You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3048 lines
82KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert @ref{scale} filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. This filter accepts the following options:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item PTS
  157. the presentation timestamp in input
  158. @item PI
  159. Greek PI
  160. @item PHI
  161. golden ratio
  162. @item E
  163. Euler number
  164. @item N
  165. Number of the audio samples pass through the filter so far, starting at 0.
  166. @item S
  167. Number of the audio samples in the current frame.
  168. @item SR
  169. Audio sample rate.
  170. @item STARTPTS
  171. the PTS of the first frame
  172. @item PREV_INPTS
  173. previous input PTS
  174. @item PREV_OUTPTS
  175. previous output PTS
  176. @item RTCTIME
  177. wallclock (RTC) time in microseconds
  178. @item RTCSTART
  179. wallclock (RTC) time at the start of the movie in microseconds
  180. @end table
  181. Some examples follow:
  182. @example
  183. # start counting PTS from zero
  184. asetpts=expr=PTS-STARTPTS
  185. #generate timestamps by counting samples
  186. asetpts=expr=N/SR/TB
  187. # generate timestamps from a "live source" and rebase onto the current timebase
  188. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  189. @end example
  190. @section asettb
  191. Set the timebase to use for the output frames timestamps.
  192. It is mainly useful for testing timebase configuration.
  193. This filter accepts the following parameters:
  194. @table @option
  195. @item expr
  196. The expression which is evaluated into the output timebase.
  197. @end table
  198. The expression can contain the constants @var{PI}, @var{E}, @var{PHI}, @var{AVTB} (the
  199. default timebase), @var{intb} (the input timebase), and @var{sr} (the sample rate,
  200. audio only).
  201. The default value for the input is @var{intb}.
  202. Some examples:
  203. @example
  204. # Set the timebase to 1/25:
  205. settb=1/25
  206. # Set the timebase to 1/10:
  207. settb=0.1
  208. # Set the timebase to 1001/1000:
  209. settb=1+0.001
  210. # Set the timebase to 2*intb:
  211. settb=2*intb
  212. # Set the default timebase value:
  213. settb=AVTB
  214. # Set the timebase to twice the sample rate:
  215. asettb=sr*2
  216. @end example
  217. @section ashowinfo
  218. Show a line containing various information for each input audio frame.
  219. The input audio is not modified.
  220. The shown line contains a sequence of key/value pairs of the form
  221. @var{key}:@var{value}.
  222. A description of each shown parameter follows:
  223. @table @option
  224. @item n
  225. sequential number of the input frame, starting from 0
  226. @item pts
  227. Presentation timestamp of the input frame, in time base units; the time base
  228. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  229. @item pts_time
  230. presentation timestamp of the input frame in seconds
  231. @item fmt
  232. sample format
  233. @item chlayout
  234. channel layout
  235. @item rate
  236. sample rate for the audio frame
  237. @item nb_samples
  238. number of samples (per channel) in the frame
  239. @item checksum
  240. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  241. the data is treated as if all the planes were concatenated.
  242. @item plane_checksums
  243. A list of Adler-32 checksums for each data plane.
  244. @end table
  245. @section asplit
  246. Split input audio into several identical outputs.
  247. The filter accepts a single parameter which specifies the number of outputs. If
  248. unspecified, it defaults to 2.
  249. For example
  250. @example
  251. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  252. @end example
  253. will create 5 copies of the input audio.
  254. @section asyncts
  255. Synchronize audio data with timestamps by squeezing/stretching it and/or
  256. dropping samples/adding silence when needed.
  257. The filter accepts the following named parameters:
  258. @table @option
  259. @item compensate
  260. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  261. by default. When disabled, time gaps are covered with silence.
  262. @item min_delta
  263. Minimum difference between timestamps and audio data (in seconds) to trigger
  264. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  265. this filter, try setting this parameter to 0.
  266. @item max_comp
  267. Maximum compensation in samples per second. Relevant only with compensate=1.
  268. Default value 500.
  269. @item first_pts
  270. Assume the first pts should be this value. The time base is 1 / sample rate.
  271. This allows for padding/trimming at the start of stream. By default, no
  272. assumption is made about the first frame's expected pts, so no padding or
  273. trimming is done. For example, this could be set to 0 to pad the beginning with
  274. silence if an audio stream starts after the video stream or to trim any samples
  275. with a negative pts due to encoder delay.
  276. @end table
  277. @section atrim
  278. Trim the input so that the output contains one continuous subpart of the input.
  279. This filter accepts the following options:
  280. @table @option
  281. @item start
  282. Timestamp (in seconds) of the start of the kept section. I.e. the audio sample
  283. with the timestamp @var{start} will be the first sample in the output.
  284. @item end
  285. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  286. audio sample immediately preceding the one with the timestamp @var{end} will be
  287. the last sample in the output.
  288. @item start_pts
  289. Same as @var{start}, except this option sets the start timestamp in samples
  290. instead of seconds.
  291. @item end_pts
  292. Same as @var{end}, except this option sets the end timestamp in samples instead
  293. of seconds.
  294. @item duration
  295. Maximum duration of the output in seconds.
  296. @item start_sample
  297. Number of the first sample that should be passed to output.
  298. @item end_sample
  299. Number of the first sample that should be dropped.
  300. @end table
  301. Note that the first two sets of the start/end options and the @option{duration}
  302. option look at the frame timestamp, while the _sample options simply count the
  303. samples that pass through the filter. So start/end_pts and start/end_sample will
  304. give different results when the timestamps are wrong, inexact or do not start at
  305. zero. Also note that this filter does not modify the timestamps. If you wish
  306. that the output timestamps start at zero, insert the asetpts filter after the
  307. atrim filter.
  308. If multiple start or end options are set, this filter tries to be greedy and
  309. keep all samples that match at least one of the specified constraints. To keep
  310. only the part that matches all the constraints at once, chain multiple atrim
  311. filters.
  312. The defaults are such that all the input is kept. So it is possible to set e.g.
  313. just the end values to keep everything before the specified time.
  314. Examples:
  315. @itemize
  316. @item
  317. drop everything except the second minute of input
  318. @example
  319. avconv -i INPUT -af atrim=60:120
  320. @end example
  321. @item
  322. keep only the first 1000 samples
  323. @example
  324. avconv -i INPUT -af atrim=end_sample=1000
  325. @end example
  326. @end itemize
  327. @section channelsplit
  328. Split each channel in input audio stream into a separate output stream.
  329. This filter accepts the following named parameters:
  330. @table @option
  331. @item channel_layout
  332. Channel layout of the input stream. Default is "stereo".
  333. @end table
  334. For example, assuming a stereo input MP3 file
  335. @example
  336. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  337. @end example
  338. will create an output Matroska file with two audio streams, one containing only
  339. the left channel and the other the right channel.
  340. To split a 5.1 WAV file into per-channel files
  341. @example
  342. avconv -i in.wav -filter_complex
  343. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  344. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  345. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  346. side_right.wav
  347. @end example
  348. @section channelmap
  349. Remap input channels to new locations.
  350. This filter accepts the following named parameters:
  351. @table @option
  352. @item channel_layout
  353. Channel layout of the output stream.
  354. @item map
  355. Map channels from input to output. The argument is a '|'-separated list of
  356. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  357. @var{in_channel} form. @var{in_channel} can be either the name of the input
  358. channel (e.g. FL for front left) or its index in the input channel layout.
  359. @var{out_channel} is the name of the output channel or its index in the output
  360. channel layout. If @var{out_channel} is not given then it is implicitly an
  361. index, starting with zero and increasing by one for each mapping.
  362. @end table
  363. If no mapping is present, the filter will implicitly map input channels to
  364. output channels preserving index.
  365. For example, assuming a 5.1+downmix input MOV file
  366. @example
  367. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  368. @end example
  369. will create an output WAV file tagged as stereo from the downmix channels of
  370. the input.
  371. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  372. @example
  373. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  374. @end example
  375. @section compand
  376. Compress or expand audio dynamic range.
  377. A description of the accepted options follows.
  378. @table @option
  379. @item attacks
  380. @item decays
  381. Set list of times in seconds for each channel over which the instantaneous level
  382. of the input signal is averaged to determine its volume. @var{attacks} refers to
  383. increase of volume and @var{decays} refers to decrease of volume. For most
  384. situations, the attack time (response to the audio getting louder) should be
  385. shorter than the decay time because the human ear is more sensitive to sudden
  386. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  387. a typical value for decay is 0.8 seconds.
  388. @item points
  389. Set list of points for the transfer function, specified in dB relative to the
  390. maximum possible signal amplitude. Each key points list must be defined using
  391. the following syntax: @code{x0/y0|x1/y1|x2/y2|....}
  392. The input values must be in strictly increasing order but the transfer function
  393. does not have to be monotonically rising. The point @code{0/0} is assumed but
  394. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  395. function are @code{-70/-70|-60/-20}.
  396. @item soft-knee
  397. Set the curve radius in dB for all joints. Defaults to 0.01.
  398. @item gain
  399. Set additional gain in dB to be applied at all points on the transfer function.
  400. This allows easy adjustment of the overall gain. Defaults to 0.
  401. @item volume
  402. Set initial volume in dB to be assumed for each channel when filtering starts.
  403. This permits the user to supply a nominal level initially, so that, for
  404. example, a very large gain is not applied to initial signal levels before the
  405. companding has begun to operate. A typical value for audio which is initially
  406. quiet is -90 dB. Defaults to 0.
