You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1510 lines
47KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. extern const uint8_t ff_log2_run[32];
  38. static const int8_t quant3[256]={
  39. 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  40. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  47. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  48. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  49. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  50. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  51. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  52. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
  55. };
  56. static const int8_t quant5_10bit[256]={
  57. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  58. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  59. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  60. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  70. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  71. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  72. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  73. };
  74. static const int8_t quant5[256]={
  75. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  76. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  80. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  81. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  82. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  83. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  84. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  85. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  86. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  87. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  88. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  89. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  90. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  91. };
  92. static const int8_t quant7[256]={
  93. 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  94. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  95. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  96. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  97. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  98. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  99. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  100. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  101. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  102. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  103. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  104. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  105. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  106. -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
  107. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  108. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
  109. };
  110. static const int8_t quant9[256]={
  111. 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  112. 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  113. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  114. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  115. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  116. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  117. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  118. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  119. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  120. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  121. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  122. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  123. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  124. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  125. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
  126. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
  127. };
  128. static const int8_t quant9_10bit[256]={
  129. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  130. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  131. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  132. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  133. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  135. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  136. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  137. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  138. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  139. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  140. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  141. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  142. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  143. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  144. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  145. };
  146. static const int8_t quant11[256]={
  147. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  148. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  149. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  150. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  151. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  152. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  153. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  154. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  155. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  156. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  157. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  158. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  159. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  160. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  161. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  162. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  163. };
