You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

330 lines
9.5KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2012 Samuel Pitoiset
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RTMP Diffie-Hellmann utilities
  24. */
  25. #include "config.h"
  26. #include "rtmpdh.h"
  27. #define P1024 \
  28. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  29. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  30. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  31. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  32. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  33. "FFFFFFFFFFFFFFFF"
  34. #define Q1024 \
  35. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  36. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  37. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  38. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  39. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  40. "FFFFFFFFFFFFFFFF"
  41. #if CONFIG_NETTLE || CONFIG_GCRYPT
  42. #if CONFIG_NETTLE
  43. #define bn_new(bn) \
  44. do { \
  45. bn = av_malloc(sizeof(*bn)); \
  46. if (bn) \
  47. mpz_init2(bn, 1); \
  48. } while (0)
  49. #define bn_free(bn) \
  50. do { \
  51. mpz_clear(bn); \
  52. av_free(bn); \
  53. } while (0)
  54. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  55. #define bn_cmp(a, b) mpz_cmp(a, b)
  56. #define bn_copy(to, from) mpz_set(to, from)
  57. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  58. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  59. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  60. #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
  61. #define bn_bin2bn(bn, buf, len) \
  62. do { \
  63. bn_new(bn); \
  64. if (bn) \
  65. nettle_mpz_set_str_256_u(bn, len, buf); \
  66. } while (0)
  67. #define bn_hex2bn(bn, buf, ret) \
  68. do { \
  69. bn_new(bn); \
  70. if (bn) \
  71. ret = (mpz_set_str(bn, buf, 16) == 0); \
  72. } while (0)
  73. #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
  74. #define bn_random(bn, num_bytes) mpz_random(bn, num_bytes);
  75. #elif CONFIG_GCRYPT
  76. #define bn_new(bn) bn = gcry_mpi_new(1)
  77. #define bn_free(bn) gcry_mpi_release(bn)
  78. #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
  79. #define bn_cmp(a, b) gcry_mpi_cmp(a, b)
  80. #define bn_copy(to, from) gcry_mpi_set(to, from)
  81. #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
  82. #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
  83. #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
  84. #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
  85. #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
  86. #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
  87. #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
  88. #define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM)
  89. #endif
  90. #define MAX_BYTES 18000
  91. #define dh_new() av_malloc(sizeof(FF_DH))
  92. static FFBigNum dh_generate_key(FF_DH *dh)
  93. {
  94. int num_bytes;
  95. num_bytes = bn_num_bytes(dh->p) - 1;
  96. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  97. return NULL;
  98. bn_new(dh->priv_key);
  99. if (!dh->priv_key)
  100. return NULL;
  101. bn_random(dh->priv_key, num_bytes);
  102. bn_new(dh->pub_key);
  103. if (!dh->pub_key) {
  104. bn_free(dh->priv_key);
  105. return NULL;
  106. }
  107. bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
  108. return dh->pub_key;
  109. }
  110. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  111. uint32_t pub_key_len, uint8_t *secret_key)
  112. {
  113. FFBigNum k;
  114. int num_bytes;
  115. num_bytes = bn_num_bytes(dh->p);
  116. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  117. return -1;
  118. bn_new(k);
  119. if (!k)
  120. return -1;
  121. bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
  122. bn_bn2bin(k, secret_key, pub_key_len);
  123. bn_free(k);
  124. /* return the length of the shared secret key like DH_compute_key */
  125. return pub_key_len;
  126. }
  127. void ff_dh_free(FF_DH *dh)
  128. {
  129. bn_free(dh->p);
  130. bn_free(dh->g);
  131. bn_free(dh->pub_key);
  132. bn_free(dh->priv_key);
  133. av_free(dh);
  134. }
  135. #elif CONFIG_OPENSSL
