You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1263 lines
46KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/lfg.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "acelp_filters.h"
  33. #include "acelp_vectors.h"
  34. #include "acelp_pitch_delay.h"
  35. #define AMR_USE_16BIT_TABLES
  36. #include "amr.h"
  37. #include "amrwbdata.h"
  38. typedef struct {
  39. AVFrame avframe; ///< AVFrame for decoded samples
  40. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  41. enum Mode fr_cur_mode; ///< mode index of current frame
  42. uint8_t fr_quality; ///< frame quality index (FQI)
  43. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  44. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  45. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  46. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  47. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  48. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  49. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  50. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  51. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  52. float *excitation; ///< points to current excitation in excitation_buf[]
  53. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  54. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  55. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  56. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  57. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  58. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  59. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  60. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  61. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  62. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  63. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  64. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  65. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  66. float demph_mem[1]; ///< previous value in the de-emphasis filter
  67. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  68. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  69. AVLFG prng; ///< random number generator for white noise excitation
  70. uint8_t first_frame; ///< flag active during decoding of the first frame
  71. } AMRWBContext;
  72. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  73. {
  74. AMRWBContext *ctx = avctx->priv_data;
  75. int i;
  76. if (avctx->channels > 1) {
  77. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  78. return AVERROR_PATCHWELCOME;
  79. }
  80. avctx->channels = 1;
  81. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  82. avctx->sample_rate = 16000;
  83. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  84. av_lfg_init(&ctx->prng, 1);
  85. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  86. ctx->first_frame = 1;
  87. for (i = 0; i < LP_ORDER; i++)
  88. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  89. for (i = 0; i < 4; i++)
  90. ctx->prediction_error[i] = MIN_ENERGY;
  91. avcodec_get_frame_defaults(&ctx->avframe);
  92. avctx->coded_frame = &ctx->avframe;
  93. return 0;
  94. }
  95. /**
  96. * Decode the frame header in the "MIME/storage" format. This format
  97. * is simpler and does not carry the auxiliary frame information.
  98. *
  99. * @param[in] ctx The Context
  100. * @param[in] buf Pointer to the input buffer
  101. *
  102. * @return The decoded header length in bytes
  103. */
  104. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  105. {
  106. /* Decode frame header (1st octet) */
  107. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  108. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  109. return 1;
  110. }
  111. /**
  112. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  113. *
  114. * @param[in] ind Array of 5 indexes
  115. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  116. *
  117. */
  118. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  119. {
  120. int i;
  121. for (i = 0; i < 9; i++)
  122. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  123. for (i = 0; i < 7; i++)
  124. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  125. for (i = 0; i < 5; i++)
  126. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  127. for (i = 0; i < 4; i++)
  128. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  129. for (i = 0; i < 7; i++)
  130. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  131. }
  132. /**
  133. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  134. *
  135. * @param[in] ind Array of 7 indexes
  136. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  137. *
  138. */
  139. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  140. {
  141. int i;
  142. for (i = 0; i < 9; i++)
  143. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 7; i++)
  145. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 3; i++)
  147. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 3; i++)
  151. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  152. for (i = 0; i < 3; i++)
  153. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  154. for (i = 0; i < 4; i++)
  155. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  156. }
  157. /**
  158. * Apply mean and past ISF values using the prediction factor.
  159. * Updates past ISF vector.
  160. *
  161. * @param[in,out] isf_q Current quantized ISF
  162. * @param[in,out] isf_past Past quantized ISF
  163. *
  164. */
  165. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  166. {
  167. int i;
  168. float tmp;
  169. for (i = 0; i < LP_ORDER; i++) {
  170. tmp = isf_q[i];
  171. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  172. isf_q[i] += PRED_FACTOR * isf_past[i];
  173. isf_past[i] = tmp;
  174. }
  175. }
  176. /**
  177. * Interpolate the fourth ISP vector from current and past frames
  178. * to obtain an ISP vector for each subframe.