  164. static const int8_t quant13[256]={
  165. 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  166. 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  167. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  168. 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  169. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  170. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  171. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  172. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  173. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  174. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  175. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  176. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  177. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
  178. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  179. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  180. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
  181. };
  182. static const uint8_t ver2_state[256]= {
  183. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  184. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  185. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  186. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  187. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  188. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  189. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  190. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  191. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  192. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  193. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  194. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  195. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  196. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  197. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  198. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  199. };
  200. typedef struct VlcState{
  201. int16_t drift;
  202. uint16_t error_sum;
  203. int8_t bias;
  204. uint8_t count;
  205. } VlcState;
  206. typedef struct PlaneContext{
  207. int16_t quant_table[5][256];
  208. int context_count;
  209. uint8_t (*state)[CONTEXT_SIZE];
  210. VlcState *vlc_state;
  211. uint8_t interlace_bit_state[2];
  212. } PlaneContext;
  213. #define MAX_SLICES 256
  214. typedef struct FFV1Context{
  215. AVCodecContext *avctx;
  216. RangeCoder c;
  217. GetBitContext gb;
  218. PutBitContext pb;
  219. int version;
  220. int width, height;
  221. int chroma_h_shift, chroma_v_shift;
  222. int flags;
  223. int picture_number;
  224. AVFrame picture;
  225. int plane_count;
  226. int ac; ///< 1=range coder <-> 0=golomb rice
  227. PlaneContext plane[MAX_PLANES];
  228. int16_t quant_table[5][256];
  229. int16_t quant_tables[MAX_QUANT_TABLES][5][256];
  230. int context_count[MAX_QUANT_TABLES];
  231. uint8_t state_transition[256];
  232. int run_index;
  233. int colorspace;
  234. int_fast16_t *sample_buffer;
  235. int quant_table_count;
  236. DSPContext dsp;
  237. struct FFV1Context *slice_context[MAX_SLICES];
  238. int slice_count;
  239. int num_v_slices;
  240. int num_h_slices;
  241. int slice_width;
  242. int slice_height;
  243. int slice_x;
  244. int slice_y;
  245. }FFV1Context;
  246. static av_always_inline int fold(int diff, int bits){
  247. if(bits==8)
  248. diff= (int8_t)diff;
  249. else{
  250. diff+= 1<<(bits-1);
  251. diff&=(1<<bits)-1;
  252. diff-= 1<<(bits-1);
  253. }
  254. return diff;
  255. }
  256. static inline int predict(int_fast16_t *src, int_fast16_t *last){
  257. const int LT= last[-1];
  258. const int T= last[ 0];
  259. const int L = src[-1];
  260. return mid_pred(L, L + T - LT, T);
  261. }
  262. static inline int get_context(PlaneContext *p, int_fast16_t *src, int_fast16_t *last, int_fast16_t *last2){
  263. const int LT= last[-1];
  264. const int T= last[ 0];
  265. const int RT= last[ 1];
  266. const int L = src[-1];
  267. if(p->quant_table[3][127]){
  268. const int TT= last2[0];
  269. const int LL= src[-2];
  270. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  271. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  272. }else
  273. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  274. }
  275. static inline void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed){
  276. int i;
  277. if(v){
  278. const int a= FFABS(v);
  279. const int e= av_log2(a);
  280. put_rac(c, state+0, 0);
  281. if(e<=9){
  282. for(i=0; i<e; i++){
  283. put_rac(c, state+1+i, 1); //1..10
  284. }
  285. put_rac(c, state+1+i, 0);
  286. for(i=e-1; i>=0; i--){
  287. put_rac(c, state+22+i, (a>>i)&1); //22..31
  288. }
  289. if(is_signed)
  290. put_rac(c, state+11 + e, v < 0); //11..21
  291. }else{
  292. for(i=0; i<e; i++){
  293. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  294. }
  295. put_rac(c, state+1+9, 0);
  296. for(i=e-1; i>=0; i--){
  297. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  298. }
  299. if(is_signed)