  407. @item delay
  408. Set delay in seconds. The input audio is analyzed immediately, but audio is
  409. delayed before being fed to the volume adjuster. Specifying a delay
  410. approximately equal to the attack/decay times allows the filter to effectively
  411. operate in predictive rather than reactive mode. Defaults to 0.
  412. @end table
  413. @subsection Examples
  414. @itemize
  415. @item
  416. Make music with both quiet and loud passages suitable for listening in a noisy
  417. environment:
  418. @example
  419. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  420. @end example
  421. @item
  422. Noise gate for when the noise is at a lower level than the signal:
  423. @example
  424. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  425. @end example
  426. @item
  427. Here is another noise gate, this time for when the noise is at a higher level
  428. than the signal (making it, in some ways, similar to squelch):
  429. @example
  430. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  431. @end example
  432. @end itemize
  433. @section join
  434. Join multiple input streams into one multi-channel stream.
  435. The filter accepts the following named parameters:
  436. @table @option
  437. @item inputs
  438. Number of input streams. Defaults to 2.
  439. @item channel_layout
  440. Desired output channel layout. Defaults to stereo.
  441. @item map
  442. Map channels from inputs to output. The argument is a '|'-separated list of
  443. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  444. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  445. can be either the name of the input channel (e.g. FL for front left) or its
  446. index in the specified input stream. @var{out_channel} is the name of the output
  447. channel.
  448. @end table
  449. The filter will attempt to guess the mappings when those are not specified
  450. explicitly. It does so by first trying to find an unused matching input channel
  451. and if that fails it picks the first unused input channel.
  452. E.g. to join 3 inputs (with properly set channel layouts)
  453. @example
  454. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  455. @end example
  456. To build a 5.1 output from 6 single-channel streams:
  457. @example
  458. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  459. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  460. out
  461. @end example
  462. @section resample
  463. Convert the audio sample format, sample rate and channel layout. This filter is
  464. not meant to be used directly, it is inserted automatically by libavfilter
  465. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  466. conversion.
  467. @section volume
  468. Adjust the input audio volume.
  469. The filter accepts the following named parameters:
  470. @table @option
  471. @item volume
  472. Expresses how the audio volume will be increased or decreased.
  473. Output values are clipped to the maximum value.
  474. The output audio volume is given by the relation:
  475. @example
  476. @var{output_volume} = @var{volume} * @var{input_volume}
  477. @end example
  478. Default value for @var{volume} is 1.0.
  479. @item precision
  480. Mathematical precision.
  481. This determines which input sample formats will be allowed, which affects the
  482. precision of the volume scaling.
  483. @table @option
  484. @item fixed
  485. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  486. @item float
  487. 32-bit floating-point; limits input sample format to FLT. (default)
  488. @item double
  489. 64-bit floating-point; limits input sample format to DBL.
  490. @end table
  491. @item replaygain
  492. Behaviour on encountering ReplayGain side data in input frames.
  493. @table @option
  494. @item drop
  495. Remove ReplayGain side data, ignoring its contents (the default).
  496. @item ignore
  497. Ignore ReplayGain side data, but leave it in the frame.
  498. @item track
  499. Prefer track gain, if present.
  500. @item album
  501. Prefer album gain, if present.
  502. @end table
  503. @item replaygain_preamp
  504. Pre-amplification gain in dB to apply to the selected replaygain gain.
  505. Default value for @var{replaygain_preamp} is 0.0.
  506. @end table
  507. @subsection Examples
  508. @itemize
  509. @item
  510. Halve the input audio volume:
  511. @example
  512. volume=volume=0.5
  513. volume=volume=1/2
  514. volume=volume=-6.0206dB
  515. @end example
  516. @item
  517. Increase input audio power by 6 decibels using fixed-point precision:
  518. @example
  519. volume=volume=6dB:precision=fixed
  520. @end example
  521. @end itemize
  522. @c man end AUDIO FILTERS
  523. @chapter Audio Sources
  524. @c man begin AUDIO SOURCES
  525. Below is a description of the currently available audio sources.
  526. @section anullsrc
  527. Null audio source, never return audio frames. It is mainly useful as a
  528. template and to be employed in analysis / debugging tools.
  529. It accepts as optional parameter a string of the form
  530. @var{sample_rate}:@var{channel_layout}.
  531. @var{sample_rate} specify the sample rate, and defaults to 44100.
  532. @var{channel_layout} specify the channel layout, and can be either an
  533. integer or a string representing a channel layout. The default value
  534. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  535. Check the channel_layout_map definition in
  536. @file{libavutil/channel_layout.c} for the mapping between strings and
  537. channel layout values.
  538. Follow some examples:
  539. @example
  540. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  541. anullsrc=48000:4
  542. # same as
  543. anullsrc=48000:mono
  544. @end example
  545. @section abuffer
  546. Buffer audio frames, and make them available to the filter chain.
  547. This source is not intended to be part of user-supplied graph descriptions but
  548. for insertion by calling programs through the interface defined in
  549. @file{libavfilter/buffersrc.h}.
  550. It accepts the following named parameters:
  551. @table @option
  552. @item time_base
  553. Timebase which will be used for timestamps of submitted frames. It must be
  554. either a floating-point number or in @var{numerator}/@var{denominator} form.
  555. @item sample_rate
  556. Audio sample rate.
  557. @item sample_fmt
  558. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  559. @item channel_layout
  560. Channel layout of the audio data, in the form that can be accepted by
  561. @code{av_get_channel_layout()}.
  562. @end table
  563. All the parameters need to be explicitly defined.
  564. @c man end AUDIO SOURCES
  565. @chapter Audio Sinks
  566. @c man begin AUDIO SINKS
  567. Below is a description of the currently available audio sinks.
  568. @section anullsink
  569. Null audio sink, do absolutely nothing with the input audio. It is
  570. mainly useful as a template and to be employed in analysis / debugging
  571. tools.
  572. @section abuffersink
  573. This sink is intended for programmatic use. Frames that arrive on this sink can
  574. be retrieved by the calling program using the interface defined in
  575. @file{libavfilter/buffersink.h}.
  576. This filter accepts no parameters.
  577. @c man end AUDIO SINKS
  578. @chapter Video Filters
  579. @c man begin VIDEO FILTERS
  580. When you configure your Libav build, you can disable any of the
  581. existing filters using --disable-filters.
  582. The configure output will show the video filters included in your
  583. build.
  584. Below is a description of the currently available video filters.
  585. @section blackframe
  586. Detect frames that are (almost) completely black. Can be useful to
  587. detect chapter transitions or commercials. Output lines consist of
  588. the frame number of the detected frame, the percentage of blackness,
  589. the position in the file if known or -1 and the timestamp in seconds.
  590. In order to display the output lines, you need to set the loglevel at
  591. least to the AV_LOG_INFO value.
  592. The filter accepts the following options:
  593. @table @option
  594. @item amount
  595. The percentage of the pixels that have to be below the threshold, defaults to
  596. 98.
  597. @item threshold
  598. Threshold below which a pixel value is considered black, defaults to 32.
  599. @end table
  600. @section boxblur
  601. Apply boxblur algorithm to the input video.
  602. This filter accepts the following options:
  603. @table @option
  604. @item luma_radius
  605. @item luma_power
  606. @item chroma_radius
  607. @item chroma_power
  608. @item alpha_radius
  609. @item alpha_power
  610. @end table
  611. Chroma and alpha parameters are optional, if not specified they default
  612. to the corresponding values set for @var{luma_radius} and
  613. @var{luma_power}.
  614. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  615. the radius in pixels of the box used for blurring the corresponding
  616. input plane. They are expressions, and can contain the following
  617. constants:
  618. @table @option
  619. @item w, h
  620. the input width and height in pixels
  621. @item cw, ch
  622. the input chroma image width and height in pixels
  623. @item hsub, vsub
  624. horizontal and vertical chroma subsample values. For example for the
  625. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  626. @end table
  627. The radius must be a non-negative number, and must not be greater than
  628. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  629. and of @code{min(cw,ch)/2} for the chroma planes.
  630. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  631. how many times the boxblur filter is applied to the corresponding
  632. plane.
  633. Some examples follow:
  634. @itemize
  635. @item
  636. Apply a boxblur filter with luma, chroma, and alpha radius
  637. set to 2:
  638. @example
  639. boxblur=luma_radius=2:luma_power=1
  640. @end example
  641. @item
  642. Set luma radius to 2, alpha and chroma radius to 0
  643. @example
  644. boxblur=2:1:0:0:0:0
  645. @end example
  646. @item
  647. Set luma and chroma radius to a fraction of the video dimension
  648. @example
  649. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  650. @end example
  651. @end itemize
  652. @section copy
  653. Copy the input source unchanged to the output. Mainly useful for
  654. testing purposes.
  655. @section crop
  656. Crop the input video to given dimensions.
  657. This filter accepts the following options:
  658. @table @option
  659. @item out_w
  660. Width of the output video.
  661. @item out_h
  662. Height of the output video.
  663. @item x
  664. Horizontal position, in the input video, of the left edge of the output video.
  665. @item y
  666. Vertical position, in the input video, of the top edge of the output video.
  667. @end table
  668. The parameters are expressions containing the following constants:
  669. @table @option
  670. @item E, PI, PHI
  671. the corresponding mathematical approximated values for e
  672. (euler number), pi (greek PI), PHI (golden ratio)
  673. @item x, y
  674. the computed values for @var{x} and @var{y}. They are evaluated for
  675. each new frame.
