You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1080 lines
40KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "libavutil/channel_layout.h"
  42. #include "avcodec.h"
  43. #include "dsputil.h"
  44. #include "libavutil/common.h"
  45. #include "celp_filters.h"
  46. #include "acelp_filters.h"
  47. #include "acelp_vectors.h"
  48. #include "acelp_pitch_delay.h"
  49. #include "lsp.h"
  50. #include "amr.h"
  51. #include "amrnbdata.h"
  52. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  53. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  54. /**
  55. * Scale from constructed speech to [-1,1]
  56. *
  57. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  58. * upscales by two (section 6.2.2).
  59. *
  60. * Fundamentally, this scale is determined by energy_mean through
  61. * the fixed vector contribution to the excitation vector.
  62. */
  63. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  64. /** Prediction factor for 12.2kbit/s mode */
  65. #define PRED_FAC_MODE_12k2 0.65
  66. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  67. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  68. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  69. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  70. #define MIN_ENERGY -14.0
  71. /** Maximum sharpening factor
  72. *
  73. * The specification says 0.8, which should be 13107, but the reference C code
  74. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in bitexact G.729.)
  75. */
  76. #define SHARP_MAX 0.79449462890625
  77. /** Number of impulse response coefficients used for tilt factor */
  78. #define AMR_TILT_RESPONSE 22
  79. /** Tilt factor = 1st reflection coefficient * gamma_t */
  80. #define AMR_TILT_GAMMA_T 0.8
  81. /** Adaptive gain control factor used in post-filter */
  82. #define AMR_AGC_ALPHA 0.9
  83. typedef struct AMRContext {
  84. AVFrame avframe; ///< AVFrame for decoded samples
  85. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  86. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  87. enum Mode cur_frame_mode;
  88. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  89. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  90. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  91. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  92. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  93. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  94. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  95. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  96. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  97. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  98. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  99. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  100. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  101. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  102. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  103. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  104. uint8_t hang_count; ///< the number of subframes since a hangover period started
  105. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  106. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  107. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  108. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  109. float tilt_mem; ///< previous input to tilt compensation filter
  110. float postfilter_agc; ///< previous factor used for adaptive gain control
  111. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  112. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  113. } AMRContext;
  114. /** Double version of ff_weighted_vector_sumf() */
  115. static void weighted_vector_sumd(double *out, const double *in_a,
  116. const double *in_b, double weight_coeff_a,
  117. double weight_coeff_b, int length)
  118. {
  119. int i;
  120. for (i = 0; i < length; i++)
  121. out[i] = weight_coeff_a * in_a[i]
  122. + weight_coeff_b * in_b[i];
  123. }
  124. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  125. {
  126. AMRContext *p = avctx->priv_data;
  127. int i;
  128. if (avctx->channels > 1) {
  129. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  130. return AVERROR_PATCHWELCOME;
  131. }
  132. avctx->channels = 1;
  133. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  134. avctx->sample_rate = 8000;
  135. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  136. // p->excitation always points to the same position in p->excitation_buf
  137. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  138. for (i = 0; i < LP_FILTER_ORDER; i++) {
  139. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  140. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  141. }
  142. for (i = 0; i < 4; i++)
  143. p->prediction_error[i] = MIN_ENERGY;
  144. avcodec_get_frame_defaults(&p->avframe);
  145. avctx->coded_frame = &p->avframe;
  146. return 0;
  147. }
  148. /**
  149. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  150. *
  151. * The order of speech bits is specified by 3GPP TS 26.101.
  152. *
  153. * @param p the context
  154. * @param buf pointer to the input buffer
  155. * @param buf_size size of the input buffer
  156. *
  157. * @return the frame mode
  158. */
  159. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  160. int buf_size)
  161. {
  162. enum Mode mode;
  163. // Decode the first octet.
  164. mode = buf[0] >> 3 & 0x0F; // frame type
  165. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  166. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  167. return NO_DATA;
  168. }
  169. if (mode < MODE_DTX)
  170. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  171. amr_unpacking_bitmaps_per_mode[mode]);
  172. return mode;
  173. }
  174. /// @name AMR pitch LPC coefficient decoding functions
  175. /// @{
  176. /**
  177. * Interpolate the LSF vector (used for fixed gain smoothing).