  300. put_rac(c, state+11 + 10, v < 0); //11..21
  301. }
  302. }else{
  303. put_rac(c, state+0, 1);
  304. }
  305. }
  306. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  307. put_symbol_inline(c, state, v, is_signed);
  308. }
  309. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  310. if(get_rac(c, state+0))
  311. return 0;
  312. else{
  313. int i, e, a;
  314. e= 0;
  315. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  316. e++;
  317. }
  318. a= 1;
  319. for(i=e-1; i>=0; i--){
  320. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  321. }
  322. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  323. return (a^e)-e;
  324. }
  325. }
  326. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  327. return get_symbol_inline(c, state, is_signed);
  328. }
  329. static inline void update_vlc_state(VlcState * const state, const int v){
  330. int drift= state->drift;
  331. int count= state->count;
  332. state->error_sum += FFABS(v);
  333. drift += v;
  334. if(count == 128){ //FIXME variable
  335. count >>= 1;
  336. drift >>= 1;
  337. state->error_sum >>= 1;
  338. }
  339. count++;
  340. if(drift <= -count){
  341. if(state->bias > -128) state->bias--;
  342. drift += count;
  343. if(drift <= -count)
  344. drift= -count + 1;
  345. }else if(drift > 0){
  346. if(state->bias < 127) state->bias++;
  347. drift -= count;
  348. if(drift > 0)
  349. drift= 0;
  350. }
  351. state->drift= drift;
  352. state->count= count;
  353. }
  354. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  355. int i, k, code;
  356. //printf("final: %d ", v);
  357. v = fold(v - state->bias, bits);
  358. i= state->count;
  359. k=0;
  360. while(i < state->error_sum){ //FIXME optimize
  361. k++;
  362. i += i;
  363. }
  364. assert(k<=8);
  365. #if 0 // JPEG LS
  366. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  367. else code= v;
  368. #else
  369. code= v ^ ((2*state->drift + state->count)>>31);
  370. #endif
  371. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  372. set_sr_golomb(pb, code, k, 12, bits);
  373. update_vlc_state(state, v);
  374. }
  375. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  376. int k, i, v, ret;
  377. i= state->count;
  378. k=0;
  379. while(i < state->error_sum){ //FIXME optimize
  380. k++;
  381. i += i;
  382. }
  383. assert(k<=8);
  384. v= get_sr_golomb(gb, k, 12, bits);
  385. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  386. #if 0 // JPEG LS
  387. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  388. #else
  389. v ^= ((2*state->drift + state->count)>>31);
  390. #endif
  391. ret= fold(v + state->bias, bits);
  392. update_vlc_state(state, v);
  393. //printf("final: %d\n", ret);
  394. return ret;
  395. }
  396. #if CONFIG_FFV1_ENCODER
  397. static inline int encode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  398. PlaneContext * const p= &s->plane[plane_index];
  399. RangeCoder * const c= &s->c;
  400. int x;
  401. int run_index= s->run_index;
  402. int run_count=0;
  403. int run_mode=0;
  404. if(s->ac){
  405. if(c->bytestream_end - c->bytestream < w*20){
  406. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  407. return -1;
  408. }
  409. }else{
  410. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  411. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  412. return -1;
  413. }
  414. }
  415. for(x=0; x<w; x++){
  416. int diff, context;
  417. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  418. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  419. if(context < 0){
  420. context = -context;
  421. diff= -diff;
  422. }
  423. diff= fold(diff, bits);
  424. if(s->ac){
  425. put_symbol_inline(c, p->state[context], diff, 1);
  426. }else{
  427. if(context == 0) run_mode=1;
  428. if(run_mode){
  429. if(diff){
  430. while(run_count >= 1<<ff_log2_run[run_index]){
  431. run_count -= 1<<ff_log2_run[run_index];
  432. run_index++;
  433. put_bits(&s->pb, 1, 1);
  434. }
  435. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  436. if(run_index) run_index--;
  437. run_count=0;
  438. run_mode=0;
  439. if(diff>0) diff--;
  440. }else{
  441. run_count++;
  442. }
  443. }
  444. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  445. if(run_mode == 0)
  446. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  447. }
  448. }
  449. if(run_mode){
  450. while(run_count >= 1<<ff_log2_run[run_index]){
  451. run_count -= 1<<ff_log2_run[run_index];
  452. run_index++;
  453. put_bits(&s->pb, 1, 1);
  454. }
  455. if(run_count)
  456. put_bits(&s->pb, 1, 1);
  457. }
  458. s->run_index= run_index;
  459. return 0;
  460. }
  461. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  462. int x,y,i;
  463. const int ring_size= s->avctx->context_model ? 3 : 2;
  464. int_fast16_t *sample[3];
  465. s->run_index=0;
  466. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  467. for(y=0; y<h; y++){
  468. for(i=0; i<ring_size; i++)
  469. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  470. sample[0][-1]= sample[1][0 ];
  471. sample[1][ w]= sample[1][w-1];
  472. //{START_TIMER
  473. if(s->avctx->bits_per_raw_sample<=8){
  474. for(x=0; x<w; x++){
  475. sample[0][x]= src[x + stride*y];
  476. }
  477. encode_line(s, w, sample, plane_index, 8);
  478. }else{
  479. for(x=0; x<w; x++){
  480. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  481. }
  482. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  483. }
  484. //STOP_TIMER("encode line")}