  179. *
  180. * @param[in,out] isp_q ISPs for each subframe
  181. * @param[in] isp4_past Past ISP for subframe 4
  182. */
  183. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  184. {
  185. int i, k;
  186. for (k = 0; k < 3; k++) {
  187. float c = isfp_inter[k];
  188. for (i = 0; i < LP_ORDER; i++)
  189. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  190. }
  191. }
  192. /**
  193. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  194. * Calculate integer lag and fractional lag always using 1/4 resolution.
  195. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  196. *
  197. * @param[out] lag_int Decoded integer pitch lag
  198. * @param[out] lag_frac Decoded fractional pitch lag
  199. * @param[in] pitch_index Adaptive codebook pitch index
  200. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  201. * @param[in] subframe Current subframe index (0 to 3)
  202. */
  203. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  204. uint8_t *base_lag_int, int subframe)
  205. {
  206. if (subframe == 0 || subframe == 2) {
  207. if (pitch_index < 376) {
  208. *lag_int = (pitch_index + 137) >> 2;
  209. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  210. } else if (pitch_index < 440) {
  211. *lag_int = (pitch_index + 257 - 376) >> 1;
  212. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  213. /* the actual resolution is 1/2 but expressed as 1/4 */
  214. } else {
  215. *lag_int = pitch_index - 280;
  216. *lag_frac = 0;
  217. }
  218. /* minimum lag for next subframe */
  219. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  220. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  221. // XXX: the spec states clearly that *base_lag_int should be
  222. // the nearest integer to *lag_int (minus 8), but the ref code
  223. // actually always uses its floor, I'm following the latter
  224. } else {
  225. *lag_int = (pitch_index + 1) >> 2;
  226. *lag_frac = pitch_index - (*lag_int << 2);
  227. *lag_int += *base_lag_int;
  228. }
  229. }
  230. /**
  231. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  232. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  233. * relative index is used for all subframes except the first.
  234. */
  235. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  236. uint8_t *base_lag_int, int subframe, enum Mode mode)
  237. {
  238. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  239. if (pitch_index < 116) {
  240. *lag_int = (pitch_index + 69) >> 1;
  241. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  242. } else {
  243. *lag_int = pitch_index - 24;
  244. *lag_frac = 0;
  245. }
  246. // XXX: same problem as before
  247. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  248. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  249. } else {
  250. *lag_int = (pitch_index + 1) >> 1;
  251. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  252. *lag_int += *base_lag_int;
  253. }
  254. }
  255. /**
  256. * Find the pitch vector by interpolating the past excitation at the
  257. * pitch delay, which is obtained in this function.
  258. *
  259. * @param[in,out] ctx The context
  260. * @param[in] amr_subframe Current subframe data
  261. * @param[in] subframe Current subframe index (0 to 3)
  262. */
  263. static void decode_pitch_vector(AMRWBContext *ctx,
  264. const AMRWBSubFrame *amr_subframe,
  265. const int subframe)
  266. {
  267. int pitch_lag_int, pitch_lag_frac;
  268. int i;
  269. float *exc = ctx->excitation;
  270. enum Mode mode = ctx->fr_cur_mode;
  271. if (mode <= MODE_8k85) {
  272. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  273. &ctx->base_pitch_lag, subframe, mode);
  274. } else
  275. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  276. &ctx->base_pitch_lag, subframe);
  277. ctx->pitch_lag_int = pitch_lag_int;
  278. pitch_lag_int += pitch_lag_frac > 0;
  279. /* Calculate the pitch vector by interpolating the past excitation at the
  280. pitch lag using a hamming windowed sinc function */
  281. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  282. ac_inter, 4,
  283. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  284. LP_ORDER, AMRWB_SFR_SIZE + 1);
  285. /* Check which pitch signal path should be used
  286. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  287. if (amr_subframe->ltp) {
  288. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  289. } else {
  290. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  291. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  292. 0.18 * exc[i + 1];
  293. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  294. }
  295. }
  296. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  297. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  298. /** Get the bit at specified position */
  299. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  300. /**
  301. * The next six functions decode_[i]p_track decode exactly i pulses
  302. * positions and amplitudes (-1 or 1) in a subframe track using
  303. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  304. *
  305. * The results are given in out[], in which a negative number means
  306. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  307. *
  308. * @param[out] out Output buffer (writes i elements)
  309. * @param[in] code Pulse index (no. of bits varies, see below)
  310. * @param[in] m (log2) Number of potential positions
  311. * @param[in] off Offset for decoded positions
  312. */
  313. static inline void decode_1p_track(int *out, int code, int m, int off)
  314. {
  315. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  316. out[0] = BIT_POS(code, m) ? -pos : pos;
  317. }
  318. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  319. {
  320. int pos0 = BIT_STR(code, m, m) + off;
  321. int pos1 = BIT_STR(code, 0, m) + off;
