You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2610 lines
78KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bitstream.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  39. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  40. /****************/
  41. #define HEADER_SIZE 4
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. #include "mpegaudiodata.h"
  62. #include "mpegaudiodectab.h"
  63. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  64. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  65. /* vlc structure for decoding layer 3 huffman tables */
  66. static VLC huff_vlc[16];
  67. static VLC_TYPE huff_vlc_tables[
  68. 0+128+128+128+130+128+154+166+
  69. 142+204+190+170+542+460+662+414
  70. ][2];
  71. static const int huff_vlc_tables_sizes[16] = {
  72. 0, 128, 128, 128, 130, 128, 154, 166,
  73. 142, 204, 190, 170, 542, 460, 662, 414
  74. };
  75. static VLC huff_quad_vlc[2];
  76. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  77. static const int huff_quad_vlc_tables_sizes[2] = {
  78. 128, 16
  79. };
  80. /* computed from band_size_long */
  81. static uint16_t band_index_long[9][23];
  82. /* XXX: free when all decoders are closed */
  83. #define TABLE_4_3_SIZE (8191 + 16)*4
  84. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  85. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  86. static uint32_t exp_table[512];
  87. static uint32_t expval_table[512][16];
  88. /* intensity stereo coef table */
  89. static int32_t is_table[2][16];
  90. static int32_t is_table_lsf[2][2][16];
  91. static int32_t csa_table[8][4];
  92. static float csa_table_float[8][4];
  93. static int32_t mdct_win[8][36];
  94. /* lower 2 bits: modulo 3, higher bits: shift */
  95. static uint16_t scale_factor_modshift[64];
  96. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  97. static int32_t scale_factor_mult[15][3];
  98. /* mult table for layer 2 group quantization */
  99. #define SCALE_GEN(v) \
  100. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  101. static const int32_t scale_factor_mult2[3][3] = {
  102. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  103. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  104. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  105. };
  106. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  107. /**
  108. * Convert region offsets to region sizes and truncate
  109. * size to big_values.
  110. */
  111. void ff_region_offset2size(GranuleDef *g){
  112. int i, k, j=0;
  113. g->region_size[2] = (576 / 2);
  114. for(i=0;i<3;i++) {
  115. k = FFMIN(g->region_size[i], g->big_values);
  116. g->region_size[i] = k - j;
  117. j = k;
  118. }
  119. }
  120. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  121. if (g->block_type == 2)
  122. g->region_size[0] = (36 / 2);
  123. else {
  124. if (s->sample_rate_index <= 2)
  125. g->region_size[0] = (36 / 2);
  126. else if (s->sample_rate_index != 8)
  127. g->region_size[0] = (54 / 2);
  128. else
  129. g->region_size[0] = (108 / 2);
  130. }
  131. g->region_size[1] = (576 / 2);
  132. }
  133. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  134. int l;
  135. g->region_size[0] =
  136. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  137. /* should not overflow */
  138. l = FFMIN(ra1 + ra2 + 2, 22);
  139. g->region_size[1] =
  140. band_index_long[s->sample_rate_index][l] >> 1;
  141. }
  142. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  143. if (g->block_type == 2) {
  144. if (g->switch_point) {
  145. /* if switched mode, we handle the 36 first samples as
  146. long blocks. For 8000Hz, we handle the 48 first
  147. exponents as long blocks (XXX: check this!) */
  148. if (s->sample_rate_index <= 2)
  149. g->long_end = 8;
  150. else if (s->sample_rate_index != 8)
  151. g->long_end = 6;
  152. else
  153. g->long_end = 4; /* 8000 Hz */
  154. g->short_start = 2 + (s->sample_rate_index != 8);
  155. } else {
  156. g->long_end = 0;
  157. g->short_start = 0;
  158. }
  159. } else {
  160. g->short_start = 13;
  161. g->long_end = 22;
  162. }
  163. }
  164. /* layer 1 unscaling */
  165. /* n = number of bits of the mantissa minus 1 */
  166. static inline int l1_unscale(int n, int mant, int scale_factor)
  167. {
  168. int shift, mod;
  169. int64_t val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  174. shift += n;
  175. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  176. return (int)((val + (1LL << (shift - 1))) >> shift);
  177. }
  178. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  179. {
  180. int shift, mod, val;
  181. shift = scale_factor_modshift[scale_factor];
  182. mod = shift & 3;
  183. shift >>= 2;
  184. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  185. /* NOTE: at this point, 0 <= shift <= 21 */
  186. if (shift > 0)
  187. val = (val + (1 << (shift - 1))) >> shift;
  188. return val;
  189. }
  190. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  191. static inline int l3_unscale(int value, int exponent)
  192. {
  193. unsigned int m;
  194. int e;
  195. e = table_4_3_exp [4*value + (exponent&3)];
  196. m = table_4_3_value[4*value + (exponent&3)];
  197. e -= (exponent >> 2);
  198. assert(e>=1);
  199. if (e > 31)
  200. return 0;
  201. m = (m + (1 << (e-1))) >> e;
  202. return m;
  203. }
  204. /* all integer n^(4/3) computation code */
  205. #define DEV_ORDER 13
  206. #define POW_FRAC_BITS 24
  207. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  208. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  209. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  210. static int dev_4_3_coefs[DEV_ORDER];
  211. #if 0 /* unused */
  212. static int pow_mult3[3] = {
  213. POW_FIX(1.0),
  214. POW_FIX(1.25992104989487316476),
  215. POW_FIX(1.58740105196819947474),
  216. };
  217. #endif
  218. static void int_pow_init(void)
  219. {
  220. int i, a;
  221. a = POW_FIX(1.0);
  222. for(i=0;i<DEV_ORDER;i++) {
  223. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  224. dev_4_3_coefs[i] = a;
  225. }
  226. }
  227. #if 0 /* unused, remove? */
  228. /* return the mantissa and the binary exponent */
  229. static int int_pow(int i, int *exp_ptr)
  230. {
  231. int e, er, eq, j;
  232. int a, a1;
  233. /* renormalize */
  234. a = i;
  235. e = POW_FRAC_BITS;
  236. while (a < (1 << (POW_FRAC_BITS - 1))) {
  237. a = a << 1;
  238. e--;
  239. }
  240. a -= (1 << POW_FRAC_BITS);
  241. a1 = 0;
  242. for(j = DEV_ORDER - 1; j >= 0; j--)
  243. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  244. a = (1 << POW_FRAC_BITS) + a1;
  245. /* exponent compute (exact) */
  246. e = e * 4;
  247. er = e % 3;
  248. eq = e / 3;
  249. a = POW_MULL(a, pow_mult3[er]);
  250. while (a >= 2 * POW_FRAC_ONE) {
  251. a = a >> 1;
  252. eq++;
  253. }
  254. /* convert to float */
  255. while (a < POW_FRAC_ONE) {
  256. a = a << 1;
  257. eq--;
  258. }
  259. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  260. #if POW_FRAC_BITS > FRAC_BITS
  261. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  262. /* correct overflow */
  263. if (a >= 2 * (1 << FRAC_BITS)) {
  264. a = a >> 1;
  265. eq++;
  266. }
  267. #endif
  268. *exp_ptr = eq;
  269. return a;
  270. }
  271. #endif
  272. static int decode_init(AVCodecContext * avctx)
  273. {
  274. MPADecodeContext *s = avctx->priv_data;
  275. static int init=0;
  276. int i, j, k;
  277. s->avctx = avctx;
  278. #if defined(CONFIG_MPEGAUDIO_HP) && defined(CONFIG_AUDIO_NONSHORT)
  279. avctx->sample_fmt= SAMPLE_FMT_S32;
  280. #else
  281. avctx->sample_fmt= SAMPLE_FMT_S16;
  282. #endif
  283. s->error_recognition= avctx->error_recognition;
  284. if(avctx->antialias_algo != FF_AA_FLOAT)
  285. s->compute_antialias= compute_antialias_integer;
  286. else
  287. s->compute_antialias= compute_antialias_float;
  288. if (!init && !avctx->parse_only) {
  289. int offset;
  290. /* scale factors table for layer 1/2 */
  291. for(i=0;i<64;i++) {
  292. int shift, mod;
  293. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  294. shift = (i / 3);
  295. mod = i % 3;
  296. scale_factor_modshift[i] = mod | (shift << 2);
  297. }
  298. /* scale factor multiply for layer 1 */
  299. for(i=0;i<15;i++) {
  300. int n, norm;
  301. n = i + 2;
  302. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  303. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  304. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  305. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  306. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  307. i, norm,
  308. scale_factor_mult[i][0],
  309. scale_factor_mult[i][1],
  310. scale_factor_mult[i][2]);
  311. }
  312. ff_mpa_synth_init(window);
  313. /* huffman decode tables */
  314. offset = 0;
  315. for(i=1;i<16;i++) {
  316. const HuffTable *h = &mpa_huff_tables[i];
  317. int xsize, x, y;
  318. unsigned int n;
  319. uint8_t tmp_bits [512];
  320. uint16_t tmp_codes[512];
  321. memset(tmp_bits , 0, sizeof(tmp_bits ));
  322. memset(tmp_codes, 0, sizeof(tmp_codes));
  323. xsize = h->xsize;
  324. n = xsize * xsize;
  325. j = 0;
  326. for(x=0;x<xsize;x++) {
  327. for(y=0;y<xsize;y++){