  485. }
  486. }
  487. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  488. int x, y, p, i;
  489. const int ring_size= s->avctx->context_model ? 3 : 2;
  490. int_fast16_t *sample[3][3];
  491. s->run_index=0;
  492. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  493. for(y=0; y<h; y++){
  494. for(i=0; i<ring_size; i++)
  495. for(p=0; p<3; p++)
  496. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  497. for(x=0; x<w; x++){
  498. int v= src[x + stride*y];
  499. int b= v&0xFF;
  500. int g= (v>>8)&0xFF;
  501. int r= (v>>16)&0xFF;
  502. b -= g;
  503. r -= g;
  504. g += (b + r)>>2;
  505. b += 0x100;
  506. r += 0x100;
  507. // assert(g>=0 && b>=0 && r>=0);
  508. // assert(g<256 && b<512 && r<512);
  509. sample[0][0][x]= g;
  510. sample[1][0][x]= b;
  511. sample[2][0][x]= r;
  512. }
  513. for(p=0; p<3; p++){
  514. sample[p][0][-1]= sample[p][1][0 ];
  515. sample[p][1][ w]= sample[p][1][w-1];
  516. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  517. }
  518. }
  519. }
  520. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  521. int last=0;
  522. int i;
  523. uint8_t state[CONTEXT_SIZE];
  524. memset(state, 128, sizeof(state));
  525. for(i=1; i<128 ; i++){
  526. if(quant_table[i] != quant_table[i-1]){
  527. put_symbol(c, state, i-last-1, 0);
  528. last= i;
  529. }
  530. }
  531. put_symbol(c, state, i-last-1, 0);
  532. }
  533. static void write_quant_tables(RangeCoder *c, int16_t quant_table[5][256]){
  534. int i;
  535. for(i=0; i<5; i++)
  536. write_quant_table(c, quant_table[i]);
  537. }
  538. static void write_header(FFV1Context *f){
  539. uint8_t state[CONTEXT_SIZE];
  540. int i, j;
  541. RangeCoder * const c= &f->slice_context[0]->c;
  542. memset(state, 128, sizeof(state));
  543. if(f->version < 2){
  544. put_symbol(c, state, f->version, 0);
  545. put_symbol(c, state, f->ac, 0);
  546. if(f->ac>1){
  547. for(i=1; i<256; i++){
  548. f->state_transition[i]=ver2_state[i];
  549. put_symbol(c, state, ver2_state[i] - c->one_state[i], 1);
  550. }
  551. }
  552. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  553. if(f->version>0)
  554. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  555. put_rac(c, state, 1); //chroma planes
  556. put_symbol(c, state, f->chroma_h_shift, 0);
  557. put_symbol(c, state, f->chroma_v_shift, 0);
  558. put_rac(c, state, 0); //no transparency plane
  559. write_quant_tables(c, f->quant_table);
  560. }else{
  561. put_symbol(c, state, f->slice_count, 0);
  562. for(i=0; i<f->slice_count; i++){
  563. FFV1Context *fs= f->slice_context[i];
  564. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  565. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  566. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  567. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  568. for(j=0; j<f->plane_count; j++)
  569. put_symbol(c, state, f->avctx->context_model, 0);
  570. }
  571. }
  572. }
  573. #endif /* CONFIG_FFV1_ENCODER */
  574. static av_cold int common_init(AVCodecContext *avctx){
  575. FFV1Context *s = avctx->priv_data;
  576. s->avctx= avctx;
  577. s->flags= avctx->flags;
  578. dsputil_init(&s->dsp, avctx);
  579. s->width = avctx->width;
  580. s->height= avctx->height;
  581. assert(s->width && s->height);
  582. //defaults
  583. s->num_h_slices=1;
  584. s->num_v_slices=1;
  585. return 0;
  586. }
  587. #if CONFIG_FFV1_ENCODER
  588. static int write_extra_header(FFV1Context *f){
  589. RangeCoder * const c= &f->c;
  590. uint8_t state[CONTEXT_SIZE];
  591. int i;
  592. memset(state, 128, sizeof(state));
  593. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000);
  594. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  595. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  596. put_symbol(c, state, f->version, 0);
  597. put_symbol(c, state, f->ac, 0);
  598. if(f->ac>1){
  599. for(i=1; i<256; i++){
  600. f->state_transition[i]=ver2_state[i];
  601. put_symbol(c, state, ver2_state[i] - c->one_state[i], 1);
  602. }
  603. }
  604. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  605. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  606. put_rac(c, state, 1); //chroma planes
  607. put_symbol(c, state, f->chroma_h_shift, 0);
  608. put_symbol(c, state, f->chroma_v_shift, 0);
  609. put_rac(c, state, 0); //no transparency plane
  610. put_symbol(c, state, f->num_h_slices-1, 0);
  611. put_symbol(c, state, f->num_v_slices-1, 0);
  612. put_symbol(c, state, f->quant_table_count, 0);
  613. for(i=0; i<f->quant_table_count; i++)
  614. write_quant_tables(c, f->quant_tables[i]);
  615. f->avctx->extradata_size= ff_rac_terminate(c);
  616. return 0;
  617. }
  618. static int init_slice_state(FFV1Context *f){
  619. int i, j;
  620. for(i=0; i<f->slice_count; i++){
  621. FFV1Context *fs= f->slice_context[i];
  622. for(j=0; j<f->plane_count; j++){
  623. PlaneContext * const p= &fs->plane[j];
  624. if(fs->ac){
  625. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  626. if(!p-> state)
  627. return AVERROR(ENOMEM);
  628. }else{
  629. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  630. if(!p->vlc_state)
  631. return AVERROR(ENOMEM);
  632. }
  633. }
  634. if (fs->ac>1){
  635. //FIXME only redo if state_transition changed
  636. for(j=1; j<256; j++){
  637. fs->c.one_state [ j]= fs->state_transition[j];
  638. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  639. }
  640. }
  641. }
  642. return 0;