  178. * The interpolation is done over all four subframes even in MODE_12k2.
  179. *
  180. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  181. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  182. */
  183. static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  184. {
  185. int i;
  186. for (i = 0; i < 4; i++)
  187. ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  188. 0.25 * (3 - i), 0.25 * (i + 1),
  189. LP_FILTER_ORDER);
  190. }
  191. /**
  192. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  193. *
  194. * @param p the context
  195. * @param lsp output LSP vector
  196. * @param lsf_no_r LSF vector without the residual vector added
  197. * @param lsf_quantizer pointers to LSF dictionary tables
  198. * @param quantizer_offset offset in tables
  199. * @param sign for the 3 dictionary table
  200. * @param update store data for computing the next frame's LSFs
  201. */
  202. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  203. const float lsf_no_r[LP_FILTER_ORDER],
  204. const int16_t *lsf_quantizer[5],
  205. const int quantizer_offset,
  206. const int sign, const int update)
  207. {
  208. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  209. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  210. int i;
  211. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  212. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  213. 2 * sizeof(*lsf_r));
  214. if (sign) {
  215. lsf_r[4] *= -1;
  216. lsf_r[5] *= -1;
  217. }
  218. if (update)
  219. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  220. for (i = 0; i < LP_FILTER_ORDER; i++)
  221. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  222. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  223. if (update)
  224. interpolate_lsf(p->lsf_q, lsf_q);
  225. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  226. }
  227. /**
  228. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  229. *
  230. * @param p pointer to the AMRContext
  231. */
  232. static void lsf2lsp_5(AMRContext *p)
  233. {
  234. const uint16_t *lsf_param = p->frame.lsf;
  235. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  236. const int16_t *lsf_quantizer[5];
  237. int i;
  238. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  239. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  240. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  241. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  242. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  243. for (i = 0; i < LP_FILTER_ORDER; i++)
  244. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  245. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  246. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  247. // interpolate LSP vectors at subframes 1 and 3
  248. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  249. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  250. }
  251. /**
  252. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  253. *
  254. * @param p pointer to the AMRContext
  255. */
  256. static void lsf2lsp_3(AMRContext *p)
  257. {
  258. const uint16_t *lsf_param = p->frame.lsf;
  259. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  260. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  261. const int16_t *lsf_quantizer;
  262. int i, j;
  263. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  264. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  265. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  266. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  267. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  268. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  269. // calculate mean-removed LSF vector and add mean
  270. for (i = 0; i < LP_FILTER_ORDER; i++)
  271. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  272. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  273. // store data for computing the next frame's LSFs
  274. interpolate_lsf(p->lsf_q, lsf_q);
  275. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  276. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  277. // interpolate LSP vectors at subframes 1, 2 and 3
  278. for (i = 1; i <= 3; i++)
  279. for(j = 0; j < LP_FILTER_ORDER; j++)
  280. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  281. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  282. }
  283. /// @}
  284. /// @name AMR pitch vector decoding functions
  285. /// @{
  286. /**
  287. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  288. */
  289. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  290. const int prev_lag_int, const int subframe)
  291. {
  292. if (subframe == 0 || subframe == 2) {
  293. if (pitch_index < 463) {
  294. *lag_int = (pitch_index + 107) * 10923 >> 16;
  295. *lag_frac = pitch_index - *lag_int * 6 + 105;
  296. } else {
  297. *lag_int = pitch_index - 368;
  298. *lag_frac = 0;
  299. }
  300. } else {
  301. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  302. *lag_frac = pitch_index - *lag_int * 6 - 3;
  303. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  304. PITCH_DELAY_MAX - 9);
  305. }
  306. }
  307. static void decode_pitch_vector(AMRContext *p,
  308. const AMRNBSubframe *amr_subframe,
  309. const int subframe)
  310. {
  311. int pitch_lag_int, pitch_lag_frac;
  312. enum Mode mode = p->cur_frame_mode;
  313. if (p->cur_frame_mode == MODE_12k2) {
  314. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  315. amr_subframe->p_lag, p->pitch_lag_int,
  316. subframe);
  317. } else
  318. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  319. amr_subframe->p_lag,
  320. p->pitch_lag_int, subframe,
  321. mode != MODE_4k75 && mode != MODE_5k15,