  676. @item in_w, in_h
  677. the input width and height
  678. @item iw, ih
  679. same as @var{in_w} and @var{in_h}
  680. @item out_w, out_h
  681. the output (cropped) width and height
  682. @item ow, oh
  683. same as @var{out_w} and @var{out_h}
  684. @item n
  685. the number of input frame, starting from 0
  686. @item t
  687. timestamp expressed in seconds, NAN if the input timestamp is unknown
  688. @end table
  689. The @var{out_w} and @var{out_h} parameters specify the expressions for
  690. the width and height of the output (cropped) video. They are
  691. evaluated just at the configuration of the filter.
  692. The default value of @var{out_w} is "in_w", and the default value of
  693. @var{out_h} is "in_h".
  694. The expression for @var{out_w} may depend on the value of @var{out_h},
  695. and the expression for @var{out_h} may depend on @var{out_w}, but they
  696. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  697. evaluated after @var{out_w} and @var{out_h}.
  698. The @var{x} and @var{y} parameters specify the expressions for the
  699. position of the top-left corner of the output (non-cropped) area. They
  700. are evaluated for each frame. If the evaluated value is not valid, it
  701. is approximated to the nearest valid value.
  702. The default value of @var{x} is "(in_w-out_w)/2", and the default
  703. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  704. the center of the input image.
  705. The expression for @var{x} may depend on @var{y}, and the expression
  706. for @var{y} may depend on @var{x}.
  707. Follow some examples:
  708. @example
  709. # crop the central input area with size 100x100
  710. crop=out_w=100:out_h=100
  711. # crop the central input area with size 2/3 of the input video
  712. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  713. # crop the input video central square
  714. crop=out_w=in_h
  715. # delimit the rectangle with the top-left corner placed at position
  716. # 100:100 and the right-bottom corner corresponding to the right-bottom
  717. # corner of the input image.
  718. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  719. # crop 10 pixels from the left and right borders, and 20 pixels from
  720. # the top and bottom borders
  721. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  722. # keep only the bottom right quarter of the input image
  723. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  724. # crop height for getting Greek harmony
  725. "crop=out_w=in_w:out_h=1/PHI*in_w"
  726. # trembling effect
  727. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  728. # erratic camera effect depending on timestamp
  729. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  730. # set x depending on the value of y
  731. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  732. @end example
  733. @section cropdetect
  734. Auto-detect crop size.
  735. Calculate necessary cropping parameters and prints the recommended
  736. parameters through the logging system. The detected dimensions
  737. correspond to the non-black area of the input video.
  738. This filter accepts the following options:
  739. @table @option
  740. @item limit
  741. Threshold, which can be optionally specified from nothing (0) to
  742. everything (255), defaults to 24.
  743. @item round
  744. Value which the width/height should be divisible by, defaults to
  745. 16. The offset is automatically adjusted to center the video. Use 2 to
  746. get only even dimensions (needed for 4:2:2 video). 16 is best when
  747. encoding to most video codecs.
  748. @item reset
  749. Counter that determines after how many frames cropdetect will reset
  750. the previously detected largest video area and start over to detect
  751. the current optimal crop area. Defaults to 0.
  752. This can be useful when channel logos distort the video area. 0
  753. indicates never reset and return the largest area encountered during
  754. playback.
  755. @end table
  756. @section delogo
  757. Suppress a TV station logo by a simple interpolation of the surrounding
  758. pixels. Just set a rectangle covering the logo and watch it disappear
  759. (and sometimes something even uglier appear - your mileage may vary).
  760. This filter accepts the following options:
  761. @table @option
  762. @item x, y
  763. Specify the top left corner coordinates of the logo. They must be
  764. specified.
  765. @item w, h
  766. Specify the width and height of the logo to clear. They must be
  767. specified.
  768. @item band, t
  769. Specify the thickness of the fuzzy edge of the rectangle (added to
  770. @var{w} and @var{h}). The default value is 4.
  771. @item show
  772. When set to 1, a green rectangle is drawn on the screen to simplify
  773. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  774. @var{band} is set to 4. The default value is 0.
  775. @end table
  776. Some examples follow.
  777. @itemize
  778. @item
  779. Set a rectangle covering the area with top left corner coordinates 0,0
  780. and size 100x77, setting a band of size 10:
  781. @example
  782. delogo=x=0:y=0:w=100:h=77:band=10
  783. @end example
  784. @end itemize
  785. @section drawbox
  786. Draw a colored box on the input image.
  787. This filter accepts the following options:
  788. @table @option
  789. @item x, y
  790. Specify the top left corner coordinates of the box. Default to 0.
  791. @item width, height
  792. Specify the width and height of the box, if 0 they are interpreted as
  793. the input width and height. Default to 0.
  794. @item color
  795. Specify the color of the box to write, it can be the name of a color
  796. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  797. @end table
  798. Follow some examples:
  799. @example
  800. # draw a black box around the edge of the input image
  801. drawbox
  802. # draw a box with color red and an opacity of 50%
  803. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  804. @end example
  805. @section drawtext
  806. Draw text string or text from specified file on top of video using the
  807. libfreetype library.
  808. To enable compilation of this filter you need to configure Libav with
  809. @code{--enable-libfreetype}.
  810. The filter also recognizes strftime() sequences in the provided text
  811. and expands them accordingly. Check the documentation of strftime().
  812. The description of the accepted parameters follows.
  813. @table @option
  814. @item fontfile
  815. The font file to be used for drawing text. Path must be included.
  816. This parameter is mandatory.
  817. @item text
  818. The text string to be drawn. The text must be a sequence of UTF-8
  819. encoded characters.
  820. This parameter is mandatory if no file is specified with the parameter
  821. @var{textfile}.
  822. @item textfile
  823. A text file containing text to be drawn. The text must be a sequence
  824. of UTF-8 encoded characters.
  825. This parameter is mandatory if no text string is specified with the
  826. parameter @var{text}.
  827. If both text and textfile are specified, an error is thrown.
  828. @item x, y
  829. The offsets where text will be drawn within the video frame.
  830. Relative to the top/left border of the output image.
  831. They accept expressions similar to the @ref{overlay} filter:
  832. @table @option
  833. @item x, y
  834. the computed values for @var{x} and @var{y}. They are evaluated for
  835. each new frame.
  836. @item main_w, main_h
  837. main input width and height
  838. @item W, H
  839. same as @var{main_w} and @var{main_h}
  840. @item text_w, text_h
  841. rendered text width and height
  842. @item w, h
  843. same as @var{text_w} and @var{text_h}
  844. @item n
  845. the number of frames processed, starting from 0
  846. @item t
  847. timestamp expressed in seconds, NAN if the input timestamp is unknown
  848. @end table
  849. The default value of @var{x} and @var{y} is 0.
  850. @item fontsize
  851. The font size to be used for drawing text.
  852. The default value of @var{fontsize} is 16.
  853. @item fontcolor
  854. The color to be used for drawing fonts.
  855. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  856. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  857. The default value of @var{fontcolor} is "black".
  858. @item boxcolor
  859. The color to be used for drawing box around text.
  860. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  861. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  862. The default value of @var{boxcolor} is "white".
  863. @item box
  864. Used to draw a box around text using background color.
  865. Value should be either 1 (enable) or 0 (disable).
  866. The default value of @var{box} is 0.
  867. @item shadowx, shadowy
  868. The x and y offsets for the text shadow position with respect to the
  869. position of the text. They can be either positive or negative
  870. values. Default value for both is "0".
  871. @item shadowcolor
  872. The color to be used for drawing a shadow behind the drawn text. It
  873. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  874. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  875. The default value of @var{shadowcolor} is "black".
  876. @item ft_load_flags
  877. Flags to be used for loading the fonts.
  878. The flags map the corresponding flags supported by libfreetype, and are
  879. a combination of the following values:
  880. @table @var
  881. @item default
  882. @item no_scale
  883. @item no_hinting
  884. @item render
  885. @item no_bitmap
  886. @item vertical_layout
  887. @item force_autohint
  888. @item crop_bitmap
  889. @item pedantic
  890. @item ignore_global_advance_width
  891. @item no_recurse
  892. @item ignore_transform
  893. @item monochrome
  894. @item linear_design
  895. @item no_autohint
  896. @item end table
  897. @end table
  898. Default value is "render".
  899. For more information consult the documentation for the FT_LOAD_*
  900. libfreetype flags.
  901. @item tabsize
  902. The size in number of spaces to use for rendering the tab.
  903. Default value is 4.
  904. @item fix_bounds
  905. If true, check and fix text coords to avoid clipping.
  906. @end table
  907. For example the command:
  908. @example
  909. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  910. @end example
  911. will draw "Test Text" with font FreeSerif, using the default values
  912. for the optional parameters.
  913. The command:
  914. @example
  915. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  916. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  917. @end example
  918. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  919. and y=50 (counting from the top-left corner of the screen), text is
  920. yellow with a red box around it. Both the text and the box have an
  921. opacity of 20%.
  922. Note that the double quotes are not necessary if spaces are not used
  923. within the parameter list.
  924. For more information about libfreetype, check:
  925. @url{http://www.freetype.org/}.
  926. @section fade
  927. Apply fade-in/out effect to input video.
  928. This filter accepts the following options:
  929. @table @option
  930. @item type
  931. The effect type -- can be either "in" for fade-in, or "out" for a fade-out
  932. effect.
  933. @item start_frame
  934. The number of the start frame for starting to apply the fade effect.
  935. @item nb_frames
  936. The number of frames for which the fade effect has to last. At the end of the
  937. fade-in effect the output video will have the same intensity as the input video,
  938. at the end of the fade-out transition the output video will be completely black.
