| 
							- /*
 -  * The simplest AC3 encoder
 -  * Copyright (c) 2000 Fabrice Bellard.
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file ac3enc.c
 -  * The simplest AC3 encoder.
 -  */
 - //#define DEBUG
 - //#define DEBUG_BITALLOC
 - #include "avcodec.h"
 - #include "bitstream.h"
 - #include "crc.h"
 - #include "ac3.h"
 - 
 - typedef struct AC3EncodeContext {
 -     PutBitContext pb;
 -     int nb_channels;
 -     int nb_all_channels;
 -     int lfe_channel;
 -     int bit_rate;
 -     unsigned int sample_rate;
 -     unsigned int bitstream_id;
 -     unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
 -     unsigned int frame_size; /* current frame size in words */
 -     unsigned int bits_written;
 -     unsigned int samples_written;
 -     int sr_shift;
 -     unsigned int frame_size_code;
 -     unsigned int sr_code; /* frequency */
 -     unsigned int channel_mode;
 -     int lfe;
 -     unsigned int bitstream_mode;
 -     short last_samples[AC3_MAX_CHANNELS][256];
 -     unsigned int chbwcod[AC3_MAX_CHANNELS];
 -     int nb_coefs[AC3_MAX_CHANNELS];
 - 
 -     /* bitrate allocation control */
 -     int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
 -     AC3BitAllocParameters bit_alloc;
 -     int coarse_snr_offset;
 -     int fast_gain_code[AC3_MAX_CHANNELS];
 -     int fine_snr_offset[AC3_MAX_CHANNELS];
 -     /* mantissa encoding */
 -     int mant1_cnt, mant2_cnt, mant4_cnt;
 - } AC3EncodeContext;
 - 
 - static int16_t costab[64];
 - static int16_t sintab[64];
 - static int16_t xcos1[128];
 - static int16_t xsin1[128];
 - 
 - #define MDCT_NBITS 9
 - #define N         (1 << MDCT_NBITS)
 - 
 - /* new exponents are sent if their Norm 1 exceed this number */
 - #define EXP_DIFF_THRESHOLD 1000
 - 
 - static inline int16_t fix15(float a)
 - {
 -     int v;
 -     v = (int)(a * (float)(1 << 15));
 -     if (v < -32767)
 -         v = -32767;
 -     else if (v > 32767)
 -         v = 32767;
 -     return v;
 - }
 - 
 - typedef struct IComplex {
 -     short re,im;
 - } IComplex;
 - 
 - static void fft_init(int ln)
 - {
 -     int i, n;
 -     float alpha;
 - 
 -     n = 1 << ln;
 - 
 -     for(i=0;i<(n/2);i++) {
 -         alpha = 2 * M_PI * (float)i / (float)n;
 -         costab[i] = fix15(cos(alpha));
 -         sintab[i] = fix15(sin(alpha));
 -     }
 - }
 - 
 - /* butter fly op */
 - #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
 - {\
 -   int ax, ay, bx, by;\
 -   bx=pre1;\
 -   by=pim1;\
 -   ax=qre1;\
 -   ay=qim1;\
 -   pre = (bx + ax) >> 1;\
 -   pim = (by + ay) >> 1;\
 -   qre = (bx - ax) >> 1;\
 -   qim = (by - ay) >> 1;\
 - }
 - 
 - #define MUL16(a,b) ((a) * (b))
 - 
 - #define CMUL(pre, pim, are, aim, bre, bim) \
 - {\
 -    pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
 -    pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
 - }
 - 
 - 
 - /* do a 2^n point complex fft on 2^ln points. */
 - static void fft(IComplex *z, int ln)
 - {
 -     int        j, l, np, np2;
 -     int        nblocks, nloops;
 -     register IComplex *p,*q;
 -     int tmp_re, tmp_im;
 - 
 -     np = 1 << ln;
 - 
 -     /* reverse */
 -     for(j=0;j<np;j++) {
 -         int k = ff_reverse[j] >> (8 - ln);
 -         if (k < j)
 -             FFSWAP(IComplex, z[k], z[j]);
 -     }
 - 
 -     /* pass 0 */
 - 
 -     p=&z[0];
 -     j=(np >> 1);
 -     do {
 -         BF(p[0].re, p[0].im, p[1].re, p[1].im,
 -            p[0].re, p[0].im, p[1].re, p[1].im);
 -         p+=2;
 -     } while (--j != 0);
 - 
 -     /* pass 1 */
 - 
 -     p=&z[0];
 -     j=np >> 2;
 -     do {
 -         BF(p[0].re, p[0].im, p[2].re, p[2].im,
 -            p[0].re, p[0].im, p[2].re, p[2].im);
 -         BF(p[1].re, p[1].im, p[3].re, p[3].im,
 -            p[1].re, p[1].im, p[3].im, -p[3].re);
 -         p+=4;
 -     } while (--j != 0);
 - 
 -     /* pass 2 .. ln-1 */
 - 
 -     nblocks = np >> 3;
 -     nloops = 1 << 2;
 -     np2 = np >> 1;
 -     do {
 -         p = z;
 -         q = z + nloops;
 -         for (j = 0; j < nblocks; ++j) {