  136. #define bn_new(bn) bn = BN_new()
  137. #define bn_free(bn) BN_free(bn)
  138. #define bn_set_word(bn, w) BN_set_word(bn, w)
  139. #define bn_cmp(a, b) BN_cmp(a, b)
  140. #define bn_copy(to, from) BN_copy(to, from)
  141. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  142. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  143. #define bn_num_bytes(bn) BN_num_bytes(bn)
  144. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  145. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  146. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  147. #define bn_modexp(bn, y, q, p) \
  148. do { \
  149. BN_CTX *ctx = BN_CTX_new(); \
  150. if (!ctx) \
  151. return AVERROR(ENOMEM); \
  152. if (!BN_mod_exp(bn, y, q, p, ctx)) { \
  153. BN_CTX_free(ctx); \
  154. return AVERROR(EINVAL); \
  155. } \
  156. BN_CTX_free(ctx); \
  157. } while (0)
  158. #define dh_new() DH_new()
  159. #define dh_generate_key(dh) DH_generate_key(dh)
  160. #define dh_compute_key(dh, pub, len, secret) DH_compute_key(secret, pub, dh)
  161. void ff_dh_free(FF_DH *dh)
  162. {
  163. DH_free(dh);
  164. }
  165. #endif
  166. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  167. {
  168. FFBigNum bn = NULL;
  169. int ret = AVERROR(EINVAL);
  170. bn_new(bn);
  171. if (!bn)
  172. return AVERROR(ENOMEM);
  173. /* y must lie in [2, p - 1] */
  174. bn_set_word(bn, 1);
  175. if (!bn_cmp(y, bn))
  176. goto fail;
  177. /* bn = p - 2 */
  178. bn_copy(bn, p);
  179. bn_sub_word(bn, 1);
  180. if (!bn_cmp(y, bn))
  181. goto fail;
  182. /* Verify with Sophie-Germain prime
  183. *
  184. * This is a nice test to make sure the public key position is calculated
  185. * correctly. This test will fail in about 50% of the cases if applied to
  186. * random data.
  187. */
  188. /* y must fulfill y^q mod p = 1 */
  189. bn_modexp(bn, y, q, p);
  190. if (bn_cmp_1(bn))
  191. goto fail;
  192. ret = 0;
  193. fail:
  194. bn_free(bn);
  195. return ret;
  196. }
  197. av_cold FF_DH *ff_dh_init(int key_len)
  198. {
  199. FF_DH *dh;
  200. int ret;
  201. if (!(dh = dh_new()))
  202. return NULL;
  203. bn_new(dh->g);
  204. if (!dh->g)
  205. goto fail;
  206. bn_hex2bn(dh->p, P1024, ret);
  207. if (!ret)
  208. goto fail;
  209. bn_set_word(dh->g, 2);
  210. dh->length = key_len;
  211. return dh;
  212. fail:
  213. ff_dh_free(dh);
  214. return NULL;
  215. }
  216. int ff_dh_generate_public_key(FF_DH *dh)
  217. {
  218. int ret = 0;
  219. while (!ret) {
  220. FFBigNum q1 = NULL;
  221. if (!dh_generate_key(dh))
  222. return AVERROR(EINVAL);
  223. bn_hex2bn(q1, Q1024, ret);
  224. if (!ret)
  225. return AVERROR(ENOMEM);
  226. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  227. bn_free(q1);
  228. if (!ret) {
  229. /* the public key is valid */
  230. break;
  231. }
  232. }
  233. return ret;
  234. }
  235. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  236. {
  237. int len;
  238. /* compute the length of the public key */
  239. len = bn_num_bytes(dh->pub_key);
  240. if (len <= 0 || len > pub_key_len)
  241. return AVERROR(EINVAL);
  242. /* convert the public key value into big-endian form */
  243. memset(pub_key, 0, pub_key_len);
  244. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  245. return 0;
  246. }
  247. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  248. int pub_key_len, uint8_t *secret_key)
  249. {
  250. FFBigNum q1 = NULL, pub_key_bn = NULL;
  251. int ret;
  252. /* convert the big-endian form of the public key into a bignum */
  253. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  254. if (!pub_key_bn)
  255. return AVERROR(ENOMEM);
  256. /* convert the string containing a hexadecimal number into a bignum */
  257. bn_hex2bn(q1, Q1024, ret);
  258. if (!ret) {
  259. ret = AVERROR(ENOMEM);
  260. goto fail;
  261. }
  262. /* when the public key is valid we have to compute the shared secret key */
  263. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  264. goto fail;
  265. } else if ((ret = dh_compute_key(dh, pub_key_bn, pub_key_len,
  266. secret_key)) < 0) {
  267. ret = AVERROR(EINVAL);
  268. goto fail;
  269. }
  270. fail:
  271. bn_free(pub_key_bn);
  272. bn_free(q1);
  273. return ret;
  274. }