  939. @end table
  940. A few usage examples follow, usable too as test scenarios.
  941. @example
  942. # fade in first 30 frames of video
  943. fade=type=in:nb_frames=30
  944. # fade out last 45 frames of a 200-frame video
  945. fade=type=out:start_frame=155:nb_frames=45
  946. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  947. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  948. # make first 5 frames black, then fade in from frame 5-24
  949. fade=type=in:start_frame=5:nb_frames=20
  950. @end example
  951. @section fieldorder
  952. Transform the field order of the input video.
  953. This filter accepts the following options:
  954. @table @option
  955. @item order
  956. Output field order. Valid values are @var{tff} for top field first or @var{bff}
  957. for bottom field first.
  958. @end table
  959. Default value is "tff".
  960. Transformation is achieved by shifting the picture content up or down
  961. by one line, and filling the remaining line with appropriate picture content.
  962. This method is consistent with most broadcast field order converters.
  963. If the input video is not flagged as being interlaced, or it is already
  964. flagged as being of the required output field order then this filter does
  965. not alter the incoming video.
  966. This filter is very useful when converting to or from PAL DV material,
  967. which is bottom field first.
  968. For example:
  969. @example
  970. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  971. @end example
  972. @section fifo
  973. Buffer input images and send them when they are requested.
  974. This filter is mainly useful when auto-inserted by the libavfilter
  975. framework.
  976. The filter does not take parameters.
  977. @section format
  978. Convert the input video to one of the specified pixel formats.
  979. Libavfilter will try to pick one that is supported for the input to
  980. the next filter.
  981. This filter accepts the following parameters:
  982. @table @option
  983. @item pix_fmts
  984. A '|'-separated list of pixel format names, for example
  985. "pix_fmts=yuv420p|monow|rgb24".
  986. @end table
  987. Some examples follow:
  988. @example
  989. # convert the input video to the format "yuv420p"
  990. format=pix_fmts=yuv420p
  991. # convert the input video to any of the formats in the list
  992. format=pix_fmts=yuv420p|yuv444p|yuv410p
  993. @end example
  994. @anchor{fps}
  995. @section fps
  996. Convert the video to specified constant framerate by duplicating or dropping
  997. frames as necessary.
  998. This filter accepts the following named parameters:
  999. @table @option
  1000. @item fps
  1001. Desired output framerate.
  1002. @item start_time
  1003. Assume the first PTS should be the given value, in seconds. This allows for
  1004. padding/trimming at the start of stream. By default, no assumption is made
  1005. about the first frame's expected PTS, so no padding or trimming is done.
  1006. For example, this could be set to 0 to pad the beginning with duplicates of
  1007. the first frame if a video stream starts after the audio stream or to trim any
  1008. frames with a negative PTS.
  1009. @end table
  1010. @section framepack
  1011. Pack two different video streams into a stereoscopic video, setting proper
  1012. metadata on supported codecs. The two views should have the same size and
  1013. framerate and processing will stop when the shorter video ends. Please note
  1014. that you may conveniently adjust view properties with the @ref{scale} and
  1015. @ref{fps} filters.
  1016. This filter accepts the following named parameters:
  1017. @table @option
  1018. @item format
  1019. Desired packing format. Supported values are:
  1020. @table @option
  1021. @item sbs
  1022. Views are next to each other (default).
  1023. @item tab
  1024. Views are on top of each other.
  1025. @item lines
  1026. Views are packed by line.
  1027. @item columns
  1028. Views are eacked by column.
  1029. @item frameseq
  1030. Views are temporally interleaved.
  1031. @end table
  1032. @end table
  1033. Some examples follow:
  1034. @example
  1035. # Convert left and right views into a frame sequential video.
  1036. avconv -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  1037. # Convert views into a side-by-side video with the same output resolution as the input.
  1038. avconv -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  1039. @end example
  1040. @anchor{frei0r}
  1041. @section frei0r
  1042. Apply a frei0r effect to the input video.
  1043. To enable compilation of this filter you need to install the frei0r
  1044. header and configure Libav with --enable-frei0r.
  1045. This filter accepts the following options:
  1046. @table @option
  1047. @item filter_name
  1048. The name to the frei0r effect to load. If the environment variable
  1049. @env{FREI0R_PATH} is defined, the frei0r effect is searched in each one of the
  1050. directories specified by the colon separated list in @env{FREIOR_PATH},
  1051. otherwise in the standard frei0r paths, which are in this order:
  1052. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1053. @file{/usr/lib/frei0r-1/}.
  1054. @item filter_params
  1055. A '|'-separated list of parameters to pass to the frei0r effect.
  1056. @end table
  1057. A frei0r effect parameter can be a boolean (whose values are specified
  1058. with "y" and "n"), a double, a color (specified by the syntax
  1059. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1060. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1061. description), a position (specified by the syntax @var{X}/@var{Y},
  1062. @var{X} and @var{Y} being float numbers) and a string.
  1063. The number and kind of parameters depend on the loaded effect. If an
  1064. effect parameter is not specified the default value is set.
  1065. Some examples follow:
  1066. @example
  1067. # apply the distort0r effect, set the first two double parameters
  1068. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  1069. # apply the colordistance effect, takes a color as first parameter
  1070. frei0r=colordistance:0.2/0.3/0.4
  1071. frei0r=colordistance:violet
  1072. frei0r=colordistance:0x112233
  1073. # apply the perspective effect, specify the top left and top right
  1074. # image positions
  1075. frei0r=perspective:0.2/0.2|0.8/0.2
  1076. @end example
  1077. For more information see:
  1078. @url{http://piksel.org/frei0r}
  1079. @section gradfun
  1080. Fix the banding artifacts that are sometimes introduced into nearly flat
  1081. regions by truncation to 8bit colordepth.
  1082. Interpolate the gradients that should go where the bands are, and
  1083. dither them.
  1084. This filter is designed for playback only. Do not use it prior to
  1085. lossy compression, because compression tends to lose the dither and
  1086. bring back the bands.
  1087. This filter accepts the following options:
  1088. @table @option
  1089. @item strength
  1090. The maximum amount by which the filter will change any one pixel. Also the
  1091. threshold for detecting nearly flat regions. Acceptable values range from .51 to
  1092. 64, default value is 1.2, out-of-range values will be clipped to the valid
  1093. range.
  1094. @item radius
  1095. The neighborhood to fit the gradient to. A larger radius makes for smoother
  1096. gradients, but also prevents the filter from modifying the pixels near detailed
  1097. regions. Acceptable values are 8-32, default value is 16, out-of-range values
  1098. will be clipped to the valid range.
  1099. @end table
  1100. @example
  1101. # default parameters
  1102. gradfun=strength=1.2:radius=16
  1103. # omitting radius
  1104. gradfun=1.2
  1105. @end example
  1106. @section hflip
  1107. Flip the input video horizontally.
  1108. For example to horizontally flip the input video with @command{avconv}:
  1109. @example
  1110. avconv -i in.avi -vf "hflip" out.avi
  1111. @end example
  1112. @section hqdn3d
  1113. High precision/quality 3d denoise filter. This filter aims to reduce
  1114. image noise producing smooth images and making still images really
  1115. still. It should enhance compressibility.
  1116. It accepts the following optional parameters:
  1117. @table @option
  1118. @item luma_spatial
  1119. a non-negative float number which specifies spatial luma strength,
  1120. defaults to 4.0
  1121. @item chroma_spatial
  1122. a non-negative float number which specifies spatial chroma strength,
  1123. defaults to 3.0*@var{luma_spatial}/4.0
  1124. @item luma_tmp
  1125. a float number which specifies luma temporal strength, defaults to
  1126. 6.0*@var{luma_spatial}/4.0
  1127. @item chroma_tmp
  1128. a float number which specifies chroma temporal strength, defaults to
  1129. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1130. @end table
  1131. @section interlace
  1132. Simple interlacing filter from progressive contents. This interleaves upper (or
  1133. lower) lines from odd frames with lower (or upper) lines from even frames,
  1134. halving the frame rate and preserving image height. A vertical lowpass filter
  1135. is always applied in order to avoid twitter effects and reduce moiré patterns.
  1136. @example
  1137. Original Original New Frame
  1138. Frame 'j' Frame 'j+1' (tff)
  1139. ========== =========== ==================
  1140. Line 0 --------------------> Frame 'j' Line 0
  1141. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1142. Line 2 ---------------------> Frame 'j' Line 2
  1143. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1144. ... ... ...
  1145. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1146. @end example
  1147. It accepts the following optional parameters:
  1148. @table @option
  1149. @item scan
  1150. determines whether the interlaced frame is taken from the even (tff - default)
  1151. or odd (bff) lines of the progressive frame.
  1152. @end table
  1153. @section lut, lutrgb, lutyuv
  1154. Compute a look-up table for binding each pixel component input value
  1155. to an output value, and apply it to input video.
  1156. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1157. to an RGB input video.
  1158. These filters accept the following options:
  1159. @table @option
  1160. @item @var{c0} (first pixel component)
  1161. @item @var{c1} (second pixel component)
  1162. @item @var{c2} (third pixel component)
  1163. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1164. @item @var{r} (red component)
  1165. @item @var{g} (green component)
  1166. @item @var{b} (blue component)
  1167. @item @var{a} (alpha component)
  1168. @item @var{y} (Y/luminance component)
  1169. @item @var{u} (U/Cb component)
  1170. @item @var{v} (V/Cr component)
  1171. @end table
  1172. Each of them specifies the expression to use for computing the lookup table for
  1173. the corresponding pixel component values.