  328. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  329. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  330. }
  331. }
  332. /* XXX: fail test */
  333. huff_vlc[i].table = huff_vlc_tables+offset;
  334. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  335. init_vlc(&huff_vlc[i], 7, 512,
  336. tmp_bits, 1, 1, tmp_codes, 2, 2,
  337. INIT_VLC_USE_NEW_STATIC);
  338. offset += huff_vlc_tables_sizes[i];
  339. }
  340. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  341. offset = 0;
  342. for(i=0;i<2;i++) {
  343. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  344. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  345. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  346. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  347. INIT_VLC_USE_NEW_STATIC);
  348. offset += huff_quad_vlc_tables_sizes[i];
  349. }
  350. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  351. for(i=0;i<9;i++) {
  352. k = 0;
  353. for(j=0;j<22;j++) {
  354. band_index_long[i][j] = k;
  355. k += band_size_long[i][j];
  356. }
  357. band_index_long[i][22] = k;
  358. }
  359. /* compute n ^ (4/3) and store it in mantissa/exp format */
  360. int_pow_init();
  361. for(i=1;i<TABLE_4_3_SIZE;i++) {
  362. double f, fm;
  363. int e, m;
  364. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  365. fm = frexp(f, &e);
  366. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  367. e+= FRAC_BITS - 31 + 5 - 100;
  368. /* normalized to FRAC_BITS */
  369. table_4_3_value[i] = m;
  370. table_4_3_exp[i] = -e;
  371. }
  372. for(i=0; i<512*16; i++){
  373. int exponent= (i>>4);
  374. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  375. expval_table[exponent][i&15]= llrint(f);
  376. if((i&15)==1)
  377. exp_table[exponent]= llrint(f);
  378. }
  379. for(i=0;i<7;i++) {
  380. float f;
  381. int v;
  382. if (i != 6) {
  383. f = tan((double)i * M_PI / 12.0);
  384. v = FIXR(f / (1.0 + f));
  385. } else {
  386. v = FIXR(1.0);
  387. }
  388. is_table[0][i] = v;
  389. is_table[1][6 - i] = v;
  390. }
  391. /* invalid values */
  392. for(i=7;i<16;i++)
  393. is_table[0][i] = is_table[1][i] = 0.0;
  394. for(i=0;i<16;i++) {
  395. double f;
  396. int e, k;
  397. for(j=0;j<2;j++) {
  398. e = -(j + 1) * ((i + 1) >> 1);
  399. f = pow(2.0, e / 4.0);
  400. k = i & 1;
  401. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  402. is_table_lsf[j][k][i] = FIXR(1.0);
  403. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  404. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  405. }
  406. }
  407. for(i=0;i<8;i++) {
  408. float ci, cs, ca;
  409. ci = ci_table[i];
  410. cs = 1.0 / sqrt(1.0 + ci * ci);
  411. ca = cs * ci;
  412. csa_table[i][0] = FIXHR(cs/4);
  413. csa_table[i][1] = FIXHR(ca/4);
  414. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  415. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  416. csa_table_float[i][0] = cs;
  417. csa_table_float[i][1] = ca;
  418. csa_table_float[i][2] = ca + cs;
  419. csa_table_float[i][3] = ca - cs;
  420. }
  421. /* compute mdct windows */
  422. for(i=0;i<36;i++) {
  423. for(j=0; j<4; j++){
  424. double d;
  425. if(j==2 && i%3 != 1)
  426. continue;
  427. d= sin(M_PI * (i + 0.5) / 36.0);
  428. if(j==1){
  429. if (i>=30) d= 0;
  430. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  431. else if(i>=18) d= 1;
  432. }else if(j==3){
  433. if (i< 6) d= 0;
  434. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  435. else if(i< 18) d= 1;
  436. }
  437. //merge last stage of imdct into the window coefficients
  438. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  439. if(j==2)
  440. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  441. else
  442. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  443. }
  444. }
  445. /* NOTE: we do frequency inversion adter the MDCT by changing
  446. the sign of the right window coefs */
  447. for(j=0;j<4;j++) {
  448. for(i=0;i<36;i+=2) {
  449. mdct_win[j + 4][i] = mdct_win[j][i];
  450. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  451. }
  452. }
  453. init = 1;
  454. }
  455. if (avctx->codec_id == CODEC_ID_MP3ADU)
  456. s->adu_mode = 1;
  457. return 0;
  458. }
  459. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  460. /* cos(i*pi/64) */
  461. #define COS0_0 FIXHR(0.50060299823519630134/2)
  462. #define COS0_1 FIXHR(0.50547095989754365998/2)
  463. #define COS0_2 FIXHR(0.51544730992262454697/2)
  464. #define COS0_3 FIXHR(0.53104259108978417447/2)
  465. #define COS0_4 FIXHR(0.55310389603444452782/2)
  466. #define COS0_5 FIXHR(0.58293496820613387367/2)
  467. #define COS0_6 FIXHR(0.62250412303566481615/2)
  468. #define COS0_7 FIXHR(0.67480834145500574602/2)
  469. #define COS0_8 FIXHR(0.74453627100229844977/2)
  470. #define COS0_9 FIXHR(0.83934964541552703873/2)
  471. #define COS0_10 FIXHR(0.97256823786196069369/2)
  472. #define COS0_11 FIXHR(1.16943993343288495515/4)
  473. #define COS0_12 FIXHR(1.48416461631416627724/4)
  474. #define COS0_13 FIXHR(2.05778100995341155085/8)
  475. #define COS0_14 FIXHR(3.40760841846871878570/8)
  476. #define COS0_15 FIXHR(10.19000812354805681150/32)
  477. #define COS1_0 FIXHR(0.50241928618815570551/2)
  478. #define COS1_1 FIXHR(0.52249861493968888062/2)
  479. #define COS1_2 FIXHR(0.56694403481635770368/2)
  480. #define COS1_3 FIXHR(0.64682178335999012954/2)
  481. #define COS1_4 FIXHR(0.78815462345125022473/2)
  482. #define COS1_5 FIXHR(1.06067768599034747134/4)
  483. #define COS1_6 FIXHR(1.72244709823833392782/4)
  484. #define COS1_7 FIXHR(5.10114861868916385802/16)
  485. #define COS2_0 FIXHR(0.50979557910415916894/2)
  486. #define COS2_1 FIXHR(0.60134488693504528054/2)
  487. #define COS2_2 FIXHR(0.89997622313641570463/2)
  488. #define COS2_3 FIXHR(2.56291544774150617881/8)
  489. #define COS3_0 FIXHR(0.54119610014619698439/2)
  490. #define COS3_1 FIXHR(1.30656296487637652785/4)
  491. #define COS4_0 FIXHR(0.70710678118654752439/2)
  492. /* butterfly operator */
  493. #define BF(a, b, c, s)\
  494. {\
  495. tmp0 = tab[a] + tab[b];\
  496. tmp1 = tab[a] - tab[b];\
  497. tab[a] = tmp0;\
  498. tab[b] = MULH(tmp1<<(s), c);\
  499. }
  500. #define BF1(a, b, c, d)\
  501. {\
  502. BF(a, b, COS4_0, 1);\
  503. BF(c, d,-COS4_0, 1);\
  504. tab[c] += tab[d];\
  505. }
  506. #define BF2(a, b, c, d)\
  507. {\
  508. BF(a, b, COS4_0, 1);\
  509. BF(c, d,-COS4_0, 1);\
  510. tab[c] += tab[d];\
  511. tab[a] += tab[c];\
  512. tab[c] += tab[b];\
  513. tab[b] += tab[d];\
  514. }
  515. #define ADD(a, b) tab[a] += tab[b]
  516. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  517. static void dct32(int32_t *out, int32_t *tab)
  518. {
  519. int tmp0, tmp1;
  520. /* pass 1 */
  521. BF( 0, 31, COS0_0 , 1);
  522. BF(15, 16, COS0_15, 5);
  523. /* pass 2 */
  524. BF( 0, 15, COS1_0 , 1);
  525. BF(16, 31,-COS1_0 , 1);
  526. /* pass 1 */
  527. BF( 7, 24, COS0_7 , 1);
  528. BF( 8, 23, COS0_8 , 1);
  529. /* pass 2 */
  530. BF( 7, 8, COS1_7 , 4);
  531. BF(23, 24,-COS1_7 , 4);
  532. /* pass 3 */
  533. BF( 0, 7, COS2_0 , 1);
  534. BF( 8, 15,-COS2_0 , 1);
  535. BF(16, 23, COS2_0 , 1);
  536. BF(24, 31,-COS2_0 , 1);
  537. /* pass 1 */
  538. BF( 3, 28, COS0_3 , 1);
  539. BF(12, 19, COS0_12, 2);
  540. /* pass 2 */
  541. BF( 3, 12, COS1_3 , 1);
  542. BF(19, 28,-COS1_3 , 1);
  543. /* pass 1 */
  544. BF( 4, 27, COS0_4 , 1);
  545. BF(11, 20, COS0_11, 2);
  546. /* pass 2 */
  547. BF( 4, 11, COS1_4 , 1);
  548. BF(20, 27,-COS1_4 , 1);
  549. /* pass 3 */
  550. BF( 3, 4, COS2_3 , 3);
  551. BF(11, 12,-COS2_3 , 3);
  552. BF(19, 20, COS2_3 , 3);
  553. BF(27, 28,-COS2_3 , 3);
  554. /* pass 4 */
  555. BF( 0, 3, COS3_0 , 1);
  556. BF( 4, 7,-COS3_0 , 1);
  557. BF( 8, 11, COS3_0 , 1);
  558. BF(12, 15,-COS3_0 , 1);
  559. BF(16, 19, COS3_0 , 1);
  560. BF(20, 23,-COS3_0 , 1);
  561. BF(24, 27, COS3_0 , 1);
  562. BF(28, 31,-COS3_0 , 1);
  563. /* pass 1 */
  564. BF( 1, 30, COS0_1 , 1);
  565. BF(14, 17, COS0_14, 3);
  566. /* pass 2 */
  567. BF( 1, 14, COS1_1 , 1);
  568. BF(17, 30,-COS1_1 , 1);
  569. /* pass 1 */
  570. BF( 6, 25, COS0_6 , 1);
  571. BF( 9, 22, COS0_9 , 1);
  572. /* pass 2 */
  573. BF( 6, 9, COS1_6 , 2);
  574. BF(22, 25,-COS1_6 , 2);
  575. /* pass 3 */
  576. BF( 1, 6, COS2_1 , 1);
  577. BF( 9, 14,-COS2_1 , 1);
  578. BF(17, 22, COS2_1 , 1);
  579. BF(25, 30,-COS2_1 , 1);
  580. /* pass 1 */
  581. BF( 2, 29, COS0_2 , 1);
  582. BF(13, 18, COS0_13, 3);
  583. /* pass 2 */
  584. BF( 2, 13, COS1_2 , 1);
  585. BF(18, 29,-COS1_2 , 1);
  586. /* pass 1 */
  587. BF( 5, 26, COS0_5 , 1);
  588. BF(10, 21, COS0_10, 1);
  589. /* pass 2 */
  590. BF( 5, 10, COS1_5 , 2);
  591. BF(21, 26,-COS1_5 , 2);
  592. /* pass 3 */
  593. BF( 2, 5, COS2_2 , 1);
  594. BF(10, 13,-COS2_2 , 1);
  595. BF(18, 21, COS2_2 , 1);
  596. BF(26, 29,-COS2_2 , 1);
  597. /* pass 4 */
  598. BF( 1, 2, COS3_1 , 2);
  599. BF( 5, 6,-COS3_1 , 2);
  600. BF( 9, 10, COS3_1 , 2);
  601. BF(13, 14,-COS3_1 , 2);
  602. BF(17, 18, COS3_1 , 2);
  603. BF(21, 22,-COS3_1 , 2);
  604. BF(25, 26, COS3_1 , 2);
  605. BF(29, 30,-COS3_1 , 2);
  606. /* pass 5 */
  607. BF1( 0, 1, 2, 3);
  608. BF2( 4, 5, 6, 7);
  609. BF1( 8, 9, 10, 11);
  610. BF2(12, 13, 14, 15);
  611. BF1(16, 17, 18, 19);