  322. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  323. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  324. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  325. pitch_lag_int += pitch_lag_frac > 0;
  326. /* Calculate the pitch vector by interpolating the past excitation at the
  327. pitch lag using a b60 hamming windowed sinc function. */
  328. ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
  329. ff_b60_sinc, 6,
  330. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  331. 10, AMR_SUBFRAME_SIZE);
  332. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  333. }
  334. /// @}
  335. /// @name AMR algebraic code book (fixed) vector decoding functions
  336. /// @{
  337. /**
  338. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  339. */
  340. static void decode_10bit_pulse(int code, int pulse_position[8],
  341. int i1, int i2, int i3)
  342. {
  343. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  344. // the 3 pulses and the upper 7 bits being coded in base 5
  345. const uint8_t *positions = base_five_table[code >> 3];
  346. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  347. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  348. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  349. }
  350. /**
  351. * Decode the algebraic codebook index to pulse positions and signs and
  352. * construct the algebraic codebook vector for MODE_10k2.
  353. *
  354. * @param fixed_index positions of the eight pulses
  355. * @param fixed_sparse pointer to the algebraic codebook vector
  356. */
  357. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  358. AMRFixed *fixed_sparse)
  359. {
  360. int pulse_position[8];
  361. int i, temp;
  362. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  363. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  364. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  365. // the 2 pulses and the upper 5 bits being coded in base 5
  366. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  367. pulse_position[3] = temp % 5;
  368. pulse_position[7] = temp / 5;
  369. if (pulse_position[7] & 1)
  370. pulse_position[3] = 4 - pulse_position[3];
  371. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  372. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  373. fixed_sparse->n = 8;
  374. for (i = 0; i < 4; i++) {
  375. const int pos1 = (pulse_position[i] << 2) + i;
  376. const int pos2 = (pulse_position[i + 4] << 2) + i;
  377. const float sign = fixed_index[i] ? -1.0 : 1.0;
  378. fixed_sparse->x[i ] = pos1;
  379. fixed_sparse->x[i + 4] = pos2;
  380. fixed_sparse->y[i ] = sign;
  381. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  382. }
  383. }
  384. /**
  385. * Decode the algebraic codebook index to pulse positions and signs,
  386. * then construct the algebraic codebook vector.
  387. *
  388. * nb of pulses | bits encoding pulses
  389. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  390. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  391. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  392. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  393. *
  394. * @param fixed_sparse pointer to the algebraic codebook vector
  395. * @param pulses algebraic codebook indexes
  396. * @param mode mode of the current frame
  397. * @param subframe current subframe number
  398. */
  399. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  400. const enum Mode mode, const int subframe)
  401. {
  402. assert(MODE_4k75 <= mode && mode <= MODE_12k2);
  403. if (mode == MODE_12k2) {
  404. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  405. } else if (mode == MODE_10k2) {
  406. decode_8_pulses_31bits(pulses, fixed_sparse);
  407. } else {
  408. int *pulse_position = fixed_sparse->x;
  409. int i, pulse_subset;
  410. const int fixed_index = pulses[0];
  411. if (mode <= MODE_5k15) {
  412. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  413. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  414. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  415. fixed_sparse->n = 2;
  416. } else if (mode == MODE_5k9) {
  417. pulse_subset = ((fixed_index & 1) << 1) + 1;
  418. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  419. pulse_subset = (fixed_index >> 4) & 3;
  420. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  421. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  422. } else if (mode == MODE_6k7) {
  423. pulse_position[0] = (fixed_index & 7) * 5;
  424. pulse_subset = (fixed_index >> 2) & 2;
  425. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  426. pulse_subset = (fixed_index >> 6) & 2;
  427. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  428. fixed_sparse->n = 3;
  429. } else { // mode <= MODE_7k95
  430. pulse_position[0] = gray_decode[ fixed_index & 7];
  431. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  432. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  433. pulse_subset = (fixed_index >> 9) & 1;
  434. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  435. fixed_sparse->n = 4;
  436. }
  437. for (i = 0; i < fixed_sparse->n; i++)
  438. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  439. }
  440. }
  441. /**
  442. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  443. *
  444. * @param p the context
  445. * @param subframe unpacked amr subframe
  446. * @param mode mode of the current frame
  447. * @param fixed_sparse sparse respresentation of the fixed vector
  448. */
  449. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  450. AMRFixed *fixed_sparse)
  451. {
  452. // The spec suggests the current pitch gain is always used, but in other
  453. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  454. // so the codebook gain cannot depend on the quantized pitch gain.