  643. }
  644. static av_cold int init_slice_contexts(FFV1Context *f){
  645. int i;
  646. f->slice_count= f->num_h_slices * f->num_v_slices;
  647. for(i=0; i<f->slice_count; i++){
  648. FFV1Context *fs= av_mallocz(sizeof(*fs));
  649. int sx= i % f->num_h_slices;
  650. int sy= i / f->num_h_slices;
  651. int sxs= f->avctx->width * sx / f->num_h_slices;
  652. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  653. int sys= f->avctx->height* sy / f->num_v_slices;
  654. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  655. f->slice_context[i]= fs;
  656. memcpy(fs, f, sizeof(*fs));
  657. fs->slice_width = sxe - sxs;
  658. fs->slice_height= sye - sys;
  659. fs->slice_x = sxs;
  660. fs->slice_y = sys;
  661. fs->sample_buffer = av_malloc(6 * (fs->width+6) * sizeof(*fs->sample_buffer));
  662. if (!fs->sample_buffer)
  663. return AVERROR(ENOMEM);
  664. }
  665. return 0;
  666. }
  667. static av_cold int encode_init(AVCodecContext *avctx)
  668. {
  669. FFV1Context *s = avctx->priv_data;
  670. int i;
  671. common_init(avctx);
  672. s->version=0;
  673. s->ac= avctx->coder_type ? 2:0;
  674. s->plane_count=2;
  675. for(i=0; i<256; i++){
  676. s->quant_table_count=2;
  677. if(avctx->bits_per_raw_sample <=8){
  678. s->quant_tables[0][0][i]= quant11[i];
  679. s->quant_tables[0][1][i]= 11*quant11[i];
  680. s->quant_tables[0][2][i]= 11*11*quant11[i];
  681. s->quant_tables[1][0][i]= quant11[i];
  682. s->quant_tables[1][1][i]= 11*quant11[i];
  683. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  684. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  685. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  686. }else{
  687. s->quant_tables[0][0][i]= quant9_10bit[i];
  688. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  689. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  690. s->quant_tables[1][0][i]= quant9_10bit[i];
  691. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  692. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  693. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  694. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  695. }
  696. }
  697. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  698. for(i=0; i<s->plane_count; i++){
  699. PlaneContext * const p= &s->plane[i];
  700. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  701. if(avctx->context_model==0){
  702. p->context_count= (11*11*11+1)/2;
  703. }else{
  704. p->context_count= (11*11*5*5*5+1)/2;
  705. }
  706. }
  707. avctx->coded_frame= &s->picture;
  708. switch(avctx->pix_fmt){
  709. case PIX_FMT_YUV444P16:
  710. case PIX_FMT_YUV422P16:
  711. case PIX_FMT_YUV420P16:
  712. if(avctx->bits_per_raw_sample <=8){
  713. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  714. return -1;
  715. }
  716. if(!s->ac){
  717. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  718. return -1;
  719. }
  720. s->version= FFMAX(s->version, 1);
  721. case PIX_FMT_YUV444P:
  722. case PIX_FMT_YUV422P:
  723. case PIX_FMT_YUV420P:
  724. case PIX_FMT_YUV411P:
  725. case PIX_FMT_YUV410P:
  726. s->colorspace= 0;
  727. break;
  728. case PIX_FMT_RGB32:
  729. s->colorspace= 1;
  730. break;
  731. default:
  732. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  733. return -1;
  734. }
  735. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  736. s->picture_number=0;
  737. if(s->version>1){
  738. s->num_h_slices=2;
  739. s->num_v_slices=2;
  740. write_extra_header(s);
  741. }
  742. if(init_slice_contexts(s) < 0)
  743. return -1;
  744. if(init_slice_state(s) < 0)
  745. return -1;
  746. return 0;
  747. }
  748. #endif /* CONFIG_FFV1_ENCODER */
  749. static void clear_state(FFV1Context *f){
  750. int i, si, j;
  751. for(si=0; si<f->slice_count; si++){
  752. FFV1Context *fs= f->slice_context[si];
  753. for(i=0; i<f->plane_count; i++){
  754. PlaneContext *p= &fs->plane[i];
  755. p->interlace_bit_state[0]= 128;
  756. p->interlace_bit_state[1]= 128;
  757. for(j=0; j<p->context_count; j++){
  758. if(fs->ac){
  759. memset(p->state[j], 128, sizeof(uint8_t)*CONTEXT_SIZE);
  760. }else{
  761. p->vlc_state[j].drift= 0;
  762. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  763. p->vlc_state[j].bias= 0;
  764. p->vlc_state[j].count= 1;
  765. }
  766. }
  767. }
  768. }
  769. }
  770. #if CONFIG_FFV1_ENCODER
  771. static int encode_slice(AVCodecContext *c, void *arg){
  772. FFV1Context *fs= *(void**)arg;
  773. FFV1Context *f= fs->avctx->priv_data;
  774. int width = fs->slice_width;
  775. int height= fs->slice_height;
  776. int x= fs->slice_x;
  777. int y= fs->slice_y;
  778. AVFrame * const p= &f->picture;
  779. if(f->colorspace==0){
  780. const int chroma_width = -((-width )>>f->chroma_h_shift);
  781. const int chroma_height= -((-height)>>f->chroma_v_shift);
  782. const int cx= x>>f->chroma_h_shift;
  783. const int cy= y>>f->chroma_v_shift;
  784. encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  785. encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  786. encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  787. }else{
  788. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  789. }
  790. emms_c();
  791. return 0;
  792. }
  793. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  794. FFV1Context *f = avctx->priv_data;
  795. RangeCoder * const c= &f->slice_context[0]->c;
  796. AVFrame *pict = data;
  797. AVFrame * const p= &f->picture;
  798. int used_count= 0;
  799. uint8_t keystate=128;