  612. BF2(20, 21, 22, 23);
  613. BF1(24, 25, 26, 27);
  614. BF2(28, 29, 30, 31);
  615. /* pass 6 */
  616. ADD( 8, 12);
  617. ADD(12, 10);
  618. ADD(10, 14);
  619. ADD(14, 9);
  620. ADD( 9, 13);
  621. ADD(13, 11);
  622. ADD(11, 15);
  623. out[ 0] = tab[0];
  624. out[16] = tab[1];
  625. out[ 8] = tab[2];
  626. out[24] = tab[3];
  627. out[ 4] = tab[4];
  628. out[20] = tab[5];
  629. out[12] = tab[6];
  630. out[28] = tab[7];
  631. out[ 2] = tab[8];
  632. out[18] = tab[9];
  633. out[10] = tab[10];
  634. out[26] = tab[11];
  635. out[ 6] = tab[12];
  636. out[22] = tab[13];
  637. out[14] = tab[14];
  638. out[30] = tab[15];
  639. ADD(24, 28);
  640. ADD(28, 26);
  641. ADD(26, 30);
  642. ADD(30, 25);
  643. ADD(25, 29);
  644. ADD(29, 27);
  645. ADD(27, 31);
  646. out[ 1] = tab[16] + tab[24];
  647. out[17] = tab[17] + tab[25];
  648. out[ 9] = tab[18] + tab[26];
  649. out[25] = tab[19] + tab[27];
  650. out[ 5] = tab[20] + tab[28];
  651. out[21] = tab[21] + tab[29];
  652. out[13] = tab[22] + tab[30];
  653. out[29] = tab[23] + tab[31];
  654. out[ 3] = tab[24] + tab[20];
  655. out[19] = tab[25] + tab[21];
  656. out[11] = tab[26] + tab[22];
  657. out[27] = tab[27] + tab[23];
  658. out[ 7] = tab[28] + tab[18];
  659. out[23] = tab[29] + tab[19];
  660. out[15] = tab[30] + tab[17];
  661. out[31] = tab[31];
  662. }
  663. #if FRAC_BITS <= 15
  664. static inline int round_sample(int *sum)
  665. {
  666. int sum1;
  667. sum1 = (*sum) >> OUT_SHIFT;
  668. *sum &= (1<<OUT_SHIFT)-1;
  669. if (sum1 < OUT_MIN)
  670. sum1 = OUT_MIN;
  671. else if (sum1 > OUT_MAX)
  672. sum1 = OUT_MAX;
  673. return sum1;
  674. }
  675. /* signed 16x16 -> 32 multiply add accumulate */
  676. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  677. /* signed 16x16 -> 32 multiply */
  678. #define MULS(ra, rb) MUL16(ra, rb)
  679. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  680. #else
  681. static inline int round_sample(int64_t *sum)
  682. {
  683. int sum1;
  684. sum1 = (int)((*sum) >> OUT_SHIFT);
  685. *sum &= (1<<OUT_SHIFT)-1;
  686. if (sum1 < OUT_MIN)
  687. sum1 = OUT_MIN;
  688. else if (sum1 > OUT_MAX)
  689. sum1 = OUT_MAX;
  690. return sum1;
  691. }
  692. # define MULS(ra, rb) MUL64(ra, rb)
  693. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  694. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  695. #endif
  696. #define SUM8(op, sum, w, p) \
  697. { \
  698. op(sum, (w)[0 * 64], p[0 * 64]); \
  699. op(sum, (w)[1 * 64], p[1 * 64]); \
  700. op(sum, (w)[2 * 64], p[2 * 64]); \
  701. op(sum, (w)[3 * 64], p[3 * 64]); \
  702. op(sum, (w)[4 * 64], p[4 * 64]); \
  703. op(sum, (w)[5 * 64], p[5 * 64]); \
  704. op(sum, (w)[6 * 64], p[6 * 64]); \
  705. op(sum, (w)[7 * 64], p[7 * 64]); \
  706. }
  707. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  708. { \
  709. int tmp;\
  710. tmp = p[0 * 64];\
  711. op1(sum1, (w1)[0 * 64], tmp);\
  712. op2(sum2, (w2)[0 * 64], tmp);\
  713. tmp = p[1 * 64];\
  714. op1(sum1, (w1)[1 * 64], tmp);\
  715. op2(sum2, (w2)[1 * 64], tmp);\
  716. tmp = p[2 * 64];\
  717. op1(sum1, (w1)[2 * 64], tmp);\
  718. op2(sum2, (w2)[2 * 64], tmp);\
  719. tmp = p[3 * 64];\
  720. op1(sum1, (w1)[3 * 64], tmp);\
  721. op2(sum2, (w2)[3 * 64], tmp);\
  722. tmp = p[4 * 64];\
  723. op1(sum1, (w1)[4 * 64], tmp);\
  724. op2(sum2, (w2)[4 * 64], tmp);\
  725. tmp = p[5 * 64];\
  726. op1(sum1, (w1)[5 * 64], tmp);\
  727. op2(sum2, (w2)[5 * 64], tmp);\
  728. tmp = p[6 * 64];\
  729. op1(sum1, (w1)[6 * 64], tmp);\
  730. op2(sum2, (w2)[6 * 64], tmp);\
  731. tmp = p[7 * 64];\
  732. op1(sum1, (w1)[7 * 64], tmp);\
  733. op2(sum2, (w2)[7 * 64], tmp);\
  734. }
  735. void ff_mpa_synth_init(MPA_INT *window)
  736. {
  737. int i;
  738. /* max = 18760, max sum over all 16 coefs : 44736 */
  739. for(i=0;i<257;i++) {
  740. int v;
  741. v = ff_mpa_enwindow[i];
  742. #if WFRAC_BITS < 16
  743. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  744. #endif
  745. window[i] = v;
  746. if ((i & 63) != 0)
  747. v = -v;
  748. if (i != 0)
  749. window[512 - i] = v;
  750. }
  751. }
  752. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  753. 32 samples. */
  754. /* XXX: optimize by avoiding ring buffer usage */
  755. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  756. MPA_INT *window, int *dither_state,
  757. OUT_INT *samples, int incr,
  758. int32_t sb_samples[SBLIMIT])
  759. {
  760. int32_t tmp[32];
  761. register MPA_INT *synth_buf;
  762. register const MPA_INT *w, *w2, *p;
  763. int j, offset, v;
  764. OUT_INT *samples2;
  765. #if FRAC_BITS <= 15
  766. int sum, sum2;
  767. #else
  768. int64_t sum, sum2;
  769. #endif
  770. dct32(tmp, sb_samples);
  771. offset = *synth_buf_offset;
  772. synth_buf = synth_buf_ptr + offset;
  773. for(j=0;j<32;j++) {
  774. v = tmp[j];
  775. #if FRAC_BITS <= 15
  776. /* NOTE: can cause a loss in precision if very high amplitude
  777. sound */
  778. v = av_clip_int16(v);
  779. #endif
  780. synth_buf[j] = v;
  781. }
  782. /* copy to avoid wrap */
  783. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  784. samples2 = samples + 31 * incr;
  785. w = window;
  786. w2 = window + 31;
  787. sum = *dither_state;
  788. p = synth_buf + 16;
  789. SUM8(MACS, sum, w, p);
  790. p = synth_buf + 48;
  791. SUM8(MLSS, sum, w + 32, p);
  792. *samples = round_sample(&sum);
  793. samples += incr;
  794. w++;
  795. /* we calculate two samples at the same time to avoid one memory
  796. access per two sample */
  797. for(j=1;j<16;j++) {
  798. sum2 = 0;
  799. p = synth_buf + 16 + j;
  800. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  801. p = synth_buf + 48 - j;
  802. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  803. *samples = round_sample(&sum);
  804. samples += incr;
  805. sum += sum2;
  806. *samples2 = round_sample(&sum);
  807. samples2 -= incr;
  808. w++;
  809. w2--;
  810. }
  811. p = synth_buf + 32;
  812. SUM8(MLSS, sum, w + 32, p);
  813. *samples = round_sample(&sum);
  814. *dither_state= sum;
  815. offset = (offset - 32) & 511;
  816. *synth_buf_offset = offset;
  817. }
  818. #define C3 FIXHR(0.86602540378443864676/2)
  819. /* 0.5 / cos(pi*(2*i+1)/36) */
  820. static const int icos36[9] = {
  821. FIXR(0.50190991877167369479),
  822. FIXR(0.51763809020504152469), //0
  823. FIXR(0.55168895948124587824),
  824. FIXR(0.61038729438072803416),
  825. FIXR(0.70710678118654752439), //1
  826. FIXR(0.87172339781054900991),
  827. FIXR(1.18310079157624925896),
  828. FIXR(1.93185165257813657349), //2
  829. FIXR(5.73685662283492756461),
  830. };
  831. /* 0.5 / cos(pi*(2*i+1)/36) */
  832. static const int icos36h[9] = {
  833. FIXHR(0.50190991877167369479/2),
  834. FIXHR(0.51763809020504152469/2), //0
  835. FIXHR(0.55168895948124587824/2),
  836. FIXHR(0.61038729438072803416/2),
  837. FIXHR(0.70710678118654752439/2), //1
  838. FIXHR(0.87172339781054900991/2),
  839. FIXHR(1.18310079157624925896/4),
  840. FIXHR(1.93185165257813657349/4), //2
  841. // FIXHR(5.73685662283492756461),
  842. };
  843. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  844. cases. */
  845. static void imdct12(int *out, int *in)
  846. {
  847. int in0, in1, in2, in3, in4, in5, t1, t2;
  848. in0= in[0*3];
  849. in1= in[1*3] + in[0*3];
  850. in2= in[2*3] + in[1*3];
  851. in3= in[3*3] + in[2*3];
  852. in4= in[4*3] + in[3*3];
  853. in5= in[5*3] + in[4*3];
  854. in5 += in3;
  855. in3 += in1;
  856. in2= MULH(2*in2, C3);
  857. in3= MULH(4*in3, C3);
  858. t1 = in0 - in4;
  859. t2 = MULH(2*(in1 - in5), icos36h[4]);
  860. out[ 7]=
  861. out[10]= t1 + t2;
  862. out[ 1]=
  863. out[ 4]= t1 - t2;
  864. in0 += in4>>1;
  865. in4 = in0 + in2;
  866. in5 += 2*in1;
  867. in1 = MULH(in5 + in3, icos36h[1]);
  868. out[ 8]=
  869. out[ 9]= in4 + in1;
  870. out[ 2]=
  871. out[ 3]= in4 - in1;
  872. in0 -= in2;
  873. in5 = MULH(2*(in5 - in3), icos36h[7]);
  874. out[ 0]=
  875. out[ 5]= in0 - in5;
  876. out[ 6]=
  877. out[11]= in0 + in5;
  878. }
  879. /* cos(pi*i/18) */
  880. #define C1 FIXHR(0.98480775301220805936/2)
  881. #define C2 FIXHR(0.93969262078590838405/2)
  882. #define C3 FIXHR(0.86602540378443864676/2)
  883. #define C4 FIXHR(0.76604444311897803520/2)
  884. #define C5 FIXHR(0.64278760968653932632/2)
  885. #define C6 FIXHR(0.5/2)
  886. #define C7 FIXHR(0.34202014332566873304/2)
  887. #define C8 FIXHR(0.17364817766693034885/2)
  888. /* using Lee like decomposition followed by hand coded 9 points DCT */
  889. static void imdct36(int *out, int *buf, int *in, int *win)
  890. {
  891. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  892. int tmp[18], *tmp1, *in1;
  893. for(i=17;i>=1;i--)
  894. in[i] += in[i-1];
  895. for(i=17;i>=3;i-=2)
  896. in[i] += in[i-2];
  897. for(j=0;j<2;j++) {
  898. tmp1 = tmp + j;
  899. in1 = in + j;
  900. #if 0
  901. //more accurate but slower
  902. int64_t t0, t1, t2, t3;
  903. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  904. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  905. t1 = in1[2*0] - in1[2*6];
  906. tmp1[ 6] = t1 - (t2>>1);
  907. tmp1[16] = t1 + t2;