  322. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  323. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  324. out[1] = pos0 > pos1 ? -out[1] : out[1];
  325. }
  326. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  327. {
  328. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  329. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  330. m - 1, off + half_2p);
  331. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  332. }
  333. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  334. {
  335. int half_4p, subhalf_2p;
  336. int b_offset = 1 << (m - 1);
  337. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  338. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  339. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  340. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  341. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  342. m - 2, off + half_4p + subhalf_2p);
  343. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  344. m - 1, off + half_4p);
  345. break;
  346. case 1: /* 1 pulse in A, 3 pulses in B */
  347. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  348. m - 1, off);
  349. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  350. m - 1, off + b_offset);
  351. break;
  352. case 2: /* 2 pulses in each half */
  353. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  354. m - 1, off);
  355. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  356. m - 1, off + b_offset);
  357. break;
  358. case 3: /* 3 pulses in A, 1 pulse in B */
  359. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  360. m - 1, off);
  361. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  362. m - 1, off + b_offset);
  363. break;
  364. }
  365. }
  366. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  367. {
  368. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  369. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  370. m - 1, off + half_3p);
  371. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  372. }
  373. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  374. {
  375. int b_offset = 1 << (m - 1);
  376. /* which half has more pulses in cases 0 to 2 */
  377. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  378. int half_other = b_offset - half_more;
  379. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  380. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  381. decode_1p_track(out, BIT_STR(code, 0, m),
  382. m - 1, off + half_more);
  383. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  384. m - 1, off + half_more);
  385. break;
  386. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  387. decode_1p_track(out, BIT_STR(code, 0, m),
  388. m - 1, off + half_other);
  389. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  390. m - 1, off + half_more);
  391. break;
  392. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  393. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  394. m - 1, off + half_other);
  395. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  396. m - 1, off + half_more);
  397. break;
  398. case 3: /* 3 pulses in A, 3 pulses in B */
  399. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  400. m - 1, off);
  401. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  402. m - 1, off + b_offset);
  403. break;
  404. }
  405. }
  406. /**
  407. * Decode the algebraic codebook index to pulse positions and signs,
  408. * then construct the algebraic codebook vector.
  409. *
  410. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  411. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  412. * @param[in] pulse_lo LSBs part of the pulse index array
  413. * @param[in] mode Mode of the current frame
  414. */
  415. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  416. const uint16_t *pulse_lo, const enum Mode mode)
  417. {
  418. /* sig_pos stores for each track the decoded pulse position indexes
  419. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  420. int sig_pos[4][6];
  421. int spacing = (mode == MODE_6k60) ? 2 : 4;
  422. int i, j;
  423. switch (mode) {
  424. case MODE_6k60:
  425. for (i = 0; i < 2; i++)
  426. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  427. break;
  428. case MODE_8k85:
  429. for (i = 0; i < 4; i++)
  430. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  431. break;
  432. case MODE_12k65:
  433. for (i = 0; i < 4; i++)
  434. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  435. break;
  436. case MODE_14k25:
  437. for (i = 0; i < 2; i++)
  438. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  439. for (i = 2; i < 4; i++)
  440. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  441. break;
  442. case MODE_15k85:
  443. for (i = 0; i < 4; i++)
  444. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  445. break;
  446. case MODE_18k25:
  447. for (i = 0; i < 4; i++)
  448. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  449. ((int) pulse_hi[i] << 14), 4, 1);
  450. break;
  451. case MODE_19k85:
  452. for (i = 0; i < 2; i++)
  453. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  454. ((int) pulse_hi[i] << 10), 4, 1);
  455. for (i = 2; i < 4; i++)
  456. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  457. ((int) pulse_hi[i] << 14), 4, 1);
  458. break;
  459. case MODE_23k05:
  460. case MODE_23k85:
  461. for (i = 0; i < 4; i++)
  462. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  463. ((int) pulse_hi[i] << 11), 4, 1);
  464. break;
  465. }
  466. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  467. for (i = 0; i < 4; i++)
  468. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  469. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  470. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  471. }
  472. }
  473. /**
  474. * Decode pitch gain and fixed gain correction factor.