  455. if (mode == MODE_12k2)
  456. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  457. fixed_sparse->pitch_lag = p->pitch_lag_int;
  458. fixed_sparse->pitch_fac = p->beta;
  459. // Save pitch sharpening factor for the next subframe
  460. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  461. // the fact that the gains for two subframes are jointly quantized.
  462. if (mode != MODE_4k75 || subframe & 1)
  463. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  464. }
  465. /// @}
  466. /// @name AMR gain decoding functions
  467. /// @{
  468. /**
  469. * fixed gain smoothing
  470. * Note that where the spec specifies the "spectrum in the q domain"
  471. * in section 6.1.4, in fact frequencies should be used.
  472. *
  473. * @param p the context
  474. * @param lsf LSFs for the current subframe, in the range [0,1]
  475. * @param lsf_avg averaged LSFs
  476. * @param mode mode of the current frame
  477. *
  478. * @return fixed gain smoothed
  479. */
  480. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  481. const float *lsf_avg, const enum Mode mode)
  482. {
  483. float diff = 0.0;
  484. int i;
  485. for (i = 0; i < LP_FILTER_ORDER; i++)
  486. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  487. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  488. // hangover period.
  489. p->diff_count++;
  490. if (diff <= 0.65)
  491. p->diff_count = 0;
  492. if (p->diff_count > 10) {
  493. p->hang_count = 0;
  494. p->diff_count--; // don't let diff_count overflow
  495. }
  496. if (p->hang_count < 40) {
  497. p->hang_count++;
  498. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  499. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  500. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  501. p->fixed_gain[2] + p->fixed_gain[3] +
  502. p->fixed_gain[4]) * 0.2;
  503. return smoothing_factor * p->fixed_gain[4] +
  504. (1.0 - smoothing_factor) * fixed_gain_mean;
  505. }
  506. return p->fixed_gain[4];
  507. }
  508. /**
  509. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  510. *
  511. * @param p the context
  512. * @param amr_subframe unpacked amr subframe
  513. * @param mode mode of the current frame
  514. * @param subframe current subframe number
  515. * @param fixed_gain_factor decoded gain correction factor
  516. */
  517. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  518. const enum Mode mode, const int subframe,
  519. float *fixed_gain_factor)
  520. {
  521. if (mode == MODE_12k2 || mode == MODE_7k95) {
  522. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  523. * (1.0 / 16384.0);
  524. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  525. * (1.0 / 2048.0);
  526. } else {
  527. const uint16_t *gains;
  528. if (mode >= MODE_6k7) {
  529. gains = gains_high[amr_subframe->p_gain];
  530. } else if (mode >= MODE_5k15) {
  531. gains = gains_low [amr_subframe->p_gain];
  532. } else {
  533. // gain index is only coded in subframes 0,2 for MODE_4k75
  534. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  535. }
  536. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  537. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  538. }
  539. }
  540. /// @}
  541. /// @name AMR preprocessing functions
  542. /// @{
  543. /**
  544. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  545. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  546. *
  547. * @param out vector with filter applied
  548. * @param in source vector
  549. * @param filter phase filter coefficients
  550. *
  551. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  552. */
  553. static void apply_ir_filter(float *out, const AMRFixed *in,
  554. const float *filter)
  555. {
  556. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  557. filter2[AMR_SUBFRAME_SIZE];
  558. int lag = in->pitch_lag;
  559. float fac = in->pitch_fac;
  560. int i;
  561. if (lag < AMR_SUBFRAME_SIZE) {
  562. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  563. AMR_SUBFRAME_SIZE);
  564. if (lag < AMR_SUBFRAME_SIZE >> 1)
  565. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  566. AMR_SUBFRAME_SIZE);
  567. }
  568. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  569. for (i = 0; i < in->n; i++) {
  570. int x = in->x[i];
  571. float y = in->y[i];
  572. const float *filterp;
  573. if (x >= AMR_SUBFRAME_SIZE - lag) {
  574. filterp = filter;
  575. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  576. filterp = filter1;
  577. } else
  578. filterp = filter2;
  579. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  580. }
  581. }
  582. /**
  583. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  584. * Also know as "adaptive phase dispersion".