  908. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  909. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  910. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  911. tmp1[10] = (t3 - t0 - t2) >> 32;
  912. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  913. tmp1[14] = (t3 + t2 - t1) >> 32;
  914. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  915. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  916. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  917. t0 = MUL64(2*in1[2*3], C3);
  918. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  919. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  920. tmp1[12] = (t2 + t1 - t0) >> 32;
  921. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  922. #else
  923. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  924. t3 = in1[2*0] + (in1[2*6]>>1);
  925. t1 = in1[2*0] - in1[2*6];
  926. tmp1[ 6] = t1 - (t2>>1);
  927. tmp1[16] = t1 + t2;
  928. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  929. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  930. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  931. tmp1[10] = t3 - t0 - t2;
  932. tmp1[ 2] = t3 + t0 + t1;
  933. tmp1[14] = t3 + t2 - t1;
  934. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  935. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  936. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  937. t0 = MULH(2*in1[2*3], C3);
  938. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  939. tmp1[ 0] = t2 + t3 + t0;
  940. tmp1[12] = t2 + t1 - t0;
  941. tmp1[ 8] = t3 - t1 - t0;
  942. #endif
  943. }
  944. i = 0;
  945. for(j=0;j<4;j++) {
  946. t0 = tmp[i];
  947. t1 = tmp[i + 2];
  948. s0 = t1 + t0;
  949. s2 = t1 - t0;
  950. t2 = tmp[i + 1];
  951. t3 = tmp[i + 3];
  952. s1 = MULH(2*(t3 + t2), icos36h[j]);
  953. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  954. t0 = s0 + s1;
  955. t1 = s0 - s1;
  956. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  957. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  958. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  959. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  960. t0 = s2 + s3;
  961. t1 = s2 - s3;
  962. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  963. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  964. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  965. buf[ + j] = MULH(t0, win[18 + j]);
  966. i += 4;
  967. }
  968. s0 = tmp[16];
  969. s1 = MULH(2*tmp[17], icos36h[4]);
  970. t0 = s0 + s1;
  971. t1 = s0 - s1;
  972. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  973. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  974. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  975. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  976. }
  977. /* return the number of decoded frames */
  978. static int mp_decode_layer1(MPADecodeContext *s)
  979. {
  980. int bound, i, v, n, ch, j, mant;
  981. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  982. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  983. if (s->mode == MPA_JSTEREO)
  984. bound = (s->mode_ext + 1) * 4;
  985. else
  986. bound = SBLIMIT;
  987. /* allocation bits */
  988. for(i=0;i<bound;i++) {
  989. for(ch=0;ch<s->nb_channels;ch++) {
  990. allocation[ch][i] = get_bits(&s->gb, 4);
  991. }
  992. }
  993. for(i=bound;i<SBLIMIT;i++) {
  994. allocation[0][i] = get_bits(&s->gb, 4);
  995. }
  996. /* scale factors */
  997. for(i=0;i<bound;i++) {
  998. for(ch=0;ch<s->nb_channels;ch++) {
  999. if (allocation[ch][i])
  1000. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1001. }
  1002. }
  1003. for(i=bound;i<SBLIMIT;i++) {
  1004. if (allocation[0][i]) {
  1005. scale_factors[0][i] = get_bits(&s->gb, 6);
  1006. scale_factors[1][i] = get_bits(&s->gb, 6);
  1007. }
  1008. }
  1009. /* compute samples */
  1010. for(j=0;j<12;j++) {
  1011. for(i=0;i<bound;i++) {
  1012. for(ch=0;ch<s->nb_channels;ch++) {
  1013. n = allocation[ch][i];
  1014. if (n) {
  1015. mant = get_bits(&s->gb, n + 1);
  1016. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1017. } else {
  1018. v = 0;
  1019. }
  1020. s->sb_samples[ch][j][i] = v;
  1021. }
  1022. }
  1023. for(i=bound;i<SBLIMIT;i++) {
  1024. n = allocation[0][i];
  1025. if (n) {
  1026. mant = get_bits(&s->gb, n + 1);
  1027. v = l1_unscale(n, mant, scale_factors[0][i]);
  1028. s->sb_samples[0][j][i] = v;
  1029. v = l1_unscale(n, mant, scale_factors[1][i]);
  1030. s->sb_samples[1][j][i] = v;
  1031. } else {
  1032. s->sb_samples[0][j][i] = 0;
  1033. s->sb_samples[1][j][i] = 0;
  1034. }
  1035. }
  1036. }
  1037. return 12;
  1038. }
  1039. static int mp_decode_layer2(MPADecodeContext *s)
  1040. {
  1041. int sblimit; /* number of used subbands */
  1042. const unsigned char *alloc_table;
  1043. int table, bit_alloc_bits, i, j, ch, bound, v;
  1044. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1045. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1046. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1047. int scale, qindex, bits, steps, k, l, m, b;
  1048. /* select decoding table */
  1049. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1050. s->sample_rate, s->lsf);
  1051. sblimit = ff_mpa_sblimit_table[table];
  1052. alloc_table = ff_mpa_alloc_tables[table];
  1053. if (s->mode == MPA_JSTEREO)
  1054. bound = (s->mode_ext + 1) * 4;
  1055. else
  1056. bound = sblimit;
  1057. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1058. /* sanity check */
  1059. if( bound > sblimit ) bound = sblimit;
  1060. /* parse bit allocation */
  1061. j = 0;
  1062. for(i=0;i<bound;i++) {
  1063. bit_alloc_bits = alloc_table[j];
  1064. for(ch=0;ch<s->nb_channels;ch++) {
  1065. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1066. }
  1067. j += 1 << bit_alloc_bits;
  1068. }
  1069. for(i=bound;i<sblimit;i++) {
  1070. bit_alloc_bits = alloc_table[j];
  1071. v = get_bits(&s->gb, bit_alloc_bits);
  1072. bit_alloc[0][i] = v;
  1073. bit_alloc[1][i] = v;
  1074. j += 1 << bit_alloc_bits;
  1075. }
  1076. /* scale codes */
  1077. for(i=0;i<sblimit;i++) {
  1078. for(ch=0;ch<s->nb_channels;ch++) {
  1079. if (bit_alloc[ch][i])
  1080. scale_code[ch][i] = get_bits(&s->gb, 2);
  1081. }
  1082. }
  1083. /* scale factors */
  1084. for(i=0;i<sblimit;i++) {
  1085. for(ch=0;ch<s->nb_channels;ch++) {
  1086. if (bit_alloc[ch][i]) {
  1087. sf = scale_factors[ch][i];
  1088. switch(scale_code[ch][i]) {
  1089. default:
  1090. case 0:
  1091. sf[0] = get_bits(&s->gb, 6);
  1092. sf[1] = get_bits(&s->gb, 6);
  1093. sf[2] = get_bits(&s->gb, 6);
  1094. break;
  1095. case 2:
  1096. sf[0] = get_bits(&s->gb, 6);
  1097. sf[1] = sf[0];
  1098. sf[2] = sf[0];
  1099. break;
  1100. case 1:
  1101. sf[0] = get_bits(&s->gb, 6);
  1102. sf[2] = get_bits(&s->gb, 6);
  1103. sf[1] = sf[0];
  1104. break;
  1105. case 3:
  1106. sf[0] = get_bits(&s->gb, 6);
  1107. sf[2] = get_bits(&s->gb, 6);
  1108. sf[1] = sf[2];
  1109. break;
  1110. }
  1111. }
  1112. }
  1113. }
  1114. /* samples */
  1115. for(k=0;k<3;k++) {
  1116. for(l=0;l<12;l+=3) {
  1117. j = 0;
  1118. for(i=0;i<bound;i++) {
  1119. bit_alloc_bits = alloc_table[j];
  1120. for(ch=0;ch<s->nb_channels;ch++) {
  1121. b = bit_alloc[ch][i];
  1122. if (b) {
  1123. scale = scale_factors[ch][i][k];
  1124. qindex = alloc_table[j+b];
  1125. bits = ff_mpa_quant_bits[qindex];
  1126. if (bits < 0) {
  1127. /* 3 values at the same time */
  1128. v = get_bits(&s->gb, -bits);
  1129. steps = ff_mpa_quant_steps[qindex];
  1130. s->sb_samples[ch][k * 12 + l + 0][i] =
  1131. l2_unscale_group(steps, v % steps, scale);
  1132. v = v / steps;
  1133. s->sb_samples[ch][k * 12 + l + 1][i] =
  1134. l2_unscale_group(steps, v % steps, scale);
  1135. v = v / steps;
  1136. s->sb_samples[ch][k * 12 + l + 2][i] =
  1137. l2_unscale_group(steps, v, scale);
  1138. } else {
  1139. for(m=0;m<3;m++) {
  1140. v = get_bits(&s->gb, bits);
  1141. v = l1_unscale(bits - 1, v, scale);
  1142. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1143. }
  1144. }
  1145. } else {
  1146. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1147. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1148. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1149. }
  1150. }
  1151. /* next subband in alloc table */
  1152. j += 1 << bit_alloc_bits;
  1153. }
  1154. /* XXX: find a way to avoid this duplication of code */
  1155. for(i=bound;i<sblimit;i++) {
  1156. bit_alloc_bits = alloc_table[j];
  1157. b = bit_alloc[0][i];
  1158. if (b) {
  1159. int mant, scale0, scale1;
  1160. scale0 = scale_factors[0][i][k];
  1161. scale1 = scale_factors[1][i][k];
  1162. qindex = alloc_table[j+b];
  1163. bits = ff_mpa_quant_bits[qindex];
  1164. if (bits < 0) {
  1165. /* 3 values at the same time */
  1166. v = get_bits(&s->gb, -bits);
  1167. steps = ff_mpa_quant_steps[qindex];
  1168. mant = v % steps;
  1169. v = v / steps;
  1170. s->sb_samples[0][k * 12 + l + 0][i] =
  1171. l2_unscale_group(steps, mant, scale0);
  1172. s->sb_samples[1][k * 12 + l + 0][i] =
  1173. l2_unscale_group(steps, mant, scale1);
  1174. mant = v % steps;
  1175. v = v / steps;
  1176. s->sb_samples[0][k * 12 + l + 1][i] =
  1177. l2_unscale_group(steps, mant, scale0);
  1178. s->sb_samples[1][k * 12 + l + 1][i] =