  475. *
  476. * @param[in] vq_gain Vector-quantized index for gains
  477. * @param[in] mode Mode of the current frame
  478. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  479. * @param[out] pitch_gain Decoded pitch gain
  480. */
  481. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  482. float *fixed_gain_factor, float *pitch_gain)
  483. {
  484. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  485. qua_gain_7b[vq_gain]);
  486. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  487. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  488. }
  489. /**
  490. * Apply pitch sharpening filters to the fixed codebook vector.
  491. *
  492. * @param[in] ctx The context
  493. * @param[in,out] fixed_vector Fixed codebook excitation
  494. */
  495. // XXX: Spec states this procedure should be applied when the pitch
  496. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  497. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  498. {
  499. int i;
  500. /* Tilt part */
  501. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  502. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  503. /* Periodicity enhancement part */
  504. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  505. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  506. }
  507. /**
  508. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  509. *
  510. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  511. * @param[in] p_gain, f_gain Pitch and fixed gains
  512. */
  513. // XXX: There is something wrong with the precision here! The magnitudes
  514. // of the energies are not correct. Please check the reference code carefully
  515. static float voice_factor(float *p_vector, float p_gain,
  516. float *f_vector, float f_gain)
  517. {
  518. double p_ener = (double) ff_scalarproduct_float_c(p_vector, p_vector,
  519. AMRWB_SFR_SIZE) *
  520. p_gain * p_gain;
  521. double f_ener = (double) ff_scalarproduct_float_c(f_vector, f_vector,
  522. AMRWB_SFR_SIZE) *
  523. f_gain * f_gain;
  524. return (p_ener - f_ener) / (p_ener + f_ener);
  525. }
  526. /**
  527. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  528. * also known as "adaptive phase dispersion".
  529. *
  530. * @param[in] ctx The context
  531. * @param[in,out] fixed_vector Unfiltered fixed vector
  532. * @param[out] buf Space for modified vector if necessary
  533. *
  534. * @return The potentially overwritten filtered fixed vector address
  535. */
  536. static float *anti_sparseness(AMRWBContext *ctx,
  537. float *fixed_vector, float *buf)
  538. {
  539. int ir_filter_nr;
  540. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  541. return fixed_vector;
  542. if (ctx->pitch_gain[0] < 0.6) {
  543. ir_filter_nr = 0; // strong filtering
  544. } else if (ctx->pitch_gain[0] < 0.9) {
  545. ir_filter_nr = 1; // medium filtering
  546. } else
  547. ir_filter_nr = 2; // no filtering
  548. /* detect 'onset' */
  549. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  550. if (ir_filter_nr < 2)
  551. ir_filter_nr++;
  552. } else {
  553. int i, count = 0;
  554. for (i = 0; i < 6; i++)
  555. if (ctx->pitch_gain[i] < 0.6)
  556. count++;
  557. if (count > 2)
  558. ir_filter_nr = 0;
  559. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  560. ir_filter_nr--;
  561. }
  562. /* update ir filter strength history */
  563. ctx->prev_ir_filter_nr = ir_filter_nr;
  564. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  565. if (ir_filter_nr < 2) {
  566. int i;
  567. const float *coef = ir_filters_lookup[ir_filter_nr];
  568. /* Circular convolution code in the reference
  569. * decoder was modified to avoid using one
  570. * extra array. The filtered vector is given by:
  571. *
  572. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  573. */
  574. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  575. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  576. if (fixed_vector[i])
  577. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  578. AMRWB_SFR_SIZE);
  579. fixed_vector = buf;
  580. }
  581. return fixed_vector;
  582. }
  583. /**
  584. * Calculate a stability factor {teta} based on distance between
  585. * current and past isf. A value of 1 shows maximum signal stability.