 - 
 -             BF(p->re, p->im, q->re, q->im,
 -                p->re, p->im, q->re, q->im);
 - 
 -             p++;
 -             q++;
 -             for(l = nblocks; l < np2; l += nblocks) {
 -                 CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
 -                 BF(p->re, p->im, q->re, q->im,
 -                    p->re, p->im, tmp_re, tmp_im);
 -                 p++;
 -                 q++;
 -             }
 -             p += nloops;
 -             q += nloops;
 -         }
 -         nblocks = nblocks >> 1;
 -         nloops = nloops << 1;
 -     } while (nblocks != 0);
 - }
 - 
 - /* do a 512 point mdct */
 - static void mdct512(int32_t *out, int16_t *in)
 - {
 -     int i, re, im, re1, im1;
 -     int16_t rot[N];
 -     IComplex x[N/4];
 - 
 -     /* shift to simplify computations */
 -     for(i=0;i<N/4;i++)
 -         rot[i] = -in[i + 3*N/4];
 -     for(i=N/4;i<N;i++)
 -         rot[i] = in[i - N/4];
 - 
 -     /* pre rotation */
 -     for(i=0;i<N/4;i++) {
 -         re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
 -         im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
 -         CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
 -     }
 - 
 -     fft(x, MDCT_NBITS - 2);
 - 
 -     /* post rotation */
 -     for(i=0;i<N/4;i++) {
 -         re = x[i].re;
 -         im = x[i].im;
 -         CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
 -         out[2*i] = im1;
 -         out[N/2-1-2*i] = re1;
 -     }
 - }
 - 
 - /* XXX: use another norm ? */
 - static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
 - {
 -     int sum, i;
 -     sum = 0;
 -     for(i=0;i<n;i++) {
 -         sum += abs(exp1[i] - exp2[i]);
 -     }
 -     return sum;
 - }
 - 
 - static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 -                                  uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                                  int ch, int is_lfe)
 - {
 -     int i, j;
 -     int exp_diff;
 - 
 -     /* estimate if the exponent variation & decide if they should be
 -        reused in the next frame */
 -     exp_strategy[0][ch] = EXP_NEW;
 -     for(i=1;i<NB_BLOCKS;i++) {
 -         exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
 - #ifdef DEBUG
 -         av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
 - #endif
 -         if (exp_diff > EXP_DIFF_THRESHOLD)
 -             exp_strategy[i][ch] = EXP_NEW;
 -         else
 -             exp_strategy[i][ch] = EXP_REUSE;
 -     }
 -     if (is_lfe)
 -         return;
 - 
 -     /* now select the encoding strategy type : if exponents are often
 -        recoded, we use a coarse encoding */
 -     i = 0;
 -     while (i < NB_BLOCKS) {
 -         j = i + 1;
 -         while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
 -             j++;
 -         switch(j - i) {
 -         case 1:
 -             exp_strategy[i][ch] = EXP_D45;
 -             break;
 -         case 2:
 -         case 3:
 -             exp_strategy[i][ch] = EXP_D25;
 -             break;
 -         default:
 -             exp_strategy[i][ch] = EXP_D15;
 -             break;
 -         }
 -         i = j;
 -     }
 - }
 - 
 - /* set exp[i] to min(exp[i], exp1[i]) */
 - static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
 - {
 -     int i;
 - 
 -     for(i=0;i<n;i++) {
 -         if (exp1[i] < exp[i])
 -             exp[i] = exp1[i];
 -     }
 - }
 - 
 - /* update the exponents so that they are the ones the decoder will
 -    decode. Return the number of bits used to code the exponents */
 - static int encode_exp(uint8_t encoded_exp[N/2],
 -                       uint8_t exp[N/2],
 -                       int nb_exps,
 -                       int exp_strategy)
 - {
 -     int group_size, nb_groups, i, j, k, exp_min;
 -     uint8_t exp1[N/2];
 - 
 -     switch(exp_strategy) {
 -     case EXP_D15:
 -         group_size = 1;
 -         break;
 -     case EXP_D25:
 -         group_size = 2;
 -         break;
 -     default:
 -     case EXP_D45:
 -         group_size = 4;
 -         break;
 -     }
 -     nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
 - 
 -     /* for each group, compute the minimum exponent */
 -     exp1[0] = exp[0]; /* DC exponent is handled separately */
 -     k = 1;
 -     for(i=1;i<=nb_groups;i++) {
 -         exp_min = exp[k];
 -         assert(exp_min >= 0 && exp_min <= 24);
 -         for(j=1;j<group_size;j++) {
 -             if (exp[k+j] < exp_min)
 -                 exp_min = exp[k+j];
 -         }
 -         exp1[i] = exp_min;
 -         k += group_size;
 -     }
 - 
 -     /* constraint for DC exponent */
 -     if (exp1[0] > 15)
 -         exp1[0] = 15;
 - 
 -     /* Decrease the delta between each groups to within 2
 -      * so that they can be differentially encoded */
 -     for (i=1;i<=nb_groups;i++)
 -         exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
 -     for (i=nb_groups-1;i>=0;i--)
 -         exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
 - 
 -     /* now we have the exponent values the decoder will see */
 -     encoded_exp[0] = exp1[0];
 -     k = 1;
 -     for(i=1;i<=nb_groups;i++) {
 -         for(j=0;j<group_size;j++) {
 -             encoded_exp[k+j] = exp1[i];
 -         }
 -         k += group_size;
 -     }
 - 
 - #if defined(DEBUG)
 -     av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
 -     for(i=0;i<=nb_groups * group_size;i++) {
 -         av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
 -     }
 -     av_log(NULL, AV_LOG_DEBUG, "\n");
 - #endif
 - 
 -     return 4 + (nb_groups / 3) * 7;
 - }
 - 
 - /* return the size in bits taken by the mantissa */
 - static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
 - {
 -     int bits, mant, i;
 - 
 -     bits = 0;
 -     for(i=0;i<nb_coefs;i++) {
 -         mant = m[i];
 -         switch(mant) {
 -         case 0:
 -             /* nothing */
 -             break;
 -         case 1:
 -             /* 3 mantissa in 5 bits */
 -             if (s->mant1_cnt == 0)
 -                 bits += 5;
 -             if (++s->mant1_cnt == 3)
 -                 s->mant1_cnt = 0;
 -             break;
 -         case 2:
 -             /* 3 mantissa in 7 bits */
 -             if (s->mant2_cnt == 0)
 -                 bits += 7;
 -             if (++s->mant2_cnt == 3)
 -                 s->mant2_cnt = 0;
 -             break;
 -         case 3:
 -             bits += 3;
 -             break;
 -         case 4:
 -             /* 2 mantissa in 7 bits */
 -             if (s->mant4_cnt == 0)
 -                 bits += 7;
 -             if (++s->mant4_cnt == 2)
 -                 s->mant4_cnt = 0;
 -             break;
 -         case 14:
 -             bits += 14;
 -             break;
 -         case 15:
 -             bits += 16;
 -             break;
 -         default:
 -             bits += mant - 1;
 -             break;
 -         }
 -     }
 -     return bits;
 - }
 - 
 - 
 - static void bit_alloc_masking(AC3EncodeContext *s,
 -                               uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                               uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 -                               int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                               int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
 - {
 -     int blk, ch;
 -     int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
 - 
 -     for(blk=0; blk<NB_BLOCKS; blk++) {
 -         for(ch=0;ch<s->nb_all_channels;ch++) {
 -             if(exp_strategy[blk][ch] == EXP_REUSE) {
 -                 memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
 -                 memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
 -             } else {
 -                 ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
 -                                           s->nb_coefs[ch],
 -                                           psd[blk][ch], band_psd[blk][ch]);
 -                 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