  800. uint8_t *buf_p;
  801. int i;
  802. ff_init_range_encoder(c, buf, buf_size);
  803. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  804. *p = *pict;
  805. p->pict_type= FF_I_TYPE;
  806. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  807. put_rac(c, &keystate, 1);
  808. p->key_frame= 1;
  809. write_header(f);
  810. clear_state(f);
  811. }else{
  812. put_rac(c, &keystate, 0);
  813. p->key_frame= 0;
  814. }
  815. if(!f->ac){
  816. used_count += ff_rac_terminate(c);
  817. //printf("pos=%d\n", used_count);
  818. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  819. }else if (f->ac>1){
  820. int i;
  821. for(i=1; i<256; i++){
  822. c->one_state[i]= f->state_transition[i];
  823. c->zero_state[256-i]= 256-c->one_state[i];
  824. }
  825. }
  826. for(i=1; i<f->slice_count; i++){
  827. FFV1Context *fs= f->slice_context[i];
  828. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  829. int len= buf_size/f->slice_count;
  830. if(fs->ac){
  831. ff_init_range_encoder(&fs->c, start, len);
  832. }else{
  833. init_put_bits(&fs->pb, start, len);
  834. }
  835. }
  836. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  837. buf_p=buf;
  838. for(i=0; i<f->slice_count; i++){
  839. FFV1Context *fs= f->slice_context[i];
  840. int bytes;
  841. if(fs->ac){
  842. uint8_t state=128;
  843. put_rac(&fs->c, &state, 0);
  844. bytes= ff_rac_terminate(&fs->c);
  845. }else{
  846. flush_put_bits(&fs->pb); //nicer padding FIXME
  847. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  848. used_count= 0;
  849. }
  850. if(i>0){
  851. av_assert0(bytes < buf_size/f->slice_count);
  852. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  853. av_assert0(bytes < (1<<24));
  854. AV_WB24(buf_p+bytes, bytes);
  855. bytes+=3;
  856. }
  857. buf_p += bytes;
  858. }
  859. f->picture_number++;
  860. return buf_p-buf;
  861. }
  862. #endif /* CONFIG_FFV1_ENCODER */
  863. static av_cold int common_end(AVCodecContext *avctx){
  864. FFV1Context *s = avctx->priv_data;
  865. int i, j;
  866. for(j=0; j<s->slice_count; j++){
  867. FFV1Context *fs= s->slice_context[j];
  868. for(i=0; i<s->plane_count; i++){
  869. PlaneContext *p= &fs->plane[i];
  870. av_freep(&p->state);
  871. av_freep(&p->vlc_state);
  872. }
  873. av_freep(&fs->sample_buffer);
  874. }
  875. return 0;
  876. }
  877. static av_always_inline void decode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  878. PlaneContext * const p= &s->plane[plane_index];
  879. RangeCoder * const c= &s->c;
  880. int x;
  881. int run_count=0;
  882. int run_mode=0;
  883. int run_index= s->run_index;
  884. for(x=0; x<w; x++){
  885. int diff, context, sign;
  886. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  887. if(context < 0){
  888. context= -context;
  889. sign=1;
  890. }else
  891. sign=0;
  892. av_assert2(context < p->context_count);
  893. if(s->ac){
  894. diff= get_symbol_inline(c, p->state[context], 1);
  895. }else{
  896. if(context == 0 && run_mode==0) run_mode=1;
  897. if(run_mode){
  898. if(run_count==0 && run_mode==1){
  899. if(get_bits1(&s->gb)){
  900. run_count = 1<<ff_log2_run[run_index];
  901. if(x + run_count <= w) run_index++;
  902. }else{
  903. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  904. else run_count=0;
  905. if(run_index) run_index--;
  906. run_mode=2;
  907. }
  908. }
  909. run_count--;
  910. if(run_count < 0){
  911. run_mode=0;
  912. run_count=0;
  913. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  914. if(diff>=0) diff++;
  915. }else
  916. diff=0;
  917. }else
  918. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  919. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  920. }
  921. if(sign) diff= -diff;
  922. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  923. }
  924. s->run_index= run_index;
  925. }
  926. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  927. int x, y;
  928. int_fast16_t *sample[2];
  929. sample[0]=s->sample_buffer +3;
  930. sample[1]=s->sample_buffer+w+6+3;
  931. s->run_index=0;
  932. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  933. for(y=0; y<h; y++){
  934. int_fast16_t *temp= sample[0]; //FIXME try a normal buffer
  935. sample[0]= sample[1];
  936. sample[1]= temp;
  937. sample[1][-1]= sample[0][0 ];
  938. sample[0][ w]= sample[0][w-1];
  939. //{START_TIMER
  940. if(s->avctx->bits_per_raw_sample <= 8){
  941. decode_line(s, w, sample, plane_index, 8);
  942. for(x=0; x<w; x++){
  943. src[x + stride*y]= sample[1][x];
  944. }
  945. }else{
  946. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  947. for(x=0; x<w; x++){
  948. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  949. }
  950. }
  951. //STOP_TIMER("decode-line")}
  952. }
  953. }
  954. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  955. int x, y, p;
  956. int_fast16_t *sample[3][2];
  957. for(x=0; x<3; x++){
  958. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  959. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  960. }
  961. s->run_index=0;
  962. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  963. for(y=0; y<h; y++){
  964. for(p=0; p<3; p++){
  965. int_fast16_t *temp= sample[p][0]; //FIXME try a normal buffer
  966. sample[p][0]= sample[p][1];
  967. sample[p][1]= temp;
  968. sample[p][1][-1]= sample[p][0][0 ];
  969. sample[p][0][ w]= sample[p][0][w-1];
  970. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  971. }