  585. *
  586. * This implements 3GPP TS 26.090 section 6.1(5).
  587. *
  588. * @param p the context
  589. * @param fixed_sparse algebraic codebook vector
  590. * @param fixed_vector unfiltered fixed vector
  591. * @param fixed_gain smoothed gain
  592. * @param out space for modified vector if necessary
  593. */
  594. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  595. const float *fixed_vector,
  596. float fixed_gain, float *out)
  597. {
  598. int ir_filter_nr;
  599. if (p->pitch_gain[4] < 0.6) {
  600. ir_filter_nr = 0; // strong filtering
  601. } else if (p->pitch_gain[4] < 0.9) {
  602. ir_filter_nr = 1; // medium filtering
  603. } else
  604. ir_filter_nr = 2; // no filtering
  605. // detect 'onset'
  606. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  607. p->ir_filter_onset = 2;
  608. } else if (p->ir_filter_onset)
  609. p->ir_filter_onset--;
  610. if (!p->ir_filter_onset) {
  611. int i, count = 0;
  612. for (i = 0; i < 5; i++)
  613. if (p->pitch_gain[i] < 0.6)
  614. count++;
  615. if (count > 2)
  616. ir_filter_nr = 0;
  617. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  618. ir_filter_nr--;
  619. } else if (ir_filter_nr < 2)
  620. ir_filter_nr++;
  621. // Disable filtering for very low level of fixed_gain.
  622. // Note this step is not specified in the technical description but is in
  623. // the reference source in the function Ph_disp.
  624. if (fixed_gain < 5.0)
  625. ir_filter_nr = 2;
  626. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  627. && ir_filter_nr < 2) {
  628. apply_ir_filter(out, fixed_sparse,
  629. (p->cur_frame_mode == MODE_7k95 ?
  630. ir_filters_lookup_MODE_7k95 :
  631. ir_filters_lookup)[ir_filter_nr]);
  632. fixed_vector = out;
  633. }
  634. // update ir filter strength history
  635. p->prev_ir_filter_nr = ir_filter_nr;
  636. p->prev_sparse_fixed_gain = fixed_gain;
  637. return fixed_vector;
  638. }
  639. /// @}
  640. /// @name AMR synthesis functions
  641. /// @{
  642. /**
  643. * Conduct 10th order linear predictive coding synthesis.
  644. *
  645. * @param p pointer to the AMRContext
  646. * @param lpc pointer to the LPC coefficients
  647. * @param fixed_gain fixed codebook gain for synthesis
  648. * @param fixed_vector algebraic codebook vector
  649. * @param samples pointer to the output speech samples
  650. * @param overflow 16-bit overflow flag
  651. */
  652. static int synthesis(AMRContext *p, float *lpc,
  653. float fixed_gain, const float *fixed_vector,
  654. float *samples, uint8_t overflow)
  655. {
  656. int i;
  657. float excitation[AMR_SUBFRAME_SIZE];
  658. // if an overflow has been detected, the pitch vector is scaled down by a
  659. // factor of 4
  660. if (overflow)
  661. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  662. p->pitch_vector[i] *= 0.25;
  663. ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  664. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  665. // emphasize pitch vector contribution
  666. if (p->pitch_gain[4] > 0.5 && !overflow) {
  667. float energy = ff_scalarproduct_float_c(excitation, excitation,
  668. AMR_SUBFRAME_SIZE);
  669. float pitch_factor =
  670. p->pitch_gain[4] *
  671. (p->cur_frame_mode == MODE_12k2 ?