 -                                            0, s->nb_coefs[ch],
 -                                            ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
 -                                            ch == s->lfe_channel,
 -                                            DBA_NONE, 0, NULL, NULL, NULL,
 -                                            mask[blk][ch]);
 -             }
 -         }
 -     }
 - }
 - 
 - static int bit_alloc(AC3EncodeContext *s,
 -                      int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
 -                      int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                      uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                      int frame_bits, int coarse_snr_offset, int fine_snr_offset)
 - {
 -     int i, ch;
 -     int snr_offset;
 - 
 -     snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
 - 
 -     /* compute size */
 -     for(i=0;i<NB_BLOCKS;i++) {
 -         s->mant1_cnt = 0;
 -         s->mant2_cnt = 0;
 -         s->mant4_cnt = 0;
 -         for(ch=0;ch<s->nb_all_channels;ch++) {
 -             ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
 -                                       s->nb_coefs[ch], snr_offset,
 -                                       s->bit_alloc.floor, bap[i][ch]);
 -             frame_bits += compute_mantissa_size(s, bap[i][ch],
 -                                                  s->nb_coefs[ch]);
 -         }
 -     }
 - #if 0
 -     printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
 -            coarse_snr_offset, fine_snr_offset, frame_bits,
 -            16 * s->frame_size - ((frame_bits + 7) & ~7));
 - #endif
 -     return 16 * s->frame_size - frame_bits;
 - }
 - 
 - #define SNR_INC1 4
 - 
 - static int compute_bit_allocation(AC3EncodeContext *s,
 -                                   uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                                   uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 -                                   uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 -                                   int frame_bits)
 - {
 -     int i, ch;
 -     int coarse_snr_offset, fine_snr_offset;
 -     uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
 -     static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
 - 
 -     /* init default parameters */
 -     s->slow_decay_code = 2;
 -     s->fast_decay_code = 1;
 -     s->slow_gain_code = 1;
 -     s->db_per_bit_code = 2;
 -     s->floor_code = 4;
 -     for(ch=0;ch<s->nb_all_channels;ch++)
 -         s->fast_gain_code[ch] = 4;
 - 
 -     /* compute real values */
 -     s->bit_alloc.sr_code = s->sr_code;
 -     s->bit_alloc.sr_shift = s->sr_shift;
 -     s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
 -     s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
 -     s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
 -     s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
 -     s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
 - 
 -     /* header size */
 -     frame_bits += 65;
 -     // if (s->channel_mode == 2)
 -     //    frame_bits += 2;
 -     frame_bits += frame_bits_inc[s->channel_mode];
 - 
 -     /* audio blocks */
 -     for(i=0;i<NB_BLOCKS;i++) {
 -         frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
 -         if (s->channel_mode == AC3_CHMODE_STEREO) {
 -             frame_bits++; /* rematstr */
 -             if(i==0) frame_bits += 4;
 -         }
 -         frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
 -         if (s->lfe)
 -             frame_bits++; /* lfeexpstr */
 -         for(ch=0;ch<s->nb_channels;ch++) {
 -             if (exp_strategy[i][ch] != EXP_REUSE)
 -                 frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
 -         }
 -         frame_bits++; /* baie */
 -         frame_bits++; /* snr */
 -         frame_bits += 2; /* delta / skip */
 -     }
 -     frame_bits++; /* cplinu for block 0 */
