You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

430 lines
14KB

  1. ;******************************************************************************
  2. ;* x86-optimized horizontal line scaling functions
  3. ;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;*
  5. ;* This file is part of Libav.
  6. ;*
  7. ;* Libav is free software; you can redistribute it and/or
  8. ;* modify it under the terms of the GNU Lesser General Public
  9. ;* License as published by the Free Software Foundation; either
  10. ;* version 2.1 of the License, or (at your option) any later version.
  11. ;*
  12. ;* Libav is distributed in the hope that it will be useful,
  13. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. ;* Lesser General Public License for more details.
  16. ;*
  17. ;* You should have received a copy of the GNU Lesser General Public
  18. ;* License along with Libav; if not, write to the Free Software
  19. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. ;******************************************************************************
  21. %include "x86inc.asm"
  22. %include "x86util.asm"
  23. SECTION_RODATA
  24. max_19bit_int: times 4 dd 0x7ffff
  25. max_19bit_flt: times 4 dd 524287.0
  26. minshort: times 8 dw 0x8000
  27. unicoeff: times 4 dd 0x20000000
  28. SECTION .text
  29. ;-----------------------------------------------------------------------------
  30. ; horizontal line scaling
  31. ;
  32. ; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
  33. ; (SwsContext *c, int{16,32}_t *dst,
  34. ; int dstW, const uint{8,16}_t *src,
  35. ; const int16_t *filter,
  36. ; const int16_t *filterPos, int filterSize);
  37. ;
  38. ; Scale one horizontal line. Input is either 8-bits width or 16-bits width
  39. ; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
  40. ; downscale before multiplying). Filter is 14-bits. Output is either 15bits
  41. ; (in int16_t) or 19bits (in int32_t), as given in $intermediate_nbits. Each
  42. ; output pixel is generated from $filterSize input pixels, the position of
  43. ; the first pixel is given in filterPos[nOutputPixel].
  44. ;-----------------------------------------------------------------------------
  45. ; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, opt, n_args, n_xmm
  46. %macro SCALE_FUNC 7
  47. cglobal hscale%1to%2_%4_%5, %6, 7, %7
  48. %if ARCH_X86_64
  49. movsxd r2, r2d
  50. %endif ; x86-64
  51. %if %2 == 19
  52. %if mmsize == 8 ; mmx
  53. mova m2, [max_19bit_int]
  54. %elifidn %5, sse4
  55. mova m2, [max_19bit_int]
  56. %else ; ssse3/sse2
  57. mova m2, [max_19bit_flt]
  58. %endif ; mmx/sse2/ssse3/sse4
  59. %endif ; %2 == 19
  60. %if %1 == 16
  61. mova m6, [minshort]
  62. mova m7, [unicoeff]
  63. %elif %1 == 8
  64. pxor m3, m3
  65. %endif ; %1 == 8/16
  66. %if %1 == 8
  67. %define movlh movd
  68. %define movbh movh
  69. %define srcmul 1
  70. %else ; %1 == 9-16
  71. %define movlh movq
  72. %define movbh movu
  73. %define srcmul 2
  74. %endif ; %1 == 8/9-16
  75. %ifnidn %3, X
  76. ; setup loop
  77. %if %3 == 8
  78. shl r2, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
  79. %define r2shr 1
  80. %else ; %3 == 4
  81. %define r2shr 0
  82. %endif ; %3 == 8
  83. lea r4, [r4+r2*8]
  84. %if %2 == 15
  85. lea r1, [r1+r2*(2>>r2shr)]
  86. %else ; %2 == 19
  87. lea r1, [r1+r2*(4>>r2shr)]
  88. %endif ; %2 == 15/19
  89. lea r5, [r5+r2*(2>>r2shr)]
  90. neg r2
  91. .loop:
  92. %if %3 == 4 ; filterSize == 4 scaling