  586. */
  587. static float stability_factor(const float *isf, const float *isf_past)
  588. {
  589. int i;
  590. float acc = 0.0;
  591. for (i = 0; i < LP_ORDER - 1; i++)
  592. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  593. // XXX: This part is not so clear from the reference code
  594. // the result is more accurate changing the "/ 256" to "* 512"
  595. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  596. }
  597. /**
  598. * Apply a non-linear fixed gain smoothing in order to reduce
  599. * fluctuation in the energy of excitation.
  600. *
  601. * @param[in] fixed_gain Unsmoothed fixed gain
  602. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  603. * @param[in] voice_fac Frame voicing factor
  604. * @param[in] stab_fac Frame stability factor
  605. *
  606. * @return The smoothed gain
  607. */
  608. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  609. float voice_fac, float stab_fac)
  610. {
  611. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  612. float g0;
  613. // XXX: the following fixed-point constants used to in(de)crement
  614. // gain by 1.5dB were taken from the reference code, maybe it could
  615. // be simpler
  616. if (fixed_gain < *prev_tr_gain) {
  617. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  618. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  619. } else
  620. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  621. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  622. *prev_tr_gain = g0; // update next frame threshold
  623. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  624. }
  625. /**
  626. * Filter the fixed_vector to emphasize the higher frequencies.
  627. *
  628. * @param[in,out] fixed_vector Fixed codebook vector
  629. * @param[in] voice_fac Frame voicing factor
  630. */
  631. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  632. {
  633. int i;
  634. float cpe = 0.125 * (1 + voice_fac);
  635. float last = fixed_vector[0]; // holds c(i - 1)
  636. fixed_vector[0] -= cpe * fixed_vector[1];
  637. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  638. float cur = fixed_vector[i];
  639. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  640. last = cur;
  641. }
  642. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  643. }
  644. /**
  645. * Conduct 16th order linear predictive coding synthesis from excitation.
  646. *
  647. * @param[in] ctx Pointer to the AMRWBContext
  648. * @param[in] lpc Pointer to the LPC coefficients
  649. * @param[out] excitation Buffer for synthesis final excitation
  650. * @param[in] fixed_gain Fixed codebook gain for synthesis
  651. * @param[in] fixed_vector Algebraic codebook vector
  652. * @param[in,out] samples Pointer to the output samples and memory
  653. */
  654. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  655. float fixed_gain, const float *fixed_vector,
  656. float *samples)
  657. {
  658. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  659. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  660. /* emphasize pitch vector contribution in low bitrate modes */
  661. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  662. int i;
  663. float energy = ff_scalarproduct_float_c(excitation, excitation,
  664. AMRWB_SFR_SIZE);
  665. // XXX: Weird part in both ref code and spec. A unknown parameter
  666. // {beta} seems to be identical to the current pitch gain
  667. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  668. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  669. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  670. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  671. energy, AMRWB_SFR_SIZE);
  672. }
  673. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  674. AMRWB_SFR_SIZE, LP_ORDER);
  675. }
  676. /**
  677. * Apply to synthesis a de-emphasis filter of the form:
  678. * H(z) = 1 / (1 - m * z^-1)
  679. *
  680. * @param[out] out Output buffer
  681. * @param[in] in Input samples array with in[-1]
  682. * @param[in] m Filter coefficient
  683. * @param[in,out] mem State from last filtering
  684. */
  685. static void de_emphasis(float *out, float *in, float m, float mem[1])
  686. {
  687. int i;
  688. out[0] = in[0] + m * mem[0];
  689. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  690. out[i] = in[i] + out[i - 1] * m;
  691. mem[0] = out[AMRWB_SFR_SIZE - 1];
  692. }
  693. /**
  694. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  695. * a FIR interpolation filter. Uses past data from before *in address.