  972. for(x=0; x<w; x++){
  973. int g= sample[0][1][x];
  974. int b= sample[1][1][x];
  975. int r= sample[2][1][x];
  976. // assert(g>=0 && b>=0 && r>=0);
  977. // assert(g<256 && b<512 && r<512);
  978. b -= 0x100;
  979. r -= 0x100;
  980. g -= (b + r)>>2;
  981. b += g;
  982. r += g;
  983. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  984. }
  985. }
  986. }
  987. static int decode_slice(AVCodecContext *c, void *arg){
  988. FFV1Context *fs= *(void**)arg;
  989. FFV1Context *f= fs->avctx->priv_data;
  990. int width = fs->slice_width;
  991. int height= fs->slice_height;
  992. int x= fs->slice_x;
  993. int y= fs->slice_y;
  994. AVFrame * const p= &f->picture;
  995. av_assert1(width && height);
  996. if(f->colorspace==0){
  997. const int chroma_width = -((-width )>>f->chroma_h_shift);
  998. const int chroma_height= -((-height)>>f->chroma_v_shift);
  999. const int cx= x>>f->chroma_h_shift;
  1000. const int cy= y>>f->chroma_v_shift;
  1001. decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1002. decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1003. decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1004. }else{
  1005. decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1006. }
  1007. emms_c();
  1008. return 0;
  1009. }
  1010. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1011. int v;
  1012. int i=0;
  1013. uint8_t state[CONTEXT_SIZE];
  1014. memset(state, 128, sizeof(state));
  1015. for(v=0; i<128 ; v++){
  1016. int len= get_symbol(c, state, 0) + 1;
  1017. if(len + i > 128) return -1;
  1018. while(len--){
  1019. quant_table[i] = scale*v;
  1020. i++;
  1021. //printf("%2d ",v);
  1022. //if(i%16==0) printf("\n");
  1023. }
  1024. }
  1025. for(i=1; i<128; i++){
  1026. quant_table[256-i]= -quant_table[i];
  1027. }
  1028. quant_table[128]= -quant_table[127];
  1029. return 2*v - 1;
  1030. }
  1031. static int read_quant_tables(RangeCoder *c, int16_t quant_table[5][256]){
  1032. int i;
  1033. int context_count=1;
  1034. for(i=0; i<5; i++){
  1035. context_count*= read_quant_table(c, quant_table[i], context_count);
  1036. if(context_count > 32768U){
  1037. return -1;
  1038. }
  1039. }
  1040. return (context_count+1)/2;
  1041. }
  1042. static int read_extra_header(FFV1Context *f){
  1043. RangeCoder * const c= &f->c;
  1044. uint8_t state[CONTEXT_SIZE];
  1045. int i;
  1046. memset(state, 128, sizeof(state));
  1047. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1048. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1049. f->version= get_symbol(c, state, 0);
  1050. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1051. if(f->ac>1){
  1052. for(i=1; i<256; i++){
  1053. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1054. }
  1055. }
  1056. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1057. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1058. get_rac(c, state); //no chroma = false
  1059. f->chroma_h_shift= get_symbol(c, state, 0);
  1060. f->chroma_v_shift= get_symbol(c, state, 0);
  1061. get_rac(c, state); //transparency plane
  1062. f->plane_count= 2;
  1063. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1064. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1065. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1066. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1067. return -1;
  1068. }
  1069. f->quant_table_count= get_symbol(c, state, 0);
  1070. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1071. return -1;
  1072. for(i=0; i<f->quant_table_count; i++){
  1073. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1074. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1075. return -1;
  1076. }
  1077. }
  1078. return 0;
  1079. }
  1080. static int read_header(FFV1Context *f){
  1081. uint8_t state[CONTEXT_SIZE];
  1082. int i, j, context_count;
  1083. RangeCoder * const c= &f->slice_context[0]->c;
  1084. memset(state, 128, sizeof(state));
  1085. if(f->version < 2){
  1086. f->version= get_symbol(c, state, 0);
  1087. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1088. if(f->ac>1){
  1089. for(i=1; i<256; i++){
  1090. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1091. }
  1092. }
  1093. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1094. if(f->version>0)
  1095. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1096. get_rac(c, state); //no chroma = false
  1097. f->chroma_h_shift= get_symbol(c, state, 0);
  1098. f->chroma_v_shift= get_symbol(c, state, 0);
  1099. get_rac(c, state); //transparency plane
  1100. f->plane_count= 2;
  1101. }
  1102. if(f->colorspace==0){
  1103. if(f->avctx->bits_per_raw_sample<=8){
  1104. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1105. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1106. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1107. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1108. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1109. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1110. default:
  1111. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1112. return -1;
  1113. }
  1114. }else{
  1115. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1116. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1117. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1118. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1119. default:
  1120. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1121. return -1;
  1122. }
  1123. }