  93. ; load 2x4 or 4x4 source pixels into m0/m1
  94. movsx r0, word [r5+r2*2+0] ; filterPos[0]
  95. movsx r6, word [r5+r2*2+2] ; filterPos[1]
  96. movlh m0, [r3+r0*srcmul] ; src[filterPos[0] + {0,1,2,3}]
  97. %if mmsize == 8
  98. movlh m1, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  99. %else ; mmsize == 16
  100. %if %1 > 8
  101. movhps m0, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  102. %else ; %1 == 8
  103. movd m4, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  104. %endif
  105. movsx r0, word [r5+r2*2+4] ; filterPos[2]
  106. movsx r6, word [r5+r2*2+6] ; filterPos[3]
  107. movlh m1, [r3+r0*srcmul] ; src[filterPos[2] + {0,1,2,3}]
  108. %if %1 > 8
  109. movhps m1, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  110. %else ; %1 == 8
  111. movd m5, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  112. punpckldq m0, m4
  113. punpckldq m1, m5
  114. %endif ; %1 == 8 && %5 <= ssse
  115. %endif ; mmsize == 8/16
  116. %if %1 == 8
  117. punpcklbw m0, m3 ; byte -> word
  118. punpcklbw m1, m3 ; byte -> word
  119. %endif ; %1 == 8
  120. ; multiply with filter coefficients
  121. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  122. ; add back 0x8000 * sum(coeffs) after the horizontal add
  123. psubw m0, m6
  124. psubw m1, m6
  125. %endif ; %1 == 16
  126. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  127. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  128. ; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
  129. %if mmsize == 8 ; mmx
  130. movq m4, m0
  131. punpckldq m0, m1
  132. punpckhdq m4, m1
  133. paddd m0, m4
  134. %elifidn %5, sse2
  135. mova m4, m0
  136. shufps m0, m1, 10001000b
  137. shufps m4, m1, 11011101b
  138. paddd m0, m4
  139. %else ; ssse3/sse4
  140. phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
  141. ; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
  142. ; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
  143. ; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
  144. %endif ; mmx/sse2/ssse3/sse4
  145. %else ; %3 == 8, i.e. filterSize == 8 scaling
  146. ; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
  147. movsx r0, word [r5+r2*1+0] ; filterPos[0]
  148. movsx r6, word [r5+r2*1+2] ; filterPos[1]
  149. movbh m0, [r3+ r0 *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
  150. %if mmsize == 8
  151. movbh m1, [r3+(r0+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
  152. movbh m4, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3}]
  153. movbh m5, [r3+(r6+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
  154. %else ; mmsize == 16
  155. movbh m1, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
  156. movsx r0, word [r5+r2*1+4] ; filterPos[2]
  157. movsx r6, word [r5+r2*1+6] ; filterPos[3]
  158. movbh m4, [r3+ r0 *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
  159. movbh m5, [r3+ r6 *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
  160. %endif ; mmsize == 8/16
  161. %if %1 == 8
  162. punpcklbw m0, m3 ; byte -> word
  163. punpcklbw m1, m3 ; byte -> word
  164. punpcklbw m4, m3 ; byte -> word
  165. punpcklbw m5, m3 ; byte -> word
  166. %endif ; %1 == 8
  167. ; multiply
  168. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  169. ; add back 0x8000 * sum(coeffs) after the horizontal add
  170. psubw m0, m6
  171. psubw m1, m6
  172. psubw m4, m6
  173. psubw m5, m6
  174. %endif ; %1 == 16