  672. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  673. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  674. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  675. excitation[i] += pitch_factor * p->pitch_vector[i];
  676. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  677. AMR_SUBFRAME_SIZE);
  678. }
  679. ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
  680. LP_FILTER_ORDER);
  681. // detect overflow
  682. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  683. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  684. return 1;
  685. }
  686. return 0;
  687. }
  688. /// @}
  689. /// @name AMR update functions
  690. /// @{
  691. /**
  692. * Update buffers and history at the end of decoding a subframe.
  693. *
  694. * @param p pointer to the AMRContext
  695. */
  696. static void update_state(AMRContext *p)
  697. {
  698. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  699. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  700. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  701. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  702. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  703. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  704. LP_FILTER_ORDER * sizeof(float));
  705. }
  706. /// @}
  707. /// @name AMR Postprocessing functions
  708. /// @{
  709. /**
  710. * Get the tilt factor of a formant filter from its transfer function
  711. *
  712. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  713. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  714. */
  715. static float tilt_factor(float *lpc_n, float *lpc_d)
  716. {
  717. float rh0, rh1; // autocorrelation at lag 0 and 1
  718. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  719. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  720. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  721. hf[0] = 1.0;
  722. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  723. ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
  724. LP_FILTER_ORDER);
  725. rh0 = ff_scalarproduct_float_c(hf, hf, AMR_TILT_RESPONSE);
  726. rh1 = ff_scalarproduct_float_c(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  727. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  728. // modes. But in the ref source the tilt is always non-negative.
  729. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  730. }
  731. /**
  732. * Perform adaptive post-filtering to enhance the quality of the speech.
  733. * See section 6.2.1.
  734. *
  735. * @param p pointer to the AMRContext
  736. * @param lpc interpolated LP coefficients for this subframe
  737. * @param buf_out output of the filter
  738. */
  739. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  740. {
  741. int i;
  742. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  743. float speech_gain = ff_scalarproduct_float_c(samples, samples,
  744. AMR_SUBFRAME_SIZE);
  745. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  746. const float *gamma_n, *gamma_d; // Formant filter factor table
  747. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  748. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  749. gamma_n = ff_pow_0_7;
  750. gamma_d = ff_pow_0_75;
  751. } else {
  752. gamma_n = ff_pow_0_55;
  753. gamma_d = ff_pow_0_7;
  754. }
  755. for (i = 0; i < LP_FILTER_ORDER; i++) {
  756. lpc_n[i] = lpc[i] * gamma_n[i];
  757. lpc_d[i] = lpc[i] * gamma_d[i];
  758. }
  759. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  760. ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  761. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  762. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  763. sizeof(float) * LP_FILTER_ORDER);
  764. ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  765. pole_out + LP_FILTER_ORDER,
  766. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  767. ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
  768. AMR_SUBFRAME_SIZE);
  769. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  770. AMR_AGC_ALPHA, &p->postfilter_agc);
  771. }
  772. /// @}
  773. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  774. int *got_frame_ptr, AVPacket *avpkt)
  775. {
  776. AMRContext *p = avctx->priv_data; // pointer to private data
  777. const uint8_t *buf = avpkt->data;
  778. int buf_size = avpkt->size;
  779. float *buf_out; // pointer to the output data buffer
  780. int i, subframe, ret;
  781. float fixed_gain_factor;
  782. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  783. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  784. float synth_fixed_gain; // the fixed gain that synthesis should use
  785. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  786. /* get output buffer */
  787. p->avframe.nb_samples = AMR_BLOCK_SIZE;
  788. if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