  1179. l2_unscale_group(steps, mant, scale1);
  1180. s->sb_samples[0][k * 12 + l + 2][i] =
  1181. l2_unscale_group(steps, v, scale0);
  1182. s->sb_samples[1][k * 12 + l + 2][i] =
  1183. l2_unscale_group(steps, v, scale1);
  1184. } else {
  1185. for(m=0;m<3;m++) {
  1186. mant = get_bits(&s->gb, bits);
  1187. s->sb_samples[0][k * 12 + l + m][i] =
  1188. l1_unscale(bits - 1, mant, scale0);
  1189. s->sb_samples[1][k * 12 + l + m][i] =
  1190. l1_unscale(bits - 1, mant, scale1);
  1191. }
  1192. }
  1193. } else {
  1194. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1195. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1196. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1197. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1198. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1199. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1200. }
  1201. /* next subband in alloc table */
  1202. j += 1 << bit_alloc_bits;
  1203. }
  1204. /* fill remaining samples to zero */
  1205. for(i=sblimit;i<SBLIMIT;i++) {
  1206. for(ch=0;ch<s->nb_channels;ch++) {
  1207. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1208. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1209. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1210. }
  1211. }
  1212. }
  1213. }
  1214. return 3 * 12;
  1215. }
  1216. static inline void lsf_sf_expand(int *slen,
  1217. int sf, int n1, int n2, int n3)
  1218. {
  1219. if (n3) {
  1220. slen[3] = sf % n3;
  1221. sf /= n3;
  1222. } else {
  1223. slen[3] = 0;
  1224. }
  1225. if (n2) {
  1226. slen[2] = sf % n2;
  1227. sf /= n2;
  1228. } else {
  1229. slen[2] = 0;
  1230. }
  1231. slen[1] = sf % n1;
  1232. sf /= n1;
  1233. slen[0] = sf;
  1234. }
  1235. static void exponents_from_scale_factors(MPADecodeContext *s,
  1236. GranuleDef *g,
  1237. int16_t *exponents)
  1238. {
  1239. const uint8_t *bstab, *pretab;
  1240. int len, i, j, k, l, v0, shift, gain, gains[3];
  1241. int16_t *exp_ptr;
  1242. exp_ptr = exponents;
  1243. gain = g->global_gain - 210;
  1244. shift = g->scalefac_scale + 1;
  1245. bstab = band_size_long[s->sample_rate_index];
  1246. pretab = mpa_pretab[g->preflag];
  1247. for(i=0;i<g->long_end;i++) {
  1248. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1249. len = bstab[i];
  1250. for(j=len;j>0;j--)
  1251. *exp_ptr++ = v0;
  1252. }
  1253. if (g->short_start < 13) {
  1254. bstab = band_size_short[s->sample_rate_index];
  1255. gains[0] = gain - (g->subblock_gain[0] << 3);
  1256. gains[1] = gain - (g->subblock_gain[1] << 3);
  1257. gains[2] = gain - (g->subblock_gain[2] << 3);
  1258. k = g->long_end;
  1259. for(i=g->short_start;i<13;i++) {
  1260. len = bstab[i];
  1261. for(l=0;l<3;l++) {
  1262. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1263. for(j=len;j>0;j--)
  1264. *exp_ptr++ = v0;
  1265. }
  1266. }
  1267. }
  1268. }
  1269. /* handle n = 0 too */
  1270. static inline int get_bitsz(GetBitContext *s, int n)
  1271. {
  1272. if (n == 0)
  1273. return 0;
  1274. else
  1275. return get_bits(s, n);
  1276. }
  1277. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1278. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1279. s->gb= s->in_gb;
  1280. s->in_gb.buffer=NULL;
  1281. assert((get_bits_count(&s->gb) & 7) == 0);
  1282. skip_bits_long(&s->gb, *pos - *end_pos);
  1283. *end_pos2=
  1284. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1285. *pos= get_bits_count(&s->gb);
  1286. }
  1287. }
  1288. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1289. int16_t *exponents, int end_pos2)
  1290. {
  1291. int s_index;
  1292. int i;
  1293. int last_pos, bits_left;
  1294. VLC *vlc;
  1295. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1296. /* low frequencies (called big values) */
  1297. s_index = 0;
  1298. for(i=0;i<3;i++) {
  1299. int j, k, l, linbits;
  1300. j = g->region_size[i];
  1301. if (j == 0)
  1302. continue;
  1303. /* select vlc table */
  1304. k = g->table_select[i];
  1305. l = mpa_huff_data[k][0];
  1306. linbits = mpa_huff_data[k][1];
  1307. vlc = &huff_vlc[l];
  1308. if(!l){
  1309. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1310. s_index += 2*j;
  1311. continue;
  1312. }
  1313. /* read huffcode and compute each couple */
  1314. for(;j>0;j--) {
  1315. int exponent, x, y, v;
  1316. int pos= get_bits_count(&s->gb);
  1317. if (pos >= end_pos){
  1318. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1319. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1320. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1321. if(pos >= end_pos)
  1322. break;
  1323. }
  1324. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1325. if(!y){
  1326. g->sb_hybrid[s_index ] =
  1327. g->sb_hybrid[s_index+1] = 0;
  1328. s_index += 2;
  1329. continue;
  1330. }
  1331. exponent= exponents[s_index];
  1332. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1333. i, g->region_size[i] - j, x, y, exponent);
  1334. if(y&16){
  1335. x = y >> 5;
  1336. y = y & 0x0f;
  1337. if (x < 15){
  1338. v = expval_table[ exponent ][ x ];
  1339. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1340. }else{
  1341. x += get_bitsz(&s->gb, linbits);
  1342. v = l3_unscale(x, exponent);
  1343. }
  1344. if (get_bits1(&s->gb))
  1345. v = -v;
  1346. g->sb_hybrid[s_index] = v;
  1347. if (y < 15){
  1348. v = expval_table[ exponent ][ y ];
  1349. }else{
  1350. y += get_bitsz(&s->gb, linbits);
  1351. v = l3_unscale(y, exponent);
  1352. }
  1353. if (get_bits1(&s->gb))
  1354. v = -v;
  1355. g->sb_hybrid[s_index+1] = v;
  1356. }else{
  1357. x = y >> 5;
  1358. y = y & 0x0f;
  1359. x += y;
  1360. if (x < 15){
  1361. v = expval_table[ exponent ][ x ];
  1362. }else{
  1363. x += get_bitsz(&s->gb, linbits);
  1364. v = l3_unscale(x, exponent);
  1365. }
  1366. if (get_bits1(&s->gb))
  1367. v = -v;
  1368. g->sb_hybrid[s_index+!!y] = v;
  1369. g->sb_hybrid[s_index+ !y] = 0;
  1370. }
  1371. s_index+=2;
  1372. }
  1373. }
  1374. /* high frequencies */
  1375. vlc = &huff_quad_vlc[g->count1table_select];
  1376. last_pos=0;
  1377. while (s_index <= 572) {
  1378. int pos, code;
  1379. pos = get_bits_count(&s->gb);
  1380. if (pos >= end_pos) {
  1381. if (pos > end_pos2 && last_pos){
  1382. /* some encoders generate an incorrect size for this
  1383. part. We must go back into the data */
  1384. s_index -= 4;
  1385. skip_bits_long(&s->gb, last_pos - pos);
  1386. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1387. if(s->error_recognition >= FF_ER_COMPLIANT)
  1388. s_index=0;
  1389. break;
  1390. }
  1391. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1392. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1393. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1394. if(pos >= end_pos)
  1395. break;
  1396. }
  1397. last_pos= pos;
  1398. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1399. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1400. g->sb_hybrid[s_index+0]=
  1401. g->sb_hybrid[s_index+1]=
  1402. g->sb_hybrid[s_index+2]=
  1403. g->sb_hybrid[s_index+3]= 0;
  1404. while(code){
  1405. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1406. int v;
  1407. int pos= s_index+idxtab[code];
  1408. code ^= 8>>idxtab[code];
  1409. v = exp_table[ exponents[pos] ];
  1410. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1411. if(get_bits1(&s->gb))
  1412. v = -v;
  1413. g->sb_hybrid[pos] = v;
  1414. }
  1415. s_index+=4;
  1416. }
  1417. /* skip extension bits */
  1418. bits_left = end_pos2 - get_bits_count(&s->gb);
  1419. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1420. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1421. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1422. s_index=0;
  1423. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1424. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1425. s_index=0;
  1426. }
  1427. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1428. skip_bits_long(&s->gb, bits_left);
  1429. i= get_bits_count(&s->gb);
  1430. switch_buffer(s, &i, &end_pos, &end_pos2);
  1431. return 0;
  1432. }
  1433. /* Reorder short blocks from bitstream order to interleaved order. It
  1434. would be faster to do it in parsing, but the code would be far more
  1435. complicated */
  1436. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1437. {
  1438. int i, j, len;
  1439. int32_t *ptr, *dst, *ptr1;
  1440. int32_t tmp[576];
  1441. if (g->block_type != 2)
  1442. return;
  1443. if (g->switch_point) {
  1444. if (s->sample_rate_index != 8) {
  1445. ptr = g->sb_hybrid + 36;
  1446. } else {
  1447. ptr = g->sb_hybrid + 48;
  1448. }
  1449. } else {
  1450. ptr = g->sb_hybrid;
  1451. }
  1452. for(i=g->short_start;i<13;i++) {
  1453. len = band_size_short[s->sample_rate_index][i];
  1454. ptr1 = ptr;
  1455. dst = tmp;
  1456. for(j=len;j>0;j--) {
  1457. *dst++ = ptr[0*len];
  1458. *dst++ = ptr[1*len];
  1459. *dst++ = ptr[2*len];
  1460. ptr++;
  1461. }
  1462. ptr+=2*len;
  1463. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1464. }
  1465. }
  1466. #define ISQRT2 FIXR(0.70710678118654752440)
  1467. static void compute_stereo(MPADecodeContext *s,
  1468. GranuleDef *g0, GranuleDef *g1)