  1174. The exact component associated to each of the @var{c*} options depends on the
  1175. format in input.
  1176. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1177. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1178. The expressions can contain the following constants and functions:
  1179. @table @option
  1180. @item E, PI, PHI
  1181. the corresponding mathematical approximated values for e
  1182. (euler number), pi (greek PI), PHI (golden ratio)
  1183. @item w, h
  1184. the input width and height
  1185. @item val
  1186. input value for the pixel component
  1187. @item clipval
  1188. the input value clipped in the @var{minval}-@var{maxval} range
  1189. @item maxval
  1190. maximum value for the pixel component
  1191. @item minval
  1192. minimum value for the pixel component
  1193. @item negval
  1194. the negated value for the pixel component value clipped in the
  1195. @var{minval}-@var{maxval} range , it corresponds to the expression
  1196. "maxval-clipval+minval"
  1197. @item clip(val)
  1198. the computed value in @var{val} clipped in the
  1199. @var{minval}-@var{maxval} range
  1200. @item gammaval(gamma)
  1201. the computed gamma correction value of the pixel component value
  1202. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1203. expression
  1204. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1205. @end table
  1206. All expressions default to "val".
  1207. Some examples follow:
  1208. @example
  1209. # negate input video
  1210. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1211. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1212. # the above is the same as
  1213. lutrgb="r=negval:g=negval:b=negval"
  1214. lutyuv="y=negval:u=negval:v=negval"
  1215. # negate luminance
  1216. lutyuv=negval
  1217. # remove chroma components, turns the video into a graytone image
  1218. lutyuv="u=128:v=128"
  1219. # apply a luma burning effect
  1220. lutyuv="y=2*val"
  1221. # remove green and blue components
  1222. lutrgb="g=0:b=0"
  1223. # set a constant alpha channel value on input
  1224. format=rgba,lutrgb=a="maxval-minval/2"
  1225. # correct luminance gamma by a 0.5 factor
  1226. lutyuv=y=gammaval(0.5)
  1227. @end example
  1228. @section negate
  1229. Negate input video.
  1230. This filter accepts an integer in input, if non-zero it negates the
  1231. alpha component (if available). The default value in input is 0.
  1232. @section noformat
  1233. Force libavfilter not to use any of the specified pixel formats for the
  1234. input to the next filter.
  1235. This filter accepts the following parameters:
  1236. @table @option
  1237. @item pix_fmts
  1238. A '|'-separated list of pixel format names, for example
  1239. "pix_fmts=yuv420p|monow|rgb24".
  1240. @end table
  1241. Some examples follow:
  1242. @example
  1243. # force libavfilter to use a format different from "yuv420p" for the
  1244. # input to the vflip filter
  1245. noformat=pix_fmts=yuv420p,vflip
  1246. # convert the input video to any of the formats not contained in the list
  1247. noformat=yuv420p|yuv444p|yuv410p
  1248. @end example
  1249. @section null
  1250. Pass the video source unchanged to the output.
  1251. @section ocv
  1252. Apply video transform using libopencv.
  1253. To enable this filter install libopencv library and headers and
  1254. configure Libav with --enable-libopencv.
  1255. This filter accepts the following parameters:
  1256. @table @option
  1257. @item filter_name
  1258. The name of the libopencv filter to apply.
  1259. @item filter_params
  1260. The parameters to pass to the libopencv filter. If not specified the default
  1261. values are assumed.
  1262. @end table
  1263. Refer to the official libopencv documentation for more precise
  1264. information:
  1265. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1266. Follows the list of supported libopencv filters.
  1267. @anchor{dilate}
  1268. @subsection dilate
  1269. Dilate an image by using a specific structuring element.
  1270. This filter corresponds to the libopencv function @code{cvDilate}.
  1271. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1272. @var{struct_el} represents a structuring element, and has the syntax:
  1273. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1274. @var{cols} and @var{rows} represent the number of columns and rows of
  1275. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1276. point, and @var{shape} the shape for the structuring element, and
  1277. can be one of the values "rect", "cross", "ellipse", "custom".
  1278. If the value for @var{shape} is "custom", it must be followed by a
  1279. string of the form "=@var{filename}". The file with name
  1280. @var{filename} is assumed to represent a binary image, with each
  1281. printable character corresponding to a bright pixel. When a custom
  1282. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1283. or columns and rows of the read file are assumed instead.
  1284. The default value for @var{struct_el} is "3x3+0x0/rect".
  1285. @var{nb_iterations} specifies the number of times the transform is
  1286. applied to the image, and defaults to 1.
  1287. Follow some example:
  1288. @example
  1289. # use the default values
  1290. ocv=dilate
  1291. # dilate using a structuring element with a 5x5 cross, iterate two times
  1292. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1293. # read the shape from the file diamond.shape, iterate two times
  1294. # the file diamond.shape may contain a pattern of characters like this:
  1295. # *
  1296. # ***
  1297. # *****
  1298. # ***
  1299. # *
  1300. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1301. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1302. @end example
  1303. @subsection erode
  1304. Erode an image by using a specific structuring element.
  1305. This filter corresponds to the libopencv function @code{cvErode}.
  1306. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1307. with the same syntax and semantics as the @ref{dilate} filter.
  1308. @subsection smooth
  1309. Smooth the input video.
  1310. The filter takes the following parameters:
  1311. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1312. @var{type} is the type of smooth filter to apply, and can be one of
  1313. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1314. "bilateral". The default value is "gaussian".
  1315. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1316. parameters whose meanings depend on smooth type. @var{param1} and
  1317. @var{param2} accept integer positive values or 0, @var{param3} and
  1318. @var{param4} accept float values.
  1319. The default value for @var{param1} is 3, the default value for the
  1320. other parameters is 0.
  1321. These parameters correspond to the parameters assigned to the
  1322. libopencv function @code{cvSmooth}.
  1323. @anchor{overlay}
  1324. @section overlay
  1325. Overlay one video on top of another.
  1326. It takes two inputs and one output, the first input is the "main"
  1327. video on which the second input is overlayed.
  1328. This filter accepts the following parameters:
  1329. @table @option
  1330. @item x
  1331. The horizontal position of the left edge of the overlaid video on the main video.
  1332. @item y
  1333. The vertical position of the top edge of the overlaid video on the main video.
  1334. @end table
  1335. The parameters are expressions containing the following parameters:
  1336. @table @option
  1337. @item main_w, main_h
  1338. main input width and height
  1339. @item W, H
  1340. same as @var{main_w} and @var{main_h}
  1341. @item overlay_w, overlay_h
  1342. overlay input width and height
  1343. @item w, h
  1344. same as @var{overlay_w} and @var{overlay_h}
  1345. @item eof_action
  1346. The action to take when EOF is encountered on the secondary input, accepts one
  1347. of the following values:
  1348. @table @option
  1349. @item repeat
  1350. repeat the last frame (the default)
  1351. @item endall
  1352. end both streams
  1353. @item pass
  1354. pass through the main input
  1355. @end table
  1356. @end table
  1357. Be aware that frames are taken from each input video in timestamp
  1358. order, hence, if their initial timestamps differ, it is a a good idea
  1359. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1360. have them begin in the same zero timestamp, as it does the example for
  1361. the @var{movie} filter.
  1362. Follow some examples:
  1363. @example
  1364. # draw the overlay at 10 pixels from the bottom right
  1365. # corner of the main video.
  1366. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1367. # insert a transparent PNG logo in the bottom left corner of the input
  1368. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1369. # insert 2 different transparent PNG logos (second logo on bottom
  1370. # right corner):
  1371. avconv -i input -i logo1 -i logo2 -filter_complex
  1372. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1373. # add a transparent color layer on top of the main video,
  1374. # WxH specifies the size of the main input to the overlay filter
  1375. color=red@.3:WxH [over]; [in][over] overlay [out]
  1376. # mask 10-20 seconds of a video by applying the delogo filter to a section
  1377. avconv -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  1378. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  1379. masked.avi
  1380. @end example
  1381. You can chain together more overlays but the efficiency of such
  1382. approach is yet to be tested.
  1383. @section pad
  1384. Add paddings to the input image, and places the original input at the
  1385. given coordinates @var{x}, @var{y}.
  1386. This filter accepts the following parameters:
  1387. @table @option
  1388. @item width, height
  1389. Specify the size of the output image with the paddings added. If the
  1390. value for @var{width} or @var{height} is 0, the corresponding input size
  1391. is used for the output.
  1392. The @var{width} expression can reference the value set by the
  1393. @var{height} expression, and vice versa.
  1394. The default value of @var{width} and @var{height} is 0.
  1395. @item x, y
  1396. Specify the offsets where to place the input image in the padded area
  1397. with respect to the top/left border of the output image.
  1398. The @var{x} expression can reference the value set by the @var{y}
  1399. expression, and vice versa.
  1400. The default value of @var{x} and @var{y} is 0.
  1401. @item color
  1402. Specify the color of the padded area, it can be the name of a color
  1403. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1404. The default value of @var{color} is "black".