  696. *
  697. * @param[out] out Buffer for interpolated signal
  698. * @param[in] in Current signal data (length 0.8*o_size)
  699. * @param[in] o_size Output signal length
  700. */
  701. static void upsample_5_4(float *out, const float *in, int o_size)
  702. {
  703. const float *in0 = in - UPS_FIR_SIZE + 1;
  704. int i, j, k;
  705. int int_part = 0, frac_part;
  706. i = 0;
  707. for (j = 0; j < o_size / 5; j++) {
  708. out[i] = in[int_part];
  709. frac_part = 4;
  710. i++;
  711. for (k = 1; k < 5; k++) {
  712. out[i] = ff_scalarproduct_float_c(in0 + int_part,
  713. upsample_fir[4 - frac_part],
  714. UPS_MEM_SIZE);
  715. int_part++;
  716. frac_part--;
  717. i++;
  718. }
  719. }
  720. }
  721. /**
  722. * Calculate the high-band gain based on encoded index (23k85 mode) or
  723. * on the low-band speech signal and the Voice Activity Detection flag.
  724. *
  725. * @param[in] ctx The context
  726. * @param[in] synth LB speech synthesis at 12.8k
  727. * @param[in] hb_idx Gain index for mode 23k85 only
  728. * @param[in] vad VAD flag for the frame
  729. */
  730. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  731. uint16_t hb_idx, uint8_t vad)
  732. {
  733. int wsp = (vad > 0);
  734. float tilt;
  735. if (ctx->fr_cur_mode == MODE_23k85)
  736. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  737. tilt = ff_scalarproduct_float_c(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  738. ff_scalarproduct_float_c(synth, synth, AMRWB_SFR_SIZE);
  739. /* return gain bounded by [0.1, 1.0] */
  740. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  741. }
  742. /**
  743. * Generate the high-band excitation with the same energy from the lower
  744. * one and scaled by the given gain.
  745. *
  746. * @param[in] ctx The context
  747. * @param[out] hb_exc Buffer for the excitation
  748. * @param[in] synth_exc Low-band excitation used for synthesis
  749. * @param[in] hb_gain Wanted excitation gain
  750. */
  751. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  752. const float *synth_exc, float hb_gain)
  753. {
  754. int i;
  755. float energy = ff_scalarproduct_float_c(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  756. /* Generate a white-noise excitation */
  757. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  758. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  759. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  760. energy * hb_gain * hb_gain,
  761. AMRWB_SFR_SIZE_16k);
  762. }
  763. /**
  764. * Calculate the auto-correlation for the ISF difference vector.
  765. */
  766. static float auto_correlation(float *diff_isf, float mean, int lag)
  767. {
  768. int i;
  769. float sum = 0.0;
  770. for (i = 7; i < LP_ORDER - 2; i++) {
  771. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  772. sum += prod * prod;
  773. }
  774. return sum;
  775. }
  776. /**
  777. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  778. * used at mode 6k60 LP filter for the high frequency band.
  779. *
  780. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  781. * values on input
  782. */
  783. static void extrapolate_isf(float isf[LP_ORDER_16k])
  784. {
  785. float diff_isf[LP_ORDER - 2], diff_mean;
  786. float corr_lag[3];
  787. float est, scale;
  788. int i, j, i_max_corr;
  789. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  790. /* Calculate the difference vector */
  791. for (i = 0; i < LP_ORDER - 2; i++)
  792. diff_isf[i] = isf[i + 1] - isf[i];
  793. diff_mean = 0.0;
  794. for (i = 2; i < LP_ORDER - 2; i++)
  795. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  796. /* Find which is the maximum autocorrelation */
  797. i_max_corr = 0;
  798. for (i = 0; i < 3; i++) {
  799. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  800. if (corr_lag[i] > corr_lag[i_max_corr])
  801. i_max_corr = i;
  802. }
  803. i_max_corr++;
  804. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  805. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  806. - isf[i - 2 - i_max_corr];
  807. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  808. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  809. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  810. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  811. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  812. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  813. /* Stability insurance */
  814. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  815. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  816. if (diff_isf[i] > diff_isf[i - 1]) {
  817. diff_isf[i - 1] = 5.0 - diff_isf[i];
  818. } else
  819. diff_isf[i] = 5.0 - diff_isf[i - 1];
  820. }
  821. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  822. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  823. /* Scale the ISF vector for 16000 Hz */
  824. for (i = 0; i < LP_ORDER_16k - 1; i++)
  825. isf[i] *= 0.8;
  826. }
  827. /**
  828. * Spectral expand the LP coefficients using the equation:
  829. * y[i] = x[i] * (gamma ** i)
  830. *
  831. * @param[out] out Output buffer (may use input array)
  832. * @param[in] lpc LP coefficients array
  833. * @param[in] gamma Weighting factor
  834. * @param[in] size LP array size
  835. */
  836. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  837. {
  838. int i;
  839. float fac = gamma;
  840. for (i = 0; i < size; i++) {
  841. out[i] = lpc[i] * fac;
  842. fac *= gamma;
  843. }
  844. }
  845. /**
  846. * Conduct 20th order linear predictive coding synthesis for the high
  847. * frequency band excitation at 16kHz.