  789. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  790. return ret;
  791. }
  792. buf_out = (float *)p->avframe.data[0];
  793. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  794. if (p->cur_frame_mode == NO_DATA) {
  795. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  796. return AVERROR_INVALIDDATA;
  797. }
  798. if (p->cur_frame_mode == MODE_DTX) {
  799. av_log_missing_feature(avctx, "dtx mode", 1);
  800. return AVERROR_PATCHWELCOME;
  801. }
  802. if (p->cur_frame_mode == MODE_12k2) {
  803. lsf2lsp_5(p);
  804. } else
  805. lsf2lsp_3(p);
  806. for (i = 0; i < 4; i++)
  807. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  808. for (subframe = 0; subframe < 4; subframe++) {
  809. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  810. decode_pitch_vector(p, amr_subframe, subframe);
  811. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  812. p->cur_frame_mode, subframe);
  813. // The fixed gain (section 6.1.3) depends on the fixed vector
  814. // (section 6.1.2), but the fixed vector calculation uses
  815. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  816. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  817. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  818. &fixed_gain_factor);
  819. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  820. if (fixed_sparse.pitch_lag == 0) {
  821. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  822. return AVERROR_INVALIDDATA;
  823. }
  824. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  825. AMR_SUBFRAME_SIZE);
  826. p->fixed_gain[4] =
  827. ff_amr_set_fixed_gain(fixed_gain_factor,
  828. ff_scalarproduct_float_c(p->fixed_vector,
  829. p->fixed_vector,
  830. AMR_SUBFRAME_SIZE) /
  831. AMR_SUBFRAME_SIZE,
  832. p->prediction_error,
  833. energy_mean[p->cur_frame_mode], energy_pred_fac);
  834. // The excitation feedback is calculated without any processing such
  835. // as fixed gain smoothing. This isn't mentioned in the specification.
  836. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  837. p->excitation[i] *= p->pitch_gain[4];
  838. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  839. AMR_SUBFRAME_SIZE);
  840. // In the ref decoder, excitation is stored with no fractional bits.
  841. // This step prevents buzz in silent periods. The ref encoder can
  842. // emit long sequences with pitch factor greater than one. This
  843. // creates unwanted feedback if the excitation vector is nonzero.
  844. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  845. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  846. p->excitation[i] = truncf(p->excitation[i]);
  847. // Smooth fixed gain.
  848. // The specification is ambiguous, but in the reference source, the
  849. // smoothed value is NOT fed back into later fixed gain smoothing.
  850. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  851. p->lsf_avg, p->cur_frame_mode);
  852. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  853. synth_fixed_gain, spare_vector);
  854. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  855. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  856. // overflow detected -> rerun synthesis scaling pitch vector down
  857. // by a factor of 4, skipping pitch vector contribution emphasis
  858. // and adaptive gain control
  859. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  860. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  861. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  862. // update buffers and history
  863. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  864. update_state(p);
  865. }
  866. ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
  867. highpass_poles,
  868. highpass_gain * AMR_SAMPLE_SCALE,
  869. p->high_pass_mem, AMR_BLOCK_SIZE);
  870. /* Update averaged lsf vector (used for fixed gain smoothing).
  871. *
  872. * Note that lsf_avg should not incorporate the current frame's LSFs
  873. * for fixed_gain_smooth.
  874. * The specification has an incorrect formula: the reference decoder uses
  875. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  876. ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  877. 0.84, 0.16, LP_FILTER_ORDER);
  878. *got_frame_ptr = 1;
  879. *(AVFrame *)data = p->avframe;
  880. /* return the amount of bytes consumed if everything was OK */
  881. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  882. }
  883. AVCodec ff_amrnb_decoder = {
  884. .name = "amrnb",
  885. .type = AVMEDIA_TYPE_AUDIO,
  886. .id = AV_CODEC_ID_AMR_NB,
  887. .priv_data_size = sizeof(AMRContext),
  888. .init = amrnb_decode_init,
  889. .decode = amrnb_decode_frame,
  890. .capabilities = CODEC_CAP_DR1,
  891. .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
  892. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  893. AV_SAMPLE_FMT_NONE },
  894. };