  1469. {
  1470. int i, j, k, l;
  1471. int32_t v1, v2;
  1472. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1473. int32_t (*is_tab)[16];
  1474. int32_t *tab0, *tab1;
  1475. int non_zero_found_short[3];
  1476. /* intensity stereo */
  1477. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1478. if (!s->lsf) {
  1479. is_tab = is_table;
  1480. sf_max = 7;
  1481. } else {
  1482. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1483. sf_max = 16;
  1484. }
  1485. tab0 = g0->sb_hybrid + 576;
  1486. tab1 = g1->sb_hybrid + 576;
  1487. non_zero_found_short[0] = 0;
  1488. non_zero_found_short[1] = 0;
  1489. non_zero_found_short[2] = 0;
  1490. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1491. for(i = 12;i >= g1->short_start;i--) {
  1492. /* for last band, use previous scale factor */
  1493. if (i != 11)
  1494. k -= 3;
  1495. len = band_size_short[s->sample_rate_index][i];
  1496. for(l=2;l>=0;l--) {
  1497. tab0 -= len;
  1498. tab1 -= len;
  1499. if (!non_zero_found_short[l]) {
  1500. /* test if non zero band. if so, stop doing i-stereo */
  1501. for(j=0;j<len;j++) {
  1502. if (tab1[j] != 0) {
  1503. non_zero_found_short[l] = 1;
  1504. goto found1;
  1505. }
  1506. }
  1507. sf = g1->scale_factors[k + l];
  1508. if (sf >= sf_max)
  1509. goto found1;
  1510. v1 = is_tab[0][sf];
  1511. v2 = is_tab[1][sf];
  1512. for(j=0;j<len;j++) {
  1513. tmp0 = tab0[j];
  1514. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1515. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1516. }
  1517. } else {
  1518. found1:
  1519. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1520. /* lower part of the spectrum : do ms stereo
  1521. if enabled */
  1522. for(j=0;j<len;j++) {
  1523. tmp0 = tab0[j];
  1524. tmp1 = tab1[j];
  1525. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1526. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1527. }
  1528. }
  1529. }
  1530. }
  1531. }
  1532. non_zero_found = non_zero_found_short[0] |
  1533. non_zero_found_short[1] |
  1534. non_zero_found_short[2];
  1535. for(i = g1->long_end - 1;i >= 0;i--) {
  1536. len = band_size_long[s->sample_rate_index][i];
  1537. tab0 -= len;
  1538. tab1 -= len;
  1539. /* test if non zero band. if so, stop doing i-stereo */
  1540. if (!non_zero_found) {
  1541. for(j=0;j<len;j++) {
  1542. if (tab1[j] != 0) {
  1543. non_zero_found = 1;
  1544. goto found2;
  1545. }
  1546. }
  1547. /* for last band, use previous scale factor */
  1548. k = (i == 21) ? 20 : i;
  1549. sf = g1->scale_factors[k];
  1550. if (sf >= sf_max)
  1551. goto found2;
  1552. v1 = is_tab[0][sf];
  1553. v2 = is_tab[1][sf];
  1554. for(j=0;j<len;j++) {
  1555. tmp0 = tab0[j];
  1556. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1557. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1558. }
  1559. } else {
  1560. found2:
  1561. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1562. /* lower part of the spectrum : do ms stereo
  1563. if enabled */
  1564. for(j=0;j<len;j++) {
  1565. tmp0 = tab0[j];
  1566. tmp1 = tab1[j];
  1567. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1568. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1569. }
  1570. }
  1571. }
  1572. }
  1573. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1574. /* ms stereo ONLY */
  1575. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1576. global gain */
  1577. tab0 = g0->sb_hybrid;
  1578. tab1 = g1->sb_hybrid;
  1579. for(i=0;i<576;i++) {
  1580. tmp0 = tab0[i];
  1581. tmp1 = tab1[i];
  1582. tab0[i] = tmp0 + tmp1;
  1583. tab1[i] = tmp0 - tmp1;
  1584. }
  1585. }
  1586. }
  1587. static void compute_antialias_integer(MPADecodeContext *s,
  1588. GranuleDef *g)
  1589. {
  1590. int32_t *ptr, *csa;
  1591. int n, i;
  1592. /* we antialias only "long" bands */
  1593. if (g->block_type == 2) {
  1594. if (!g->switch_point)
  1595. return;
  1596. /* XXX: check this for 8000Hz case */
  1597. n = 1;
  1598. } else {
  1599. n = SBLIMIT - 1;
  1600. }
  1601. ptr = g->sb_hybrid + 18;
  1602. for(i = n;i > 0;i--) {
  1603. int tmp0, tmp1, tmp2;
  1604. csa = &csa_table[0][0];
  1605. #define INT_AA(j) \
  1606. tmp0 = ptr[-1-j];\
  1607. tmp1 = ptr[ j];\
  1608. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1609. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1610. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1611. INT_AA(0)
  1612. INT_AA(1)
  1613. INT_AA(2)
  1614. INT_AA(3)
  1615. INT_AA(4)
  1616. INT_AA(5)
  1617. INT_AA(6)
  1618. INT_AA(7)
  1619. ptr += 18;
  1620. }
  1621. }
  1622. static void compute_antialias_float(MPADecodeContext *s,
  1623. GranuleDef *g)
  1624. {
  1625. int32_t *ptr;
  1626. int n, i;
  1627. /* we antialias only "long" bands */
  1628. if (g->block_type == 2) {
  1629. if (!g->switch_point)
  1630. return;
  1631. /* XXX: check this for 8000Hz case */
  1632. n = 1;
  1633. } else {
  1634. n = SBLIMIT - 1;
  1635. }
  1636. ptr = g->sb_hybrid + 18;
  1637. for(i = n;i > 0;i--) {
  1638. float tmp0, tmp1;
  1639. float *csa = &csa_table_float[0][0];
  1640. #define FLOAT_AA(j)\
  1641. tmp0= ptr[-1-j];\
  1642. tmp1= ptr[ j];\
  1643. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1644. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1645. FLOAT_AA(0)
  1646. FLOAT_AA(1)
  1647. FLOAT_AA(2)
  1648. FLOAT_AA(3)
  1649. FLOAT_AA(4)
  1650. FLOAT_AA(5)
  1651. FLOAT_AA(6)
  1652. FLOAT_AA(7)
  1653. ptr += 18;
  1654. }
  1655. }
  1656. static void compute_imdct(MPADecodeContext *s,
  1657. GranuleDef *g,
  1658. int32_t *sb_samples,
  1659. int32_t *mdct_buf)
  1660. {
  1661. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1662. int32_t out2[12];
  1663. int i, j, mdct_long_end, v, sblimit;
  1664. /* find last non zero block */
  1665. ptr = g->sb_hybrid + 576;
  1666. ptr1 = g->sb_hybrid + 2 * 18;
  1667. while (ptr >= ptr1) {
  1668. ptr -= 6;
  1669. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1670. if (v != 0)
  1671. break;
  1672. }
  1673. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1674. if (g->block_type == 2) {
  1675. /* XXX: check for 8000 Hz */
  1676. if (g->switch_point)
  1677. mdct_long_end = 2;
  1678. else
  1679. mdct_long_end = 0;
  1680. } else {
  1681. mdct_long_end = sblimit;
  1682. }
  1683. buf = mdct_buf;
  1684. ptr = g->sb_hybrid;
  1685. for(j=0;j<mdct_long_end;j++) {
  1686. /* apply window & overlap with previous buffer */
  1687. out_ptr = sb_samples + j;
  1688. /* select window */
  1689. if (g->switch_point && j < 2)
  1690. win1 = mdct_win[0];
  1691. else
  1692. win1 = mdct_win[g->block_type];
  1693. /* select frequency inversion */
  1694. win = win1 + ((4 * 36) & -(j & 1));
  1695. imdct36(out_ptr, buf, ptr, win);
  1696. out_ptr += 18*SBLIMIT;
  1697. ptr += 18;
  1698. buf += 18;
  1699. }
  1700. for(j=mdct_long_end;j<sblimit;j++) {
  1701. /* select frequency inversion */
  1702. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1703. out_ptr = sb_samples + j;
  1704. for(i=0; i<6; i++){
  1705. *out_ptr = buf[i];
  1706. out_ptr += SBLIMIT;
  1707. }
  1708. imdct12(out2, ptr + 0);
  1709. for(i=0;i<6;i++) {
  1710. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1711. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1712. out_ptr += SBLIMIT;
  1713. }
  1714. imdct12(out2, ptr + 1);
  1715. for(i=0;i<6;i++) {
  1716. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1717. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1718. out_ptr += SBLIMIT;
  1719. }
  1720. imdct12(out2, ptr + 2);
  1721. for(i=0;i<6;i++) {
  1722. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1723. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1724. buf[i + 6*2] = 0;
  1725. }
  1726. ptr += 18;
  1727. buf += 18;
  1728. }
  1729. /* zero bands */
  1730. for(j=sblimit;j<SBLIMIT;j++) {
  1731. /* overlap */
  1732. out_ptr = sb_samples + j;
  1733. for(i=0;i<18;i++) {
  1734. *out_ptr = buf[i];
  1735. buf[i] = 0;
  1736. out_ptr += SBLIMIT;
  1737. }
  1738. buf += 18;
  1739. }
  1740. }
  1741. /* main layer3 decoding function */
  1742. static int mp_decode_layer3(MPADecodeContext *s)
  1743. {
  1744. int nb_granules, main_data_begin, private_bits;
  1745. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1746. GranuleDef granules[2][2], *g;
  1747. int16_t exponents[576];
  1748. /* read side info */
  1749. if (s->lsf) {
  1750. main_data_begin = get_bits(&s->gb, 8);
  1751. private_bits = get_bits(&s->gb, s->nb_channels);
  1752. nb_granules = 1;
  1753. } else {
  1754. main_data_begin = get_bits(&s->gb, 9);
  1755. if (s->nb_channels == 2)
  1756. private_bits = get_bits(&s->gb, 3);
  1757. else
  1758. private_bits = get_bits(&s->gb, 5);
  1759. nb_granules = 2;
  1760. for(ch=0;ch<s->nb_channels;ch++) {
  1761. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1762. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1763. }
  1764. }
  1765. for(gr=0;gr<nb_granules;gr++) {
  1766. for(ch=0;ch<s->nb_channels;ch++) {
  1767. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1768. g = &granules[ch][gr];
  1769. g->part2_3_length = get_bits(&s->gb, 12);
  1770. g->big_values = get_bits(&s->gb, 9);
  1771. if(g->big_values > 288){