 -     /* bit alloc info */
 -     /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
 -     /* csnroffset[6] */
 -     /* (fsnoffset[4] + fgaincod[4]) * c */
 -     frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
 - 
 -     /* auxdatae, crcrsv */
 -     frame_bits += 2;
 - 
 -     /* CRC */
 -     frame_bits += 16;
 - 
 -     /* calculate psd and masking curve before doing bit allocation */
 -     bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
 - 
 -     /* now the big work begins : do the bit allocation. Modify the snr
 -        offset until we can pack everything in the requested frame size */
 - 
 -     coarse_snr_offset = s->coarse_snr_offset;
 -     while (coarse_snr_offset >= 0 &&
 -            bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
 -         coarse_snr_offset -= SNR_INC1;
 -     if (coarse_snr_offset < 0) {
 -         av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
 -         return -1;
 -     }
 -     while ((coarse_snr_offset + SNR_INC1) <= 63 &&
 -            bit_alloc(s, mask, psd, bap1, frame_bits,
 -                      coarse_snr_offset + SNR_INC1, 0) >= 0) {
 -         coarse_snr_offset += SNR_INC1;
 -         memcpy(bap, bap1, sizeof(bap1));
 -     }
 -     while ((coarse_snr_offset + 1) <= 63 &&
 -            bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
 -         coarse_snr_offset++;
 -         memcpy(bap, bap1, sizeof(bap1));
 -     }
 - 
 -     fine_snr_offset = 0;
 -     while ((fine_snr_offset + SNR_INC1) <= 15 &&
 -            bit_alloc(s, mask, psd, bap1, frame_bits,
 -                      coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
 -         fine_snr_offset += SNR_INC1;
 -         memcpy(bap, bap1, sizeof(bap1));
 -     }
 -     while ((fine_snr_offset + 1) <= 15 &&
 -            bit_alloc(s, mask, psd, bap1, frame_bits,
 -                      coarse_snr_offset, fine_snr_offset + 1) >= 0) {
 -         fine_snr_offset++;
 -         memcpy(bap, bap1, sizeof(bap1));
 -     }
 - 
 -     s->coarse_snr_offset = coarse_snr_offset;
 -     for(ch=0;ch<s->nb_all_channels;ch++)
 -         s->fine_snr_offset[ch] = fine_snr_offset;
 - #if defined(DEBUG_BITALLOC)
 -     {
 -         int j;
 - 
 -         for(i=0;i<6;i++) {
 -             for(ch=0;ch<s->nb_all_channels;ch++) {
 -                 printf("Block #%d Ch%d:\n", i, ch);
 -                 printf("bap=");
 -                 for(j=0;j<s->nb_coefs[ch];j++) {
 -                     printf("%d ",bap[i][ch][j]);
 -                 }
 -                 printf("\n");
 -             }
 -         }
 -     }
 - #endif
 -     return 0;
 - }
 - 
 - static av_cold int AC3_encode_init(AVCodecContext *avctx)
 - {
 -     int freq = avctx->sample_rate;
 -     int bitrate = avctx->bit_rate;
 -     int channels = avctx->channels;
 -     AC3EncodeContext *s = avctx->priv_data;
 -     int i, j, ch;
 -     float alpha;
 -     int bw_code;
 -     static const uint8_t channel_mode_defs[6] = {
 -         0x01, /* C */
 -         0x02, /* L R */
 -         0x03, /* L C R */
 -         0x06, /* L R SL SR */
 -         0x07, /* L C R SL SR */
 -         0x07, /* L C R SL SR (+LFE) */
 -     };
 - 
 -     avctx->frame_size = AC3_FRAME_SIZE;
 - 
 -     ac3_common_init();
 - 
 -     /* number of channels */
 -     if (channels < 1 || channels > 6)
 -         return -1;
 -     s->channel_mode = channel_mode_defs[channels - 1];
 -     s->lfe = (channels == 6) ? 1 : 0;
 -     s->nb_all_channels = channels;
 -     s->nb_channels = channels > 5 ? 5 : channels;
 -     s->lfe_channel = s->lfe ? 5 : -1;
 - 
 -     /* frequency */
 -     for(i=0;i<3;i++) {
 -         for(j=0;j<3;j++)
 -             if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
 -                 goto found;
 -     }
 -     return -1;
 -  found:
 -     s->sample_rate = freq;
 -     s->sr_shift = i;
 -     s->sr_code = j;
 -     s->bitstream_id = 8 + s->sr_shift;
 -     s->bitstream_mode = 0; /* complete main audio service */
 - 
 -     /* bitrate & frame size */