  1405. @end table
  1406. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1407. expressions containing the following constants:
  1408. @table @option
  1409. @item E, PI, PHI
  1410. the corresponding mathematical approximated values for e
  1411. (euler number), pi (greek PI), phi (golden ratio)
  1412. @item in_w, in_h
  1413. the input video width and height
  1414. @item iw, ih
  1415. same as @var{in_w} and @var{in_h}
  1416. @item out_w, out_h
  1417. the output width and height, that is the size of the padded area as
  1418. specified by the @var{width} and @var{height} expressions
  1419. @item ow, oh
  1420. same as @var{out_w} and @var{out_h}
  1421. @item x, y
  1422. x and y offsets as specified by the @var{x} and @var{y}
  1423. expressions, or NAN if not yet specified
  1424. @item a
  1425. input display aspect ratio, same as @var{iw} / @var{ih}
  1426. @item hsub, vsub
  1427. horizontal and vertical chroma subsample values. For example for the
  1428. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1429. @end table
  1430. Some examples follow:
  1431. @example
  1432. # Add paddings with color "violet" to the input video. Output video
  1433. # size is 640x480, the top-left corner of the input video is placed at
  1434. # column 0, row 40.
  1435. pad=width=640:height=480:x=0:y=40:color=violet
  1436. # pad the input to get an output with dimensions increased bt 3/2,
  1437. # and put the input video at the center of the padded area
  1438. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1439. # pad the input to get a squared output with size equal to the maximum
  1440. # value between the input width and height, and put the input video at
  1441. # the center of the padded area
  1442. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1443. # pad the input to get a final w/h ratio of 16:9
  1444. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1445. # double output size and put the input video in the bottom-right
  1446. # corner of the output padded area
  1447. pad="2*iw:2*ih:ow-iw:oh-ih"
  1448. @end example
  1449. @section pixdesctest
  1450. Pixel format descriptor test filter, mainly useful for internal
  1451. testing. The output video should be equal to the input video.
  1452. For example:
  1453. @example
  1454. format=monow, pixdesctest
  1455. @end example
  1456. can be used to test the monowhite pixel format descriptor definition.
  1457. @anchor{scale}
  1458. @section scale
  1459. Scale the input video and/or convert the image format.
  1460. This filter accepts the following options:
  1461. @table @option
  1462. @item w
  1463. Output video width.
  1464. @item h
  1465. Output video height.
  1466. @end table
  1467. The parameters @var{w} and @var{h} are expressions containing
  1468. the following constants:
  1469. @table @option
  1470. @item E, PI, PHI
  1471. the corresponding mathematical approximated values for e
  1472. (euler number), pi (greek PI), phi (golden ratio)
  1473. @item in_w, in_h
  1474. the input width and height
  1475. @item iw, ih
  1476. same as @var{in_w} and @var{in_h}
  1477. @item out_w, out_h
  1478. the output (cropped) width and height
  1479. @item ow, oh
  1480. same as @var{out_w} and @var{out_h}
  1481. @item a
  1482. same as @var{iw} / @var{ih}
  1483. @item sar
  1484. input sample aspect ratio
  1485. @item dar
  1486. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1487. @item hsub, vsub
  1488. horizontal and vertical chroma subsample values. For example for the
  1489. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1490. @end table
  1491. If the input image format is different from the format requested by
  1492. the next filter, the scale filter will convert the input to the
  1493. requested format.
  1494. If the value for @var{w} or @var{h} is 0, the respective input
  1495. size is used for the output.
  1496. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1497. respective output size, a value that maintains the aspect ratio of the input
  1498. image.
  1499. The default value of @var{w} and @var{h} is 0.
  1500. Some examples follow:
  1501. @example
  1502. # scale the input video to a size of 200x100.
  1503. scale=w=200:h=100
  1504. # scale the input to 2x
  1505. scale=w=2*iw:h=2*ih
  1506. # the above is the same as
  1507. scale=2*in_w:2*in_h
  1508. # scale the input to half size
  1509. scale=w=iw/2:h=ih/2
  1510. # increase the width, and set the height to the same size
  1511. scale=3/2*iw:ow
  1512. # seek for Greek harmony
  1513. scale=iw:1/PHI*iw
  1514. scale=ih*PHI:ih
  1515. # increase the height, and set the width to 3/2 of the height
  1516. scale=w=3/2*oh:h=3/5*ih
  1517. # increase the size, but make the size a multiple of the chroma
  1518. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1519. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1520. scale=w='min(500\, iw*3/2):h=-1'
  1521. @end example
  1522. @section select
  1523. Select frames to pass in output.
  1524. This filter accepts the following options:
  1525. @table @option
  1526. @item expr
  1527. An expression, which is evaluated for each input frame. If the expression is
  1528. evaluated to a non-zero value, the frame is selected and passed to the output,
  1529. otherwise it is discarded.
  1530. @end table
  1531. The expression can contain the following constants:
  1532. @table @option
  1533. @item PI
  1534. Greek PI
  1535. @item PHI
  1536. golden ratio
  1537. @item E
  1538. Euler number
  1539. @item n
  1540. the sequential number of the filtered frame, starting from 0
  1541. @item selected_n
  1542. the sequential number of the selected frame, starting from 0
  1543. @item prev_selected_n
  1544. the sequential number of the last selected frame, NAN if undefined
  1545. @item TB
  1546. timebase of the input timestamps
  1547. @item pts
  1548. the PTS (Presentation TimeStamp) of the filtered video frame,
  1549. expressed in @var{TB} units, NAN if undefined
  1550. @item t
  1551. the PTS (Presentation TimeStamp) of the filtered video frame,
  1552. expressed in seconds, NAN if undefined
  1553. @item prev_pts
  1554. the PTS of the previously filtered video frame, NAN if undefined
  1555. @item prev_selected_pts
  1556. the PTS of the last previously filtered video frame, NAN if undefined
  1557. @item prev_selected_t
  1558. the PTS of the last previously selected video frame, NAN if undefined
  1559. @item start_pts
  1560. the PTS of the first video frame in the video, NAN if undefined
  1561. @item start_t
  1562. the time of the first video frame in the video, NAN if undefined
  1563. @item pict_type
  1564. the type of the filtered frame, can assume one of the following
  1565. values:
  1566. @table @option
  1567. @item I
  1568. @item P
  1569. @item B
  1570. @item S
  1571. @item SI
  1572. @item SP
  1573. @item BI
  1574. @end table
  1575. @item interlace_type
  1576. the frame interlace type, can assume one of the following values:
  1577. @table @option
  1578. @item PROGRESSIVE
  1579. the frame is progressive (not interlaced)
  1580. @item TOPFIRST
  1581. the frame is top-field-first
  1582. @item BOTTOMFIRST
  1583. the frame is bottom-field-first
  1584. @end table
  1585. @item key
  1586. 1 if the filtered frame is a key-frame, 0 otherwise
  1587. @end table
  1588. The default value of the select expression is "1".
  1589. Some examples follow:
  1590. @example
  1591. # select all frames in input
  1592. select
  1593. # the above is the same as:
  1594. select=expr=1
  1595. # skip all frames:
  1596. select=expr=0
  1597. # select only I-frames
  1598. select='expr=eq(pict_type\,I)'
  1599. # select one frame every 100
  1600. select='not(mod(n\,100))'
  1601. # select only frames contained in the 10-20 time interval
  1602. select='gte(t\,10)*lte(t\,20)'
  1603. # select only I frames contained in the 10-20 time interval
  1604. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1605. # select frames with a minimum distance of 10 seconds
  1606. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1607. @end example
  1608. @anchor{setdar}
  1609. @section setdar
  1610. Set the Display Aspect Ratio for the filter output video.
  1611. This is done by changing the specified Sample (aka Pixel) Aspect
  1612. Ratio, according to the following equation:
  1613. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1614. Keep in mind that this filter does not modify the pixel dimensions of
  1615. the video frame. Also the display aspect ratio set by this filter may
  1616. be changed by later filters in the filterchain, e.g. in case of
  1617. scaling or if another "setdar" or a "setsar" filter is applied.
  1618. This filter accepts the following options:
  1619. @table @option
  1620. @item dar
  1621. Output display aspect ratio.
  1622. @end table
  1623. The parameter @var{dar} is an expression containing
  1624. the following constants:
  1625. @table @option
  1626. @item E, PI, PHI
  1627. the corresponding mathematical approximated values for e
  1628. (euler number), pi (greek PI), phi (golden ratio)
  1629. @item w, h
  1630. the input width and height
  1631. @item a
  1632. same as @var{w} / @var{h}
  1633. @item sar
  1634. input sample aspect ratio
  1635. @item dar
  1636. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1637. @item hsub, vsub
  1638. horizontal and vertical chroma subsample values. For example for the
  1639. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1640. @end table
  1641. For example to change the display aspect ratio to 16:9, specify:
  1642. @example
  1643. setdar=dar=16/9
  1644. # the above is equivalent to
  1645. setdar=dar=1.77777
  1646. @end example
  1647. See also the @ref{setsar} filter documentation.
  1648. @section setpts
  1649. Change the PTS (presentation timestamp) of the input video frames.
  1650. This filter accepts the following options:
  1651. @table @option
  1652. @item expr
  1653. The expression which is evaluated for each frame to construct its timestamp.
  1654. @end table
  1655. The expression is evaluated through the eval API and can contain the following
  1656. constants:
  1657. @table @option
  1658. @item PTS
  1659. the presentation timestamp in input
  1660. @item PI
  1661. Greek PI
  1662. @item PHI
  1663. golden ratio
  1664. @item E
  1665. Euler number
  1666. @item N
  1667. the count of the input frame, starting from 0.