  1772. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1773. return -1;
  1774. }
  1775. g->global_gain = get_bits(&s->gb, 8);
  1776. /* if MS stereo only is selected, we precompute the
  1777. 1/sqrt(2) renormalization factor */
  1778. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1779. MODE_EXT_MS_STEREO)
  1780. g->global_gain -= 2;
  1781. if (s->lsf)
  1782. g->scalefac_compress = get_bits(&s->gb, 9);
  1783. else
  1784. g->scalefac_compress = get_bits(&s->gb, 4);
  1785. blocksplit_flag = get_bits1(&s->gb);
  1786. if (blocksplit_flag) {
  1787. g->block_type = get_bits(&s->gb, 2);
  1788. if (g->block_type == 0){
  1789. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1790. return -1;
  1791. }
  1792. g->switch_point = get_bits1(&s->gb);
  1793. for(i=0;i<2;i++)
  1794. g->table_select[i] = get_bits(&s->gb, 5);
  1795. for(i=0;i<3;i++)
  1796. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1797. ff_init_short_region(s, g);
  1798. } else {
  1799. int region_address1, region_address2;
  1800. g->block_type = 0;
  1801. g->switch_point = 0;
  1802. for(i=0;i<3;i++)
  1803. g->table_select[i] = get_bits(&s->gb, 5);
  1804. /* compute huffman coded region sizes */
  1805. region_address1 = get_bits(&s->gb, 4);
  1806. region_address2 = get_bits(&s->gb, 3);
  1807. dprintf(s->avctx, "region1=%d region2=%d\n",
  1808. region_address1, region_address2);
  1809. ff_init_long_region(s, g, region_address1, region_address2);
  1810. }
  1811. ff_region_offset2size(g);
  1812. ff_compute_band_indexes(s, g);
  1813. g->preflag = 0;
  1814. if (!s->lsf)
  1815. g->preflag = get_bits1(&s->gb);
  1816. g->scalefac_scale = get_bits1(&s->gb);
  1817. g->count1table_select = get_bits1(&s->gb);
  1818. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1819. g->block_type, g->switch_point);
  1820. }
  1821. }
  1822. if (!s->adu_mode) {
  1823. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1824. assert((get_bits_count(&s->gb) & 7) == 0);
  1825. /* now we get bits from the main_data_begin offset */
  1826. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1827. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1828. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1829. s->in_gb= s->gb;
  1830. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1831. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1832. }
  1833. for(gr=0;gr<nb_granules;gr++) {
  1834. for(ch=0;ch<s->nb_channels;ch++) {
  1835. g = &granules[ch][gr];
  1836. if(get_bits_count(&s->gb)<0){
  1837. av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1838. main_data_begin, s->last_buf_size, gr);
  1839. skip_bits_long(&s->gb, g->part2_3_length);
  1840. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1841. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1842. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1843. s->gb= s->in_gb;
  1844. s->in_gb.buffer=NULL;
  1845. }
  1846. continue;
  1847. }
  1848. bits_pos = get_bits_count(&s->gb);
  1849. if (!s->lsf) {
  1850. uint8_t *sc;
  1851. int slen, slen1, slen2;
  1852. /* MPEG1 scale factors */
  1853. slen1 = slen_table[0][g->scalefac_compress];
  1854. slen2 = slen_table[1][g->scalefac_compress];
  1855. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1856. if (g->block_type == 2) {
  1857. n = g->switch_point ? 17 : 18;
  1858. j = 0;
  1859. if(slen1){
  1860. for(i=0;i<n;i++)
  1861. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1862. }else{
  1863. for(i=0;i<n;i++)
  1864. g->scale_factors[j++] = 0;
  1865. }
  1866. if(slen2){
  1867. for(i=0;i<18;i++)
  1868. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1869. for(i=0;i<3;i++)
  1870. g->scale_factors[j++] = 0;
  1871. }else{
  1872. for(i=0;i<21;i++)
  1873. g->scale_factors[j++] = 0;
  1874. }
  1875. } else {
  1876. sc = granules[ch][0].scale_factors;
  1877. j = 0;
  1878. for(k=0;k<4;k++) {
  1879. n = (k == 0 ? 6 : 5);
  1880. if ((g->scfsi & (0x8 >> k)) == 0) {
  1881. slen = (k < 2) ? slen1 : slen2;
  1882. if(slen){
  1883. for(i=0;i<n;i++)
  1884. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1885. }else{
  1886. for(i=0;i<n;i++)
  1887. g->scale_factors[j++] = 0;
  1888. }
  1889. } else {
  1890. /* simply copy from last granule */
  1891. for(i=0;i<n;i++) {
  1892. g->scale_factors[j] = sc[j];
  1893. j++;
  1894. }
  1895. }
  1896. }
  1897. g->scale_factors[j++] = 0;
  1898. }
  1899. } else {
  1900. int tindex, tindex2, slen[4], sl, sf;
  1901. /* LSF scale factors */
  1902. if (g->block_type == 2) {
  1903. tindex = g->switch_point ? 2 : 1;
  1904. } else {
  1905. tindex = 0;
  1906. }
  1907. sf = g->scalefac_compress;
  1908. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1909. /* intensity stereo case */
  1910. sf >>= 1;
  1911. if (sf < 180) {
  1912. lsf_sf_expand(slen, sf, 6, 6, 0);
  1913. tindex2 = 3;
  1914. } else if (sf < 244) {
  1915. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1916. tindex2 = 4;
  1917. } else {
  1918. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1919. tindex2 = 5;
  1920. }
  1921. } else {
  1922. /* normal case */
  1923. if (sf < 400) {
  1924. lsf_sf_expand(slen, sf, 5, 4, 4);
  1925. tindex2 = 0;
  1926. } else if (sf < 500) {
  1927. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1928. tindex2 = 1;
  1929. } else {
  1930. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1931. tindex2 = 2;
  1932. g->preflag = 1;
  1933. }
  1934. }
  1935. j = 0;
  1936. for(k=0;k<4;k++) {
  1937. n = lsf_nsf_table[tindex2][tindex][k];
  1938. sl = slen[k];
  1939. if(sl){
  1940. for(i=0;i<n;i++)
  1941. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1942. }else{
  1943. for(i=0;i<n;i++)
  1944. g->scale_factors[j++] = 0;
  1945. }
  1946. }
  1947. /* XXX: should compute exact size */
  1948. for(;j<40;j++)
  1949. g->scale_factors[j] = 0;
  1950. }
  1951. exponents_from_scale_factors(s, g, exponents);
  1952. /* read Huffman coded residue */
  1953. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1954. } /* ch */
  1955. if (s->nb_channels == 2)
  1956. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  1957. for(ch=0;ch<s->nb_channels;ch++) {
  1958. g = &granules[ch][gr];
  1959. reorder_block(s, g);
  1960. s->compute_antialias(s, g);
  1961. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1962. }
  1963. } /* gr */
  1964. if(get_bits_count(&s->gb)<0)
  1965. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1966. return nb_granules * 18;
  1967. }
  1968. static int mp_decode_frame(MPADecodeContext *s,
  1969. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1970. {
  1971. int i, nb_frames, ch;
  1972. OUT_INT *samples_ptr;
  1973. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1974. /* skip error protection field */
  1975. if (s->error_protection)
  1976. skip_bits(&s->gb, 16);
  1977. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1978. switch(s->layer) {
  1979. case 1:
  1980. s->avctx->frame_size = 384;
  1981. nb_frames = mp_decode_layer1(s);
  1982. break;
  1983. case 2:
  1984. s->avctx->frame_size = 1152;
  1985. nb_frames = mp_decode_layer2(s);
  1986. break;
  1987. case 3:
  1988. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1989. default:
  1990. nb_frames = mp_decode_layer3(s);
  1991. s->last_buf_size=0;
  1992. if(s->in_gb.buffer){
  1993. align_get_bits(&s->gb);
  1994. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1995. if(i >= 0 && i <= BACKSTEP_SIZE){
  1996. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1997. s->last_buf_size=i;
  1998. }else
  1999. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2000. s->gb= s->in_gb;
  2001. s->in_gb.buffer= NULL;
  2002. }
  2003. align_get_bits(&s->gb);
  2004. assert((get_bits_count(&s->gb) & 7) == 0);
  2005. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2006. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2007. if(i<0)
  2008. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2009. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2010. }
  2011. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2012. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2013. s->last_buf_size += i;
  2014. break;
  2015. }
  2016. /* apply the synthesis filter */
  2017. for(ch=0;ch<s->nb_channels;ch++) {
  2018. samples_ptr = samples + ch;
  2019. for(i=0;i<nb_frames;i++) {
  2020. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2021. window, &s->dither_state,
  2022. samples_ptr, s->nb_channels,
  2023. s->sb_samples[ch][i]);
  2024. samples_ptr += 32 * s->nb_channels;
  2025. }
  2026. }
  2027. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2028. }
  2029. static int decode_frame(AVCodecContext * avctx,
  2030. void *data, int *data_size,
  2031. const uint8_t * buf, int buf_size)
  2032. {
  2033. MPADecodeContext *s = avctx->priv_data;
  2034. uint32_t header;
  2035. int out_size;
  2036. OUT_INT *out_samples = data;
  2037. retry:
  2038. if(buf_size < HEADER_SIZE)
  2039. return -1;
  2040. header = AV_RB32(buf);
  2041. if(ff_mpa_check_header(header) < 0){
  2042. buf++;
  2043. // buf_size--;
  2044. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2045. goto retry;
  2046. }
  2047. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2048. /* free format: prepare to compute frame size */