 -     for(i=0;i<19;i++) {
 -         if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
 -             break;
 -     }
 -     if (i == 19)
 -         return -1;
 -     s->bit_rate = bitrate;
 -     s->frame_size_code = i << 1;
 -     s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
 -     s->bits_written = 0;
 -     s->samples_written = 0;
 -     s->frame_size = s->frame_size_min;
 - 
 -     /* bit allocation init */
 -     if(avctx->cutoff) {
 -         /* calculate bandwidth based on user-specified cutoff frequency */
 -         int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
 -         int fbw_coeffs = cutoff * 512 / s->sample_rate;
 -         bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
 -     } else {
 -         /* use default bandwidth setting */
 -         /* XXX: should compute the bandwidth according to the frame
 -            size, so that we avoid annoying high frequency artifacts */
 -         bw_code = 50;
 -     }
 -     for(ch=0;ch<s->nb_channels;ch++) {
 -         /* bandwidth for each channel */
 -         s->chbwcod[ch] = bw_code;
 -         s->nb_coefs[ch] = bw_code * 3 + 73;
 -     }
 -     if (s->lfe) {
 -         s->nb_coefs[s->lfe_channel] = 7; /* fixed */
 -     }
 -     /* initial snr offset */
 -     s->coarse_snr_offset = 40;
 - 
 -     /* mdct init */
 -     fft_init(MDCT_NBITS - 2);
 -     for(i=0;i<N/4;i++) {
 -         alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
 -         xcos1[i] = fix15(-cos(alpha));
 -         xsin1[i] = fix15(-sin(alpha));
 -     }
 - 
 -     avctx->coded_frame= avcodec_alloc_frame();
 -     avctx->coded_frame->key_frame= 1;
 - 
 -     return 0;
 - }
 - 
 - /* output the AC3 frame header */
 - static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
 - {
 -     init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
 - 
 -     put_bits(&s->pb, 16, 0x0b77); /* frame header */
 -     put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
 -     put_bits(&s->pb, 2, s->sr_code);
 -     put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
 -     put_bits(&s->pb, 5, s->bitstream_id);
 -     put_bits(&s->pb, 3, s->bitstream_mode);
 -     put_bits(&s->pb, 3, s->channel_mode);
 -     if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
 -         put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
 -     if (s->channel_mode & 0x04)
 -         put_bits(&s->pb, 2, 1); /* XXX -6 dB */
 -     if (s->channel_mode == AC3_CHMODE_STEREO)
 -         put_bits(&s->pb, 2, 0); /* surround not indicated */
 -     put_bits(&s->pb, 1, s->lfe); /* LFE */
 -     put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
 -     put_bits(&s->pb, 1, 0); /* no compression control word */
 -     put_bits(&s->pb, 1, 0); /* no lang code */
 -     put_bits(&s->pb, 1, 0); /* no audio production info */
 -     put_bits(&s->pb, 1, 0); /* no copyright */
 -     put_bits(&s->pb, 1, 1); /* original bitstream */
 -     put_bits(&s->pb, 1, 0); /* no time code 1 */
 -     put_bits(&s->pb, 1, 0); /* no time code 2 */
 -     put_bits(&s->pb, 1, 0); /* no additional bit stream info */
 - }
 - 
 - /* symetric quantization on 'levels' levels */
 - static inline int sym_quant(int c, int e, int levels)
 - {
 -     int v;
 - 
 -     if (c >= 0) {
 -         v = (levels * (c << e)) >> 24;
 -         v = (v + 1) >> 1;
 -         v = (levels >> 1) + v;
 -     } else {
 -         v = (levels * ((-c) << e)) >> 24;
 -         v = (v + 1) >> 1;
 -         v = (levels >> 1) - v;
 -     }
 -     assert (v >= 0 && v < levels);
 -     return v;
 - }
 - 
 - /* asymetric quantization on 2^qbits levels */
 - static inline int asym_quant(int c, int e, int qbits)
 - {
 -     int lshift, m, v;
 - 
 -     lshift = e + qbits - 24;
 -     if (lshift >= 0)
 -         v = c << lshift;
 -     else
 -         v = c >> (-lshift);
 -     /* rounding */
 -     v = (v + 1) >> 1;
 -     m = (1 << (qbits-1));
 -     if (v >= m)
 -         v = m - 1;
 -     assert(v >= -m);
 -     return v & ((1 << qbits)-1);