  175. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  176. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  177. pmaddwd m4, [r4+r2*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
  178. pmaddwd m5, [r4+r2*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
  179. ; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
  180. %if mmsize == 8
  181. paddd m0, m1
  182. paddd m4, m5
  183. movq m1, m0
  184. punpckldq m0, m4
  185. punpckhdq m1, m4
  186. paddd m0, m1
  187. %elifidn %5, sse2
  188. %if %1 == 8
  189. %define mex m6
  190. %else
  191. %define mex m3
  192. %endif
  193. ; emulate horizontal add as transpose + vertical add
  194. mova mex, m0
  195. punpckldq m0, m1
  196. punpckhdq mex, m1
  197. paddd m0, mex
  198. mova m1, m4
  199. punpckldq m4, m5
  200. punpckhdq m1, m5
  201. paddd m4, m1
  202. mova m1, m0
  203. punpcklqdq m0, m4
  204. punpckhqdq m1, m4
  205. paddd m0, m1
  206. %else ; ssse3/sse4
  207. ; FIXME if we rearrange the filter in pairs of 4, we can
  208. ; load pixels likewise and use 2 x paddd + phaddd instead
  209. ; of 3 x phaddd here, faster on older cpus
  210. phaddd m0, m1
  211. phaddd m4, m5
  212. phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
  213. ; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
  214. ; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
  215. ; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
  216. %endif ; mmx/sse2/ssse3/sse4
  217. %endif ; %3 == 4/8
  218. %else ; %3 == X, i.e. any filterSize scaling
  219. %ifidn %4, X4
  220. %define r6sub 4
  221. %else ; %4 == X || %4 == X8
  222. %define r6sub 0
  223. %endif ; %4 ==/!= X4
  224. %if ARCH_X86_64
  225. push r12
  226. movsxd r6, r6d ; filterSize
  227. lea r12, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  228. %define src_reg r11
  229. %define r1x r10
  230. %define filter2 r12
  231. %else ; x86-32
  232. lea r0, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  233. mov r6m, r0
  234. %define src_reg r3
  235. %define r1x r1
  236. %define filter2 r6m
  237. %endif ; x86-32/64
  238. lea r5, [r5+r2*2]
  239. %if %2 == 15
  240. lea r1, [r1+r2*2]
  241. %else ; %2 == 19
  242. lea r1, [r1+r2*4]
  243. %endif ; %2 == 15/19
  244. movifnidn r1mp, r1
  245. neg r2
  246. .loop:
  247. movsx r0, word [r5+r2*2+0] ; filterPos[0]
  248. movsx r1x, word [r5+r2*2+2] ; filterPos[1]
  249. ; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
  250. pxor m4, m4
  251. pxor m5, m5
  252. mov src_reg, r3mp
  253. .innerloop:
  254. ; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
  255. movbh m0, [src_reg+r0 *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
  256. movbh m1, [src_reg+(r1x+r6sub)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
  257. %if %1 == 8
  258. punpcklbw m0, m3
  259. punpcklbw m1, m3
  260. %endif ; %1 == 8
  261. ; multiply
  262. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  263. ; add back 0x8000 * sum(coeffs) after the horizontal add
  264. psubw m0, m6
  265. psubw m1, m6
  266. %endif ; %1 == 16
  267. pmaddwd m0, [r4 ] ; filter[{0,1,2,3(,4,5,6,7)}]
  268. pmaddwd m1, [r4+(r6+r6sub)*2] ; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
  269. paddd m4, m0
  270. paddd m5, m1
  271. add r4, mmsize
  272. add src_reg, srcmul*mmsize/2
  273. cmp src_reg, filter2 ; while (src += 4) < &src[filterSize]
  274. jl .innerloop
  275. %ifidn %4, X4
  276. movsx r1x, word [r5+r2*2+2] ; filterPos[1]
  277. movlh m0, [src_reg+r0 *srcmul] ; split last 4 srcpx of dstpx[0]