  848. *
  849. * @param[in] ctx The context
  850. * @param[in] subframe Current subframe index (0 to 3)
  851. * @param[in,out] samples Pointer to the output speech samples
  852. * @param[in] exc Generated white-noise scaled excitation
  853. * @param[in] isf Current frame isf vector
  854. * @param[in] isf_past Past frame final isf vector
  855. */
  856. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  857. const float *exc, const float *isf, const float *isf_past)
  858. {
  859. float hb_lpc[LP_ORDER_16k];
  860. enum Mode mode = ctx->fr_cur_mode;
  861. if (mode == MODE_6k60) {
  862. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  863. double e_isp[LP_ORDER_16k];
  864. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  865. 1.0 - isfp_inter[subframe], LP_ORDER);
  866. extrapolate_isf(e_isf);
  867. e_isf[LP_ORDER_16k - 1] *= 2.0;
  868. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  869. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  870. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  871. } else {
  872. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  873. }
  874. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  875. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  876. }
  877. /**
  878. * Apply a 15th order filter to high-band samples.
  879. * The filter characteristic depends on the given coefficients.
  880. *
  881. * @param[out] out Buffer for filtered output
  882. * @param[in] fir_coef Filter coefficients
  883. * @param[in,out] mem State from last filtering (updated)
  884. * @param[in] in Input speech data (high-band)
  885. *
  886. * @remark It is safe to pass the same array in in and out parameters
  887. */
  888. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  889. float mem[HB_FIR_SIZE], const float *in)
  890. {
  891. int i, j;
  892. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  893. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  894. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  895. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  896. out[i] = 0.0;
  897. for (j = 0; j <= HB_FIR_SIZE; j++)
  898. out[i] += data[i + j] * fir_coef[j];
  899. }
  900. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  901. }
  902. /**
  903. * Update context state before the next subframe.
  904. */
  905. static void update_sub_state(AMRWBContext *ctx)
  906. {
  907. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  908. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  909. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  910. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  911. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  912. LP_ORDER * sizeof(float));
  913. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  914. UPS_MEM_SIZE * sizeof(float));
  915. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  916. LP_ORDER_16k * sizeof(float));
  917. }
  918. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  919. int *got_frame_ptr, AVPacket *avpkt)
  920. {
  921. AMRWBContext *ctx = avctx->priv_data;
  922. AMRWBFrame *cf = &ctx->frame;
  923. const uint8_t *buf = avpkt->data;
  924. int buf_size = avpkt->size;
  925. int expected_fr_size, header_size;
  926. float *buf_out;
  927. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  928. float fixed_gain_factor; // fixed gain correction factor (gamma)
  929. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  930. float synth_fixed_gain; // the fixed gain that synthesis should use
  931. float voice_fac, stab_fac; // parameters used for gain smoothing
  932. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  933. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  934. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  935. float hb_gain;
  936. int sub, i, ret;
  937. /* get output buffer */
  938. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  939. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  940. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  941. return ret;
  942. }
  943. buf_out = (float *)ctx->avframe.data[0];
  944. header_size = decode_mime_header(ctx, buf);
  945. if (ctx->fr_cur_mode > MODE_SID) {
  946. av_log(avctx, AV_LOG_ERROR,
  947. "Invalid mode %d\n", ctx->fr_cur_mode);
  948. return AVERROR_INVALIDDATA;
  949. }
  950. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  951. if (buf_size < expected_fr_size) {
  952. av_log(avctx, AV_LOG_ERROR,
  953. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  954. *got_frame_ptr = 0;
  955. return AVERROR_INVALIDDATA;
  956. }
  957. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  958. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  959. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  960. av_log_missing_feature(avctx, "SID mode", 1);
  961. return AVERROR_PATCHWELCOME;
  962. }