 - }
 - 
 - /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
 -    frame */
 - static void output_audio_block(AC3EncodeContext *s,
 -                                uint8_t exp_strategy[AC3_MAX_CHANNELS],
 -                                uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
 -                                uint8_t bap[AC3_MAX_CHANNELS][N/2],
 -                                int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
 -                                int8_t global_exp[AC3_MAX_CHANNELS],
 -                                int block_num)
 - {
 -     int ch, nb_groups, group_size, i, baie, rbnd;
 -     uint8_t *p;
 -     uint16_t qmant[AC3_MAX_CHANNELS][N/2];
 -     int exp0, exp1;
 -     int mant1_cnt, mant2_cnt, mant4_cnt;
 -     uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
 -     int delta0, delta1, delta2;
 - 
 -     for(ch=0;ch<s->nb_channels;ch++)
 -         put_bits(&s->pb, 1, 0); /* 512 point MDCT */
 -     for(ch=0;ch<s->nb_channels;ch++)
 -         put_bits(&s->pb, 1, 1); /* no dither */
 -     put_bits(&s->pb, 1, 0); /* no dynamic range */
 -     if (block_num == 0) {
 -         /* for block 0, even if no coupling, we must say it. This is a
 -            waste of bit :-) */
 -         put_bits(&s->pb, 1, 1); /* coupling strategy present */
 -         put_bits(&s->pb, 1, 0); /* no coupling strategy */
 -     } else {
 -         put_bits(&s->pb, 1, 0); /* no new coupling strategy */
 -     }
 - 
 -     if (s->channel_mode == AC3_CHMODE_STEREO)
 -       {
 -         if(block_num==0)
 -           {
 -             /* first block must define rematrixing (rematstr)  */
 -             put_bits(&s->pb, 1, 1);
 - 
 -             /* dummy rematrixing rematflg(1:4)=0 */
 -             for (rbnd=0;rbnd<4;rbnd++)
 -               put_bits(&s->pb, 1, 0);
 -           }
 -         else
 -           {
 -             /* no matrixing (but should be used in the future) */
 -             put_bits(&s->pb, 1, 0);
 -           }
 -       }
 - 
 - #if defined(DEBUG)
 -     {
 -       static int count = 0;
 -       av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
 -     }
 - #endif
 -     /* exponent strategy */
 -     for(ch=0;ch<s->nb_channels;ch++) {
 -         put_bits(&s->pb, 2, exp_strategy[ch]);
 -     }
 - 
 -     if (s->lfe) {
 -         put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
 -     }
 - 
 -     for(ch=0;ch<s->nb_channels;ch++) {
 -         if (exp_strategy[ch] != EXP_REUSE)
 -             put_bits(&s->pb, 6, s->chbwcod[ch]);
 -     }
 - 
 -     /* exponents */
 -     for (ch = 0; ch < s->nb_all_channels; ch++) {
 -         switch(exp_strategy[ch]) {
 -         case EXP_REUSE:
 -             continue;
 -         case EXP_D15:
 -             group_size = 1;
 -             break;
 -         case EXP_D25:
 -             group_size = 2;
 -             break;
 -         default:
 -         case EXP_D45:
 -             group_size = 4;
 -             break;
 -         }
 -         nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
 -         p = encoded_exp[ch];
 - 
 -         /* first exponent */
 -         exp1 = *p++;
 -         put_bits(&s->pb, 4, exp1);
 - 
 -         /* next ones are delta encoded */
 -         for(i=0;i<nb_groups;i++) {
 -             /* merge three delta in one code */
 -             exp0 = exp1;
 -             exp1 = p[0];
 -             p += group_size;
 -             delta0 = exp1 - exp0 + 2;
 - 
 -             exp0 = exp1;
 -             exp1 = p[0];
 -             p += group_size;
 -             delta1 = exp1 - exp0 + 2;
 - 
 -             exp0 = exp1;
 -             exp1 = p[0];
 -             p += group_size;
 -             delta2 = exp1 - exp0 + 2;
 - 
 -             put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
 -         }
 - 
 -         if (ch != s->lfe_channel)
 -             put_bits(&s->pb, 2, 0); /* no gain range info */
 -     }
 - 
 -     /* bit allocation info */
 -     baie = (block_num == 0);
 -     put_bits(&s->pb, 1, baie);