  2049. s->frame_size = -1;
  2050. return -1;
  2051. }
  2052. /* update codec info */
  2053. avctx->channels = s->nb_channels;
  2054. avctx->bit_rate = s->bit_rate;
  2055. avctx->sub_id = s->layer;
  2056. if(s->frame_size<=0 || s->frame_size > buf_size){
  2057. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2058. return -1;
  2059. }else if(s->frame_size < buf_size){
  2060. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2061. buf_size= s->frame_size;
  2062. }
  2063. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2064. if(out_size>=0){
  2065. *data_size = out_size;
  2066. avctx->sample_rate = s->sample_rate;
  2067. //FIXME maybe move the other codec info stuff from above here too
  2068. }else
  2069. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2070. s->frame_size = 0;
  2071. return buf_size;
  2072. }
  2073. static void flush(AVCodecContext *avctx){
  2074. MPADecodeContext *s = avctx->priv_data;
  2075. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2076. s->last_buf_size= 0;
  2077. }
  2078. #if CONFIG_MP3ADU_DECODER
  2079. static int decode_frame_adu(AVCodecContext * avctx,
  2080. void *data, int *data_size,
  2081. const uint8_t * buf, int buf_size)
  2082. {
  2083. MPADecodeContext *s = avctx->priv_data;
  2084. uint32_t header;
  2085. int len, out_size;
  2086. OUT_INT *out_samples = data;
  2087. len = buf_size;
  2088. // Discard too short frames
  2089. if (buf_size < HEADER_SIZE) {
  2090. *data_size = 0;
  2091. return buf_size;
  2092. }
  2093. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2094. len = MPA_MAX_CODED_FRAME_SIZE;
  2095. // Get header and restore sync word
  2096. header = AV_RB32(buf) | 0xffe00000;
  2097. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2098. *data_size = 0;
  2099. return buf_size;
  2100. }
  2101. ff_mpegaudio_decode_header(s, header);
  2102. /* update codec info */
  2103. avctx->sample_rate = s->sample_rate;
  2104. avctx->channels = s->nb_channels;
  2105. avctx->bit_rate = s->bit_rate;
  2106. avctx->sub_id = s->layer;
  2107. s->frame_size = len;
  2108. if (avctx->parse_only) {
  2109. out_size = buf_size;
  2110. } else {
  2111. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2112. }
  2113. *data_size = out_size;
  2114. return buf_size;
  2115. }
  2116. #endif /* CONFIG_MP3ADU_DECODER */
  2117. #if CONFIG_MP3ON4_DECODER
  2118. /**
  2119. * Context for MP3On4 decoder
  2120. */
  2121. typedef struct MP3On4DecodeContext {
  2122. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2123. int syncword; ///< syncword patch
  2124. const uint8_t *coff; ///< channels offsets in output buffer
  2125. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2126. } MP3On4DecodeContext;
  2127. #include "mpeg4audio.h"
  2128. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2129. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2130. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2131. static const uint8_t chan_offset[8][5] = {
  2132. {0},
  2133. {0}, // C
  2134. {0}, // FLR
  2135. {2,0}, // C FLR
  2136. {2,0,3}, // C FLR BS
  2137. {4,0,2}, // C FLR BLRS
  2138. {4,0,2,5}, // C FLR BLRS LFE
  2139. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2140. };
  2141. static int decode_init_mp3on4(AVCodecContext * avctx)
  2142. {
  2143. MP3On4DecodeContext *s = avctx->priv_data;
  2144. MPEG4AudioConfig cfg;
  2145. int i;
  2146. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2147. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2148. return -1;
  2149. }
  2150. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2151. if (!cfg.chan_config || cfg.chan_config > 7) {
  2152. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2153. return -1;
  2154. }
  2155. s->frames = mp3Frames[cfg.chan_config];
  2156. s->coff = chan_offset[cfg.chan_config];
  2157. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2158. if (cfg.sample_rate < 16000)
  2159. s->syncword = 0xffe00000;
  2160. else
  2161. s->syncword = 0xfff00000;
  2162. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2163. * We replace avctx->priv_data with the context of the first decoder so that
  2164. * decode_init() does not have to be changed.
  2165. * Other decoders will be initialized here copying data from the first context
  2166. */
  2167. // Allocate zeroed memory for the first decoder context
  2168. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2169. // Put decoder context in place to make init_decode() happy
  2170. avctx->priv_data = s->mp3decctx[0];
  2171. decode_init(avctx);
  2172. // Restore mp3on4 context pointer
  2173. avctx->priv_data = s;
  2174. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2175. /* Create a separate codec/context for each frame (first is already ok).
  2176. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2177. */
  2178. for (i = 1; i < s->frames; i++) {
  2179. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2180. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2181. s->mp3decctx[i]->adu_mode = 1;
  2182. s->mp3decctx[i]->avctx = avctx;
  2183. }
  2184. return 0;
  2185. }
  2186. static int decode_close_mp3on4(AVCodecContext * avctx)
  2187. {
  2188. MP3On4DecodeContext *s = avctx->priv_data;
  2189. int i;
  2190. for (i = 0; i < s->frames; i++)
  2191. if (s->mp3decctx[i])
  2192. av_free(s->mp3decctx[i]);
  2193. return 0;
  2194. }
  2195. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2196. void *data, int *data_size,
  2197. const uint8_t * buf, int buf_size)
  2198. {
  2199. MP3On4DecodeContext *s = avctx->priv_data;
  2200. MPADecodeContext *m;
  2201. int fsize, len = buf_size, out_size = 0;
  2202. uint32_t header;
  2203. OUT_INT *out_samples = data;
  2204. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2205. OUT_INT *outptr, *bp;
  2206. int fr, j, n;
  2207. *data_size = 0;
  2208. // Discard too short frames
  2209. if (buf_size < HEADER_SIZE)
  2210. return -1;
  2211. // If only one decoder interleave is not needed
  2212. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2213. avctx->bit_rate = 0;
  2214. for (fr = 0; fr < s->frames; fr++) {
  2215. fsize = AV_RB16(buf) >> 4;
  2216. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2217. m = s->mp3decctx[fr];
  2218. assert (m != NULL);
  2219. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2220. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2221. break;
  2222. ff_mpegaudio_decode_header(m, header);
  2223. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2224. buf += fsize;
  2225. len -= fsize;
  2226. if(s->frames > 1) {
  2227. n = m->avctx->frame_size*m->nb_channels;
  2228. /* interleave output data */
  2229. bp = out_samples + s->coff[fr];
  2230. if(m->nb_channels == 1) {
  2231. for(j = 0; j < n; j++) {
  2232. *bp = decoded_buf[j];
  2233. bp += avctx->channels;
  2234. }
  2235. } else {
  2236. for(j = 0; j < n; j++) {
  2237. bp[0] = decoded_buf[j++];
  2238. bp[1] = decoded_buf[j];
  2239. bp += avctx->channels;
  2240. }
  2241. }
  2242. }
  2243. avctx->bit_rate += m->bit_rate;
  2244. }
  2245. /* update codec info */
  2246. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2247. *data_size = out_size;
  2248. return buf_size;
  2249. }
  2250. #endif /* CONFIG_MP3ON4_DECODER */
  2251. #if CONFIG_MP1_DECODER
  2252. AVCodec mp1_decoder =
  2253. {
  2254. "mp1",
  2255. CODEC_TYPE_AUDIO,
  2256. CODEC_ID_MP1,
  2257. sizeof(MPADecodeContext),
  2258. decode_init,
  2259. NULL,
  2260. NULL,
  2261. decode_frame,
  2262. CODEC_CAP_PARSE_ONLY,
  2263. .flush= flush,
  2264. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2265. };
  2266. #endif
  2267. #if CONFIG_MP2_DECODER
  2268. AVCodec mp2_decoder =
  2269. {
  2270. "mp2",
  2271. CODEC_TYPE_AUDIO,
  2272. CODEC_ID_MP2,
  2273. sizeof(MPADecodeContext),
  2274. decode_init,
  2275. NULL,
  2276. NULL,
  2277. decode_frame,
  2278. CODEC_CAP_PARSE_ONLY,
  2279. .flush= flush,
  2280. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2281. };
  2282. #endif
  2283. #if CONFIG_MP3_DECODER
  2284. AVCodec mp3_decoder =
  2285. {
  2286. "mp3",
  2287. CODEC_TYPE_AUDIO,
  2288. CODEC_ID_MP3,
  2289. sizeof(MPADecodeContext),
  2290. decode_init,
  2291. NULL,
  2292. NULL,
  2293. decode_frame,
  2294. CODEC_CAP_PARSE_ONLY,
  2295. .flush= flush,
  2296. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2297. };
  2298. #endif
  2299. #if CONFIG_MP3ADU_DECODER
  2300. AVCodec mp3adu_decoder =
  2301. {
  2302. "mp3adu",
  2303. CODEC_TYPE_AUDIO,
  2304. CODEC_ID_MP3ADU,
  2305. sizeof(MPADecodeContext),
  2306. decode_init,
  2307. NULL,
  2308. NULL,
  2309. decode_frame_adu,
  2310. CODEC_CAP_PARSE_ONLY,
  2311. .flush= flush,
  2312. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2313. };
  2314. #endif
  2315. #if CONFIG_MP3ON4_DECODER
  2316. AVCodec mp3on4_decoder =
  2317. {
  2318. "mp3on4",
  2319. CODEC_TYPE_AUDIO,
  2320. CODEC_ID_MP3ON4,
  2321. sizeof(MP3On4DecodeContext),
  2322. decode_init_mp3on4,
  2323. NULL,
  2324. decode_close_mp3on4,
  2325. decode_frame_mp3on4,
  2326. .flush= flush,
  2327. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2328. };
  2329. #endif