  278. sub r1x, r6 ; and first 4 srcpx of dstpx[1]
  279. %if %1 > 8
  280. movhps m0, [src_reg+(r1x+r6sub)*srcmul]
  281. %else ; %1 == 8
  282. movd m1, [src_reg+(r1x+r6sub)*srcmul]
  283. punpckldq m0, m1
  284. %endif ; %1 == 8 && %5 <= ssse
  285. %if %1 == 8
  286. punpcklbw m0, m3
  287. %endif ; %1 == 8
  288. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  289. ; add back 0x8000 * sum(coeffs) after the horizontal add
  290. psubw m0, m6
  291. %endif ; %1 == 16
  292. pmaddwd m0, [r4]
  293. %endif ; %4 == X4
  294. lea r4, [r4+(r6+r6sub)*2]
  295. %if mmsize == 8 ; mmx
  296. movq m0, m4
  297. punpckldq m4, m5
  298. punpckhdq m0, m5
  299. paddd m0, m4
  300. %else ; mmsize == 16
  301. %ifidn %5, sse2
  302. mova m1, m4
  303. punpcklqdq m4, m5
  304. punpckhqdq m1, m5
  305. paddd m4, m1
  306. %else ; ssse3/sse4
  307. phaddd m4, m5
  308. %endif ; sse2/ssse3/sse4
  309. %ifidn %4, X4
  310. paddd m4, m0
  311. %endif ; %3 == X4
  312. %ifidn %5, sse2
  313. pshufd m4, m4, 11011000b
  314. movhlps m0, m4
  315. paddd m0, m4
  316. %else ; ssse3/sse4
  317. phaddd m4, m4
  318. SWAP 0, 4
  319. %endif ; sse2/ssse3/sse4
  320. %endif ; mmsize == 8/16
  321. %endif ; %3 ==/!= X
  322. %if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
  323. paddd m0, m7
  324. %endif ; %1 == 16
  325. ; clip, store
  326. psrad m0, 14 + %1 - %2
  327. %ifidn %3, X
  328. movifnidn r1, r1mp
  329. %endif ; %3 == X
  330. %if %2 == 15
  331. packssdw m0, m0
  332. %ifnidn %3, X
  333. movh [r1+r2*(2>>r2shr)], m0
  334. %else ; %3 == X
  335. movd [r1+r2*2], m0
  336. %endif ; %3 ==/!= X
  337. %else ; %2 == 19
  338. %if mmsize == 8
  339. PMINSD_MMX m0, m2, m4
  340. %elifidn %5, sse4
  341. pminsd m0, m2
  342. %else ; sse2/ssse3
  343. cvtdq2ps m0, m0
  344. minps m0, m2
  345. cvtps2dq m0, m0
  346. %endif ; mmx/sse2/ssse3/sse4
  347. %ifnidn %3, X
  348. mova [r1+r2*(4>>r2shr)], m0
  349. %else ; %3 == X
  350. movq [r1+r2*4], m0
  351. %endif ; %3 ==/!= X
  352. %endif ; %2 == 15/19
  353. %ifnidn %3, X
  354. add r2, (mmsize<<r2shr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
  355. ; per iteration. see "shl r2,1" above as for why we do this
  356. %else ; %3 == X
  357. add r2, 2
  358. %endif ; %3 ==/!= X
  359. jl .loop
  360. %ifnidn %3, X
  361. REP_RET
  362. %else ; %3 == X
  363. %if ARCH_X86_64
  364. pop r12
  365. RET
  366. %else ; x86-32
  367. REP_RET
  368. %endif ; x86-32/64
  369. %endif ; %3 ==/!= X
  370. %endmacro
  371. ; SCALE_FUNCS source_width, intermediate_nbits, opt, n_xmm
  372. %macro SCALE_FUNCS 4
  373. SCALE_FUNC %1, %2, 4, 4, %3, 6, %4
  374. SCALE_FUNC %1, %2, 8, 8, %3, 6, %4
  375. %if mmsize == 8
  376. SCALE_FUNC %1, %2, X, X, %3, 7, %4
  377. %else
  378. SCALE_FUNC %1, %2, X, X4, %3, 7, %4
  379. SCALE_FUNC %1, %2, X, X8, %3, 7, %4
  380. %endif
  381. %endmacro
  382. ; SCALE_FUNCS2 opt, 8_xmm_args, 9to10_xmm_args, 16_xmm_args
  383. %macro SCALE_FUNCS2 4
  384. %ifnidn %1, sse4
  385. SCALE_FUNCS 8, 15, %1, %2
  386. SCALE_FUNCS 9, 15, %1, %3
  387. SCALE_FUNCS 10, 15, %1, %3
  388. SCALE_FUNCS 16, 15, %1, %4
  389. %endif ; !sse4
  390. SCALE_FUNCS 8, 19, %1, %2
  391. SCALE_FUNCS 9, 19, %1, %3
  392. SCALE_FUNCS 10, 19, %1, %3
  393. SCALE_FUNCS 16, 19, %1, %4
  394. %endmacro
  395. %if ARCH_X86_32
  396. INIT_MMX
  397. SCALE_FUNCS2 mmx, 0, 0, 0
  398. %endif
  399. INIT_XMM
  400. SCALE_FUNCS2 sse2, 6, 7, 8
  401. SCALE_FUNCS2 ssse3, 6, 6, 8
  402. SCALE_FUNCS2 sse4, 6, 6, 8