  1668. @item STARTPTS
  1669. the PTS of the first video frame
  1670. @item INTERLACED
  1671. tell if the current frame is interlaced
  1672. @item PREV_INPTS
  1673. previous input PTS
  1674. @item PREV_OUTPTS
  1675. previous output PTS
  1676. @item RTCTIME
  1677. wallclock (RTC) time in microseconds
  1678. @item RTCSTART
  1679. wallclock (RTC) time at the start of the movie in microseconds
  1680. @item TB
  1681. timebase of the input timestamps
  1682. @end table
  1683. Some examples follow:
  1684. @example
  1685. # start counting PTS from zero
  1686. setpts=expr=PTS-STARTPTS
  1687. # fast motion
  1688. setpts=expr=0.5*PTS
  1689. # slow motion
  1690. setpts=2.0*PTS
  1691. # fixed rate 25 fps
  1692. setpts=N/(25*TB)
  1693. # fixed rate 25 fps with some jitter
  1694. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1695. # generate timestamps from a "live source" and rebase onto the current timebase
  1696. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1697. @end example
  1698. @anchor{setsar}
  1699. @section setsar
  1700. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1701. Note that as a consequence of the application of this filter, the
  1702. output display aspect ratio will change according to the following
  1703. equation:
  1704. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1705. Keep in mind that the sample aspect ratio set by this filter may be
  1706. changed by later filters in the filterchain, e.g. if another "setsar"
  1707. or a "setdar" filter is applied.
  1708. This filter accepts the following options:
  1709. @table @option
  1710. @item sar
  1711. Output sample aspect ratio.
  1712. @end table
  1713. The parameter @var{sar} is an expression containing
  1714. the following constants:
  1715. @table @option
  1716. @item E, PI, PHI
  1717. the corresponding mathematical approximated values for e
  1718. (euler number), pi (greek PI), phi (golden ratio)
  1719. @item w, h
  1720. the input width and height
  1721. @item a
  1722. same as @var{w} / @var{h}
  1723. @item sar
  1724. input sample aspect ratio
  1725. @item dar
  1726. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1727. @item hsub, vsub
  1728. horizontal and vertical chroma subsample values. For example for the
  1729. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1730. @end table
  1731. For example to change the sample aspect ratio to 10:11, specify:
  1732. @example
  1733. setsar=sar=10/11
  1734. @end example
  1735. @section settb
  1736. Set the timebase to use for the output frames timestamps.
  1737. It is mainly useful for testing timebase configuration.
  1738. This filter accepts the following options:
  1739. @table @option
  1740. @item expr
  1741. The expression which is evaluated into the output timebase.
  1742. @end table
  1743. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1744. default timebase), and "intb" (the input timebase).
  1745. The default value for the input is "intb".
  1746. Follow some examples.
  1747. @example
  1748. # set the timebase to 1/25
  1749. settb=expr=1/25
  1750. # set the timebase to 1/10
  1751. settb=expr=0.1
  1752. #set the timebase to 1001/1000
  1753. settb=1+0.001
  1754. #set the timebase to 2*intb
  1755. settb=2*intb
  1756. #set the default timebase value
  1757. settb=AVTB
  1758. @end example
  1759. @section showinfo
  1760. Show a line containing various information for each input video frame.
  1761. The input video is not modified.
  1762. The shown line contains a sequence of key/value pairs of the form
  1763. @var{key}:@var{value}.
  1764. A description of each shown parameter follows:
  1765. @table @option
  1766. @item n
  1767. sequential number of the input frame, starting from 0
  1768. @item pts
  1769. Presentation TimeStamp of the input frame, expressed as a number of
  1770. time base units. The time base unit depends on the filter input pad.
  1771. @item pts_time
  1772. Presentation TimeStamp of the input frame, expressed as a number of
  1773. seconds
  1774. @item pos
  1775. position of the frame in the input stream, -1 if this information in
  1776. unavailable and/or meaningless (for example in case of synthetic video)
  1777. @item fmt
  1778. pixel format name
  1779. @item sar
  1780. sample aspect ratio of the input frame, expressed in the form
  1781. @var{num}/@var{den}
  1782. @item s
  1783. size of the input frame, expressed in the form
  1784. @var{width}x@var{height}
  1785. @item i
  1786. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1787. for bottom field first)
  1788. @item iskey
  1789. 1 if the frame is a key frame, 0 otherwise
  1790. @item type
  1791. picture type of the input frame ("I" for an I-frame, "P" for a
  1792. P-frame, "B" for a B-frame, "?" for unknown type).
  1793. Check also the documentation of the @code{AVPictureType} enum and of
  1794. the @code{av_get_picture_type_char} function defined in
  1795. @file{libavutil/avutil.h}.
  1796. @item checksum
  1797. Adler-32 checksum of all the planes of the input frame
  1798. @item plane_checksum
  1799. Adler-32 checksum of each plane of the input frame, expressed in the form
  1800. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1801. @end table
  1802. @section shuffleplanes
  1803. Reorder and/or duplicate video planes.
  1804. This filter accepts the following options:
  1805. @table @option
  1806. @item map0
  1807. The index of the input plane to be used as the first output plane.
  1808. @item map1
  1809. The index of the input plane to be used as the second output plane.
  1810. @item map2
  1811. The index of the input plane to be used as the third output plane.
  1812. @item map3
  1813. The index of the input plane to be used as the fourth output plane.
  1814. @end table
  1815. The first plane has the index 0. The default is to keep the input unchanged.
  1816. E.g.
  1817. @example
  1818. avconv -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  1819. @end example
  1820. swaps the second and third planes of the input.
  1821. @section split
  1822. Split input video into several identical outputs.
  1823. The filter accepts a single parameter which specifies the number of outputs. If
  1824. unspecified, it defaults to 2.
  1825. For example
  1826. @example
  1827. avconv -i INPUT -filter_complex split=5 OUTPUT
  1828. @end example
  1829. will create 5 copies of the input video.
  1830. @section transpose
  1831. Transpose rows with columns in the input video and optionally flip it.
  1832. This filter accepts the following options:
  1833. @table @option
  1834. @item dir
  1835. The direction of the transpose.
  1836. @end table
  1837. The direction can assume the following values:
  1838. @table @samp
  1839. @item cclock_flip
  1840. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1841. @example
  1842. L.R L.l
  1843. . . -> . .
  1844. l.r R.r
  1845. @end example
  1846. @item clock
  1847. Rotate by 90 degrees clockwise, that is:
  1848. @example
  1849. L.R l.L
  1850. . . -> . .
  1851. l.r r.R
  1852. @end example
  1853. @item cclock
  1854. Rotate by 90 degrees counterclockwise, that is:
  1855. @example
  1856. L.R R.r
  1857. . . -> . .
  1858. l.r L.l
  1859. @end example
  1860. @item clock_flip
  1861. Rotate by 90 degrees clockwise and vertically flip, that is:
  1862. @example
  1863. L.R r.R
  1864. . . -> . .
  1865. l.r l.L
  1866. @end example
  1867. @end table
  1868. @section trim
  1869. Trim the input so that the output contains one continuous subpart of the input.
  1870. This filter accepts the following options:
  1871. @table @option
  1872. @item start
  1873. Timestamp (in seconds) of the start of the kept section. I.e. the frame with the
  1874. timestamp @var{start} will be the first frame in the output.
  1875. @item end
  1876. Timestamp (in seconds) of the first frame that will be dropped. I.e. the frame
  1877. immediately preceding the one with the timestamp @var{end} will be the last
  1878. frame in the output.
  1879. @item start_pts
  1880. Same as @var{start}, except this option sets the start timestamp in timebase
  1881. units instead of seconds.
  1882. @item end_pts
  1883. Same as @var{end}, except this option sets the end timestamp in timebase units
  1884. instead of seconds.
  1885. @item duration
  1886. Maximum duration of the output in seconds.
  1887. @item start_frame
  1888. Number of the first frame that should be passed to output.
  1889. @item end_frame
  1890. Number of the first frame that should be dropped.
  1891. @end table
  1892. Note that the first two sets of the start/end options and the @option{duration}
  1893. option look at the frame timestamp, while the _frame variants simply count the
  1894. frames that pass through the filter. Also note that this filter does not modify
  1895. the timestamps. If you wish that the output timestamps start at zero, insert a
  1896. setpts filter after the trim filter.
  1897. If multiple start or end options are set, this filter tries to be greedy and
  1898. keep all the frames that match at least one of the specified constraints. To keep
  1899. only the part that matches all the constraints at once, chain multiple trim
  1900. filters.
  1901. The defaults are such that all the input is kept. So it is possible to set e.g.
  1902. just the end values to keep everything before the specified time.
  1903. Examples:
  1904. @itemize
  1905. @item
  1906. drop everything except the second minute of input
  1907. @example
  1908. avconv -i INPUT -vf trim=60:120
  1909. @end example
  1910. @item
  1911. keep only the first second
  1912. @example
  1913. avconv -i INPUT -vf trim=duration=1
  1914. @end example
  1915. @end itemize
  1916. @section unsharp
  1917. Sharpen or blur the input video.
  1918. It accepts the following parameters:
  1919. @table @option
  1920. @item luma_msize_x
  1921. Set the luma matrix horizontal size. It can be an integer between 3
  1922. and 13, default value is 5.
  1923. @item luma_msize_y
  1924. Set the luma matrix vertical size. It can be an integer between 3
  1925. and 13, default value is 5.
  1926. @item luma_amount
  1927. Set the luma effect strength. It can be a float number between -2.0
  1928. and 5.0, default value is 1.0.
  1929. @item chroma_msize_x
  1930. Set the chroma matrix horizontal size. It can be an integer between 3
  1931. and 13, default value is 5.
  1932. @item chroma_msize_y
  1933. Set the chroma matrix vertical size. It can be an integer between 3
  1934. and 13, default value is 5.
