len[i]) < 0)
  1083. return -1;
  1084. size += store_table(s, s->len[i], &pkt->data[size]);
  1085. }
  1086. for (i = 0; i < 3; i++)
  1087. for (j = 0; j < 256; j++)
  1088. s->stats[i][j] >>= 1;
  1089. }
  1090. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1091. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  1092. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  1093. int lefty, leftu, leftv, y, cy;
  1094. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  1095. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  1096. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  1097. put_bits(&s->pb, 8, p->data[0][0]);
  1098. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1099. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1100. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1101. encode_422_bitstream(s, 2, width-2);
  1102. if (s->predictor==MEDIAN) {
  1103. int lefttopy, lefttopu, lefttopv;
  1104. cy = y = 1;
  1105. if (s->interlaced) {
  1106. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  1107. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  1108. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  1109. encode_422_bitstream(s, 0, width);
  1110. y++; cy++;
  1111. }
  1112. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  1113. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  1114. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  1115. encode_422_bitstream(s, 0, 4);
  1116. lefttopy = p->data[0][3];
  1117. lefttopu = p->data[1][1];
  1118. lefttopv = p->data[2][1];
  1119. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  1120. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  1121. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  1122. encode_422_bitstream(s, 0, width - 4);
  1123. y++; cy++;
  1124. for (; y < height; y++,cy++) {
  1125. uint8_t *ydst, *udst, *vdst;
  1126. if (s->bitstream_bpp == 12) {
  1127. while (2 * cy > y) {
  1128. ydst = p->data[0] + p->linesize[0] * y;
  1129. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1130. encode_gray_bitstream(s, width);
  1131. y++;
  1132. }
  1133. if (y >= height) break;
  1134. }
  1135. ydst = p->data[0] + p->linesize[0] * y;
  1136. udst = p->data[1] + p->linesize[1] * cy;
  1137. vdst = p->data[2] + p->linesize[2] * cy;
  1138. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1140. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1141. encode_422_bitstream(s, 0, width);
  1142. }
  1143. } else {
  1144. for (cy = y = 1; y < height; y++, cy++) {
  1145. uint8_t *ydst, *udst, *vdst;
  1146. /* encode a luma only line & y++ */
  1147. if (s->bitstream_bpp == 12) {
  1148. ydst = p->data[0] + p->linesize[0] * y;
  1149. if (s->predictor == PLANE && s->interlaced < y) {
  1150. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1151. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1152. } else {
  1153. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1154. }
  1155. encode_gray_bitstream(s, width);
  1156. y++;
  1157. if (y >= height) break;
  1158. }
  1159. ydst = p->data[0] + p->linesize[0] * y;
  1160. udst = p->data[1] + p->linesize[1] * cy;
  1161. vdst = p->data[2] + p->linesize[2] * cy;
  1162. if (s->predictor == PLANE && s->interlaced < cy) {
  1163. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1164. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1165. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1166. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1167. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1168. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1169. } else {
  1170. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1171. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1172. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1173. }
  1174. encode_422_bitstream(s, 0, width);
  1175. }
  1176. }
  1177. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  1178. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  1179. const int stride = -p->linesize[0];
  1180. const int fake_stride = -fake_ystride;
  1181. int y;
  1182. int leftr, leftg, leftb;
  1183. put_bits(&s->pb, 8, leftr = data[R]);
  1184. put_bits(&s->pb, 8, leftg = data[G]);
  1185. put_bits(&s->pb, 8, leftb = data[B]);
  1186. put_bits(&s->pb, 8, 0);
  1187. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb);
  1188. encode_bgr_bitstream(s, width - 1);
  1189. for (y = 1; y < s->height; y++) {
  1190. uint8_t *dst = data + y*stride;
  1191. if (s->predictor == PLANE && s->interlaced < y) {
  1192. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  1193. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1194. } else {
  1195. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1196. }
  1197. encode_bgr_bitstream(s, width);
  1198. }
  1199. } else {
  1200. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1201. }
  1202. emms_c();
  1203. size += (put_bits_count(&s->pb) + 31) / 8;
  1204. put_bits(&s->pb, 16, 0);
  1205. put_bits(&s->pb, 15, 0);
  1206. size /= 4;
  1207. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  1208. int j;
  1209. char *p = avctx->stats_out;
  1210. char *end = p + 1024*30;
  1211. for (i = 0; i < 3; i++) {
  1212. for (j = 0; j < 256; j++) {
  1213. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1214. p += strlen(p);
  1215. s->stats[i][j]= 0;
  1216. }
  1217. snprintf(p, end-p, "\n");
  1218. p++;
  1219. }
  1220. } else
  1221. avctx->stats_out[0] = '\0';
  1222. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  1223. flush_put_bits(&s->pb);
  1224. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1225. }
  1226. s->picture_number++;
  1227. pkt->size = size * 4;
  1228. pkt->flags |= AV_PKT_FLAG_KEY;
  1229. *got_packet = 1;
  1230. return 0;
  1231. }
  1232. static av_cold int encode_end(AVCodecContext *avctx)
  1233. {
  1234. HYuvContext *s = avctx->priv_data;
  1235. common_end(s);
  1236. av_freep(&avctx->extradata);
  1237. av_freep(&avctx->stats_out);
  1238. return 0;
  1239. }
  1240. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1241. #if CONFIG_HUFFYUV_DECODER
  1242. AVCodec ff_huffyuv_decoder = {
  1243. .name = "huffyuv",
  1244. .type = AVMEDIA_TYPE_VIDEO,
  1245. .id = AV_CODEC_ID_HUFFYUV,
  1246. .priv_data_size = sizeof(HYuvContext),
  1247. .init = decode_init,
  1248. .close = decode_end,
  1249. .decode = decode_frame,
  1250. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1251. CODEC_CAP_FRAME_THREADS,
  1252. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1253. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1254. };
  1255. #endif
  1256. #if CONFIG_FFVHUFF_DECODER
  1257. AVCodec ff_ffvhuff_decoder = {
  1258. .name = "ffvhuff",
  1259. .type = AVMEDIA_TYPE_VIDEO,
  1260. .id = AV_CODEC_ID_FFVHUFF,
  1261. .priv_data_size = sizeof(HYuvContext),
  1262. .init = decode_init,
  1263. .close = decode_end,
  1264. .decode = decode_frame,
  1265. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1266. CODEC_CAP_FRAME_THREADS,
  1267. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1268. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1269. };
  1270. #endif
  1271. #if CONFIG_HUFFYUV_ENCODER
  1272. AVCodec ff_huffyuv_encoder = {
  1273. .name = "huffyuv",
  1274. .type = AVMEDIA_TYPE_VIDEO,
  1275. .id = AV_CODEC_ID_HUFFYUV,
  1276. .priv_data_size = sizeof(HYuvContext),
  1277. .init = encode_init,
  1278. .encode2 = encode_frame,
  1279. .close = encode_end,
  1280. .pix_fmts = (const enum AVPixelFormat[]){
  1281. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1282. },
  1283. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1284. };
  1285. #endif
  1286. #if CONFIG_FFVHUFF_ENCODER
  1287. AVCodec ff_ffvhuff_encoder = {
  1288. .name = "ffvhuff",
  1289. .type = AVMEDIA_TYPE_VIDEO,
  1290. .id = AV_CODEC_ID_FFVHUFF,
  1291. .priv_data_size = sizeof(HYuvContext),
  1292. .init = encode_init,
  1293. .encode2 = encode_frame,
  1294. .close = encode_end,
  1295. .pix_fmts = (const enum AVPixelFormat[]){
  1296. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1297. },
  1298. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1299. };
  1300. #endif