  963. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  964. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  965. /* Decode the quantized ISF vector */
  966. if (ctx->fr_cur_mode == MODE_6k60) {
  967. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  968. } else {
  969. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  970. }
  971. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  972. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  973. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  974. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  975. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  976. /* Generate a ISP vector for each subframe */
  977. if (ctx->first_frame) {
  978. ctx->first_frame = 0;
  979. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  980. }
  981. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  982. for (sub = 0; sub < 4; sub++)
  983. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  984. for (sub = 0; sub < 4; sub++) {
  985. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  986. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  987. /* Decode adaptive codebook (pitch vector) */
  988. decode_pitch_vector(ctx, cur_subframe, sub);
  989. /* Decode innovative codebook (fixed vector) */
  990. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  991. cur_subframe->pul_il, ctx->fr_cur_mode);
  992. pitch_sharpening(ctx, ctx->fixed_vector);
  993. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  994. &fixed_gain_factor, &ctx->pitch_gain[0]);
  995. ctx->fixed_gain[0] =
  996. ff_amr_set_fixed_gain(fixed_gain_factor,
  997. ff_scalarproduct_float_c(ctx->fixed_vector,
  998. ctx->fixed_vector,
  999. AMRWB_SFR_SIZE) /
  1000. AMRWB_SFR_SIZE,
  1001. ctx->prediction_error,
  1002. ENERGY_MEAN, energy_pred_fac);
  1003. /* Calculate voice factor and store tilt for next subframe */
  1004. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1005. ctx->fixed_vector, ctx->fixed_gain[0]);
  1006. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1007. /* Construct current excitation */
  1008. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1009. ctx->excitation[i] *= ctx->pitch_gain[0];
  1010. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1011. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1012. }
  1013. /* Post-processing of excitation elements */
  1014. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1015. voice_fac, stab_fac);
  1016. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1017. spare_vector);
  1018. pitch_enhancer(synth_fixed_vector, voice_fac);
  1019. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1020. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1021. /* Synthesis speech post-processing */
  1022. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1023. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1024. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1025. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1026. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1027. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1028. AMRWB_SFR_SIZE_16k);
  1029. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1030. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1031. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1032. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1033. hb_gain = find_hb_gain(ctx, hb_samples,
  1034. cur_subframe->hb_gain, cf->vad);
  1035. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1036. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1037. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1038. /* High-band post-processing filters */
  1039. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1040. &ctx->samples_hb[LP_ORDER_16k]);
  1041. if (ctx->fr_cur_mode == MODE_23k85)
  1042. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1043. hb_samples);
  1044. /* Add the low and high frequency bands */
  1045. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1046. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1047. /* Update buffers and history */
  1048. update_sub_state(ctx);
  1049. }
  1050. /* update state for next frame */
  1051. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1052. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1053. *got_frame_ptr = 1;
  1054. *(AVFrame *)data = ctx->avframe;
  1055. return expected_fr_size;
  1056. }
  1057. AVCodec ff_amrwb_decoder = {
  1058. .name = "amrwb",
  1059. .type = AVMEDIA_TYPE_AUDIO,
  1060. .id = AV_CODEC_ID_AMR_WB,
  1061. .priv_data_size = sizeof(AMRWBContext),
  1062. .init = amrwb_decode_init,
  1063. .decode = amrwb_decode_frame,
  1064. .capabilities = CODEC_CAP_DR1,
  1065. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1066. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1067. AV_SAMPLE_FMT_NONE },
  1068. };