  1935. @item chroma_amount
  1936. Set the chroma effect strength. It can be a float number between -2.0
  1937. and 5.0, default value is 0.0.
  1938. @end table
  1939. Negative values for the amount will blur the input video, while positive
  1940. values will sharpen. All parameters are optional and default to the
  1941. equivalent of the string '5:5:1.0:5:5:0.0'.
  1942. @example
  1943. # Strong luma sharpen effect parameters
  1944. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  1945. # Strong blur of both luma and chroma parameters
  1946. unsharp=7:7:-2:7:7:-2
  1947. # Use the default values with @command{avconv}
  1948. ./avconv -i in.avi -vf "unsharp" out.mp4
  1949. @end example
  1950. @section vflip
  1951. Flip the input video vertically.
  1952. @example
  1953. ./avconv -i in.avi -vf "vflip" out.avi
  1954. @end example
  1955. @section yadif
  1956. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1957. filter").
  1958. This filter accepts the following options:
  1959. @table @option
  1960. @item mode
  1961. The interlacing mode to adopt, accepts one of the following values:
  1962. @table @option
  1963. @item 0
  1964. output 1 frame for each frame
  1965. @item 1
  1966. output 1 frame for each field
  1967. @item 2
  1968. like 0 but skips spatial interlacing check
  1969. @item 3
  1970. like 1 but skips spatial interlacing check
  1971. @end table
  1972. Default value is 0.
  1973. @item parity
  1974. The picture field parity assumed for the input interlaced video, accepts one of
  1975. the following values:
  1976. @table @option
  1977. @item 0
  1978. assume top field first
  1979. @item 1
  1980. assume bottom field first
  1981. @item -1
  1982. enable automatic detection
  1983. @end table
  1984. Default value is -1.
  1985. If interlacing is unknown or decoder does not export this information,
  1986. top field first will be assumed.
  1987. @item auto
  1988. Whether deinterlacer should trust the interlaced flag and only deinterlace
  1989. frames marked as interlaced
  1990. @table @option
  1991. @item 0
  1992. deinterlace all frames
  1993. @item 1
  1994. only deinterlace frames marked as interlaced
  1995. @end table
  1996. Default value is 0.
  1997. @end table
  1998. @c man end VIDEO FILTERS
  1999. @chapter Video Sources
  2000. @c man begin VIDEO SOURCES
  2001. Below is a description of the currently available video sources.
  2002. @section buffer
  2003. Buffer video frames, and make them available to the filter chain.
  2004. This source is mainly intended for a programmatic use, in particular
  2005. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2006. This filter accepts the following parameters:
  2007. @table @option
  2008. @item width
  2009. Input video width.
  2010. @item height
  2011. Input video height.
  2012. @item pix_fmt
  2013. Name of the input video pixel format.
  2014. @item time_base
  2015. The time base used for input timestamps.
  2016. @item sar
  2017. Sample (pixel) aspect ratio of the input video.
  2018. @end table
  2019. For example:
  2020. @example
  2021. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  2022. @end example
  2023. will instruct the source to accept video frames with size 320x240 and
  2024. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2025. square pixels (1:1 sample aspect ratio).
  2026. @section color
  2027. Provide an uniformly colored input.
  2028. It accepts the following parameters:
  2029. @table @option
  2030. @item color
  2031. Specify the color of the source. It can be the name of a color (case
  2032. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2033. alpha specifier. The default value is "black".
  2034. @item size
  2035. Specify the size of the sourced video, it may be a string of the form
  2036. @var{width}x@var{height}, or the name of a size abbreviation. The
  2037. default value is "320x240".
  2038. @item framerate
  2039. Specify the frame rate of the sourced video, as the number of frames
  2040. generated per second. It has to be a string in the format
  2041. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2042. number or a valid video frame rate abbreviation. The default value is
  2043. "25".
  2044. @end table
  2045. For example the following graph description will generate a red source
  2046. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2047. frames per second, which will be overlayed over the source connected
  2048. to the pad with identifier "in".
  2049. @example
  2050. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2051. @end example
  2052. @section movie
  2053. Read a video stream from a movie container.
  2054. Note that this source is a hack that bypasses the standard input path. It can be
  2055. useful in applications that do not support arbitrary filter graphs, but its use
  2056. is discouraged in those that do. Specifically in @command{avconv} this filter
  2057. should never be used, the @option{-filter_complex} option fully replaces it.
  2058. This filter accepts the following options:
  2059. @table @option
  2060. @item filename
  2061. The name of the resource to read (not necessarily a file but also a device or a
  2062. stream accessed through some protocol).
  2063. @item format_name, f
  2064. Specifies the format assumed for the movie to read, and can be either
  2065. the name of a container or an input device. If not specified the
  2066. format is guessed from @var{movie_name} or by probing.
  2067. @item seek_point, sp
  2068. Specifies the seek point in seconds, the frames will be output
  2069. starting from this seek point, the parameter is evaluated with
  2070. @code{av_strtod} so the numerical value may be suffixed by an IS
  2071. postfix. Default value is "0".
  2072. @item stream_index, si
  2073. Specifies the index of the video stream to read. If the value is -1,
  2074. the best suited video stream will be automatically selected. Default
  2075. value is "-1".
  2076. @end table
  2077. This filter allows to overlay a second video on top of main input of
  2078. a filtergraph as shown in this graph:
  2079. @example
  2080. input -----------> deltapts0 --> overlay --> output
  2081. ^
  2082. |
  2083. movie --> scale--> deltapts1 -------+
  2084. @end example
  2085. Some examples follow:
  2086. @example
  2087. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2088. # on top of the input labelled as "in".
  2089. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2090. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2091. # read from a video4linux2 device, and overlay it on top of the input
  2092. # labelled as "in"
  2093. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2094. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2095. @end example
  2096. @section nullsrc
  2097. Null video source, never return images. It is mainly useful as a
  2098. template and to be employed in analysis / debugging tools.
  2099. It accepts as optional parameter a string of the form
  2100. @var{width}:@var{height}:@var{timebase}.
  2101. @var{width} and @var{height} specify the size of the configured
  2102. source. The default values of @var{width} and @var{height} are
  2103. respectively 352 and 288 (corresponding to the CIF size format).
  2104. @var{timebase} specifies an arithmetic expression representing a
  2105. timebase. The expression can contain the constants "PI", "E", "PHI",
  2106. "AVTB" (the default timebase), and defaults to the value "AVTB".
  2107. @section frei0r_src
  2108. Provide a frei0r source.
  2109. To enable compilation of this filter you need to install the frei0r
  2110. header and configure Libav with --enable-frei0r.
  2111. This source accepts the following options:
  2112. @table @option
  2113. @item size
  2114. The size of the video to generate, may be a string of the form
  2115. @var{width}x@var{height} or a frame size abbreviation.
  2116. @item framerate
  2117. Framerate of the generated video, may be a string of the form
  2118. @var{num}/@var{den} or a frame rate abbreviation.
  2119. @item filter_name
  2120. The name to the frei0r source to load. For more information regarding frei0r and
  2121. how to set the parameters read the section @ref{frei0r} in the description of
  2122. the video filters.
  2123. @item filter_params
  2124. A '|'-separated list of parameters to pass to the frei0r source.
  2125. @end table
  2126. Some examples follow:
  2127. @example
  2128. # generate a frei0r partik0l source with size 200x200 and framerate 10
  2129. # which is overlayed on the overlay filter main input
  2130. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  2131. @end example
  2132. @section rgbtestsrc, testsrc
  2133. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2134. detecting RGB vs BGR issues. You should see a red, green and blue
  2135. stripe from top to bottom.
  2136. The @code{testsrc} source generates a test video pattern, showing a
  2137. color pattern, a scrolling gradient and a timestamp. This is mainly
  2138. intended for testing purposes.
  2139. The sources accept the following options:
  2140. @table @option
  2141. @item size, s
  2142. Specify the size of the sourced video, it may be a string of the form
  2143. @var{width}x@var{height}, or the name of a size abbreviation. The
  2144. default value is "320x240".
  2145. @item rate, r
  2146. Specify the frame rate of the sourced video, as the number of frames
  2147. generated per second. It has to be a string in the format
  2148. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2149. number or a valid video frame rate abbreviation. The default value is
  2150. "25".
  2151. @item sar
  2152. Set the sample aspect ratio of the sourced video.
  2153. @item duration
  2154. Set the video duration of the sourced video. The accepted syntax is:
  2155. @example
  2156. [-]HH[:MM[:SS[.m...]]]
  2157. [-]S+[.m...]
  2158. @end example
  2159. See also the function @code{av_parse_time()}.
  2160. If not specified, or the expressed duration is negative, the video is
  2161. supposed to be generated forever.
  2162. @end table
  2163. For example the following:
  2164. @example
  2165. testsrc=duration=5.3:size=qcif:rate=10
  2166. @end example
  2167. will generate a video with a duration of 5.3 seconds, with size
  2168. 176x144 and a framerate of 10 frames per second.
  2169. @c man end VIDEO SOURCES
  2170. @chapter Video Sinks
  2171. @c man begin VIDEO SINKS
  2172. Below is a description of the currently available video sinks.
  2173. @section buffersink
  2174. Buffer video frames, and make them available to the end of the filter
  2175. graph.
  2176. This sink is intended for a programmatic use through the interface defined in
  2177. @file{libavfilter/buffersink.h}.
  2178. @section nullsink
  2179. Null video sink, do absolutely nothing with the input video. It is
  2180. mainly useful as a template and to be employed in analysis / debugging
  2181. tools.
  2182. @c man end VIDEO SINKS