  1124. }else if(f->colorspace==1){
  1125. if(f->chroma_h_shift || f->chroma_v_shift){
  1126. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1127. return -1;
  1128. }
  1129. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1130. }else{
  1131. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1132. return -1;
  1133. }
  1134. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1135. if(f->version < 2){
  1136. context_count= read_quant_tables(c, f->quant_table);
  1137. if(context_count < 0){
  1138. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1139. return -1;
  1140. }
  1141. }else{
  1142. f->slice_count= get_symbol(c, state, 0);
  1143. if(f->slice_count > (unsigned)MAX_SLICES)
  1144. return -1;
  1145. }
  1146. for(j=0; j<f->slice_count; j++){
  1147. FFV1Context *fs= f->slice_context[j];
  1148. fs->ac= f->ac;
  1149. if(f->version >= 2){
  1150. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1151. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1152. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1153. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1154. fs->slice_x /= f->num_h_slices;
  1155. fs->slice_y /= f->num_v_slices;
  1156. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1157. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1158. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1159. return -1;
  1160. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1161. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1162. return -1;
  1163. }
  1164. for(i=0; i<f->plane_count; i++){
  1165. PlaneContext * const p= &fs->plane[i];
  1166. if(f->version >= 2){
  1167. int idx=get_symbol(c, state, 0);
  1168. if(idx > (unsigned)f->quant_table_count){
  1169. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1170. return -1;
  1171. }
  1172. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1173. context_count= f->context_count[idx];
  1174. }else{
  1175. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1176. }
  1177. if(p->context_count < context_count){
  1178. av_freep(&p->state);
  1179. av_freep(&p->vlc_state);
  1180. }
  1181. p->context_count= context_count;
  1182. }
  1183. }
  1184. return 0;
  1185. }
  1186. static av_cold int decode_init(AVCodecContext *avctx)
  1187. {
  1188. FFV1Context *f = avctx->priv_data;
  1189. common_init(avctx);
  1190. if(avctx->extradata && read_extra_header(f) < 0)
  1191. return -1;
  1192. if(init_slice_contexts(f) < 0)
  1193. return -1;
  1194. return 0;
  1195. }
  1196. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1197. const uint8_t *buf = avpkt->data;
  1198. int buf_size = avpkt->size;
  1199. FFV1Context *f = avctx->priv_data;
  1200. RangeCoder * const c= &f->slice_context[0]->c;
  1201. AVFrame * const p= &f->picture;
  1202. int bytes_read, i;
  1203. uint8_t keystate= 128;
  1204. const uint8_t *buf_p;
  1205. AVFrame *picture = data;
  1206. ff_init_range_decoder(c, buf, buf_size);
  1207. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1208. p->pict_type= FF_I_TYPE; //FIXME I vs. P
  1209. if(get_rac(c, &keystate)){
  1210. p->key_frame= 1;
  1211. if(read_header(f) < 0)
  1212. return -1;
  1213. if(init_slice_state(f) < 0)
  1214. return -1;
  1215. clear_state(f);
  1216. }else{
  1217. p->key_frame= 0;
  1218. }
  1219. if(f->ac>1){
  1220. int i;
  1221. for(i=1; i<256; i++){
  1222. c->one_state[i]= f->state_transition[i];
  1223. c->zero_state[256-i]= 256-c->one_state[i];
  1224. }
  1225. }
  1226. p->reference= 0;
  1227. if(avctx->get_buffer(avctx, p) < 0){
  1228. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1229. return -1;
  1230. }
  1231. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1232. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1233. if(!f->ac){
  1234. bytes_read = c->bytestream - c->bytestream_start - 1;
  1235. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1236. //printf("pos=%d\n", bytes_read);
  1237. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, buf_size - bytes_read);
  1238. } else {
  1239. bytes_read = 0; /* avoid warning */
  1240. }
  1241. buf_p= buf + buf_size;
  1242. for(i=f->slice_count-1; i>0; i--){
  1243. FFV1Context *fs= f->slice_context[i];
  1244. int v= AV_RB24(buf_p-3)+3;
  1245. if(buf_p - buf <= v){
  1246. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1247. return -1;
  1248. }
  1249. buf_p -= v;
  1250. if(fs->ac){
  1251. ff_init_range_decoder(&fs->c, buf_p, v);
  1252. }else{
  1253. init_get_bits(&fs->gb, buf_p, v);
  1254. }
  1255. }
  1256. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1257. f->picture_number++;
  1258. *picture= *p;
  1259. avctx->release_buffer(avctx, p); //FIXME
  1260. *data_size = sizeof(AVFrame);
  1261. return buf_size;
  1262. }
  1263. AVCodec ffv1_decoder = {
  1264. "ffv1",
  1265. AVMEDIA_TYPE_VIDEO,
  1266. CODEC_ID_FFV1,
  1267. sizeof(FFV1Context),
  1268. decode_init,
  1269. NULL,
  1270. common_end,
  1271. decode_frame,
  1272. CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  1273. NULL,
  1274. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1275. };
  1276. #if CONFIG_FFV1_ENCODER
  1277. AVCodec ffv1_encoder = {
  1278. "ffv1",
  1279. AVMEDIA_TYPE_VIDEO,
  1280. CODEC_ID_FFV1,
  1281. sizeof(FFV1Context),
  1282. encode_init,
  1283. encode_frame,
  1284. common_end,
  1285. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_NONE},
  1286. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1287. };
  1288. #endif