 -     if (baie) {
 -         put_bits(&s->pb, 2, s->slow_decay_code);
 -         put_bits(&s->pb, 2, s->fast_decay_code);
 -         put_bits(&s->pb, 2, s->slow_gain_code);
 -         put_bits(&s->pb, 2, s->db_per_bit_code);
 -         put_bits(&s->pb, 3, s->floor_code);
 -     }
 - 
 -     /* snr offset */
 -     put_bits(&s->pb, 1, baie); /* always present with bai */
 -     if (baie) {
 -         put_bits(&s->pb, 6, s->coarse_snr_offset);
 -         for(ch=0;ch<s->nb_all_channels;ch++) {
 -             put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
 -             put_bits(&s->pb, 3, s->fast_gain_code[ch]);
 -         }
 -     }
 - 
 -     put_bits(&s->pb, 1, 0); /* no delta bit allocation */
 -     put_bits(&s->pb, 1, 0); /* no data to skip */
 - 
 -     /* mantissa encoding : we use two passes to handle the grouping. A
 -        one pass method may be faster, but it would necessitate to
 -        modify the output stream. */
 - 
 -     /* first pass: quantize */
 -     mant1_cnt = mant2_cnt = mant4_cnt = 0;
 -     qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
 - 
 -     for (ch = 0; ch < s->nb_all_channels; ch++) {
 -         int b, c, e, v;
 - 
 -         for(i=0;i<s->nb_coefs[ch];i++) {
 -             c = mdct_coefs[ch][i];
 -             e = encoded_exp[ch][i] - global_exp[ch];
 -             b = bap[ch][i];
 -             switch(b) {
 -             case 0:
 -                 v = 0;
 -                 break;
 -             case 1:
 -                 v = sym_quant(c, e, 3);
 -                 switch(mant1_cnt) {
 -                 case 0:
 -                     qmant1_ptr = &qmant[ch][i];
 -                     v = 9 * v;
 -                     mant1_cnt = 1;
 -                     break;
 -                 case 1:
 -                     *qmant1_ptr += 3 * v;
 -                     mant1_cnt = 2;
 -                     v = 128;
 -                     break;
 -                 default:
 -                     *qmant1_ptr += v;
 -                     mant1_cnt = 0;
 -                     v = 128;
 -                     break;
 -                 }
 -                 break;
 -             case 2:
 -                 v = sym_quant(c, e, 5);
 -                 switch(mant2_cnt) {
 -                 case 0:
 -                     qmant2_ptr = &qmant[ch][i];
 -                     v = 25 * v;
 -                     mant2_cnt = 1;
 -                     break;
 -                 case 1:
 -                     *qmant2_ptr += 5 * v;
 -                     mant2_cnt = 2;
 -                     v = 128;
 -                     break;
 -                 default:
 -                     *qmant2_ptr += v;
 -                     mant2_cnt = 0;
 -                     v = 128;
 -                     break;
 -                 }
 -                 break;
 -             case 3:
 -                 v = sym_quant(c, e, 7);
 -                 break;
 -             case 4:
 -                 v = sym_quant(c, e, 11);
 -                 switch(mant4_cnt) {
 -                 case 0:
 -                     qmant4_ptr = &qmant[ch][i];
 -                     v = 11 * v;
 -                     mant4_cnt = 1;
 -                     break;
 -                 default:
 -                     *qmant4_ptr += v;
 -                     mant4_cnt = 0;
 -                     v = 128;
 -                     break;
 -                 }
 -                 break;
 -             case 5:
 -                 v = sym_quant(c, e, 15);
 -                 break;
 -             case 14:
 -                 v = asym_quant(c, e, 14);
 -                 break;
 -             case 15:
 -                 v = asym_quant(c, e, 16);
 -                 break;
 -             default:
 -                 v = asym_quant(c, e, b - 1);
 -                 break;
 -             }
 -             qmant[ch][i] = v;
 -         }
 -     }
 - 
 -     /* second pass : output the values */
 -     for (ch = 0; ch < s->nb_all_channels; ch++) {
 -         int b, q;
 - 
 -         for(i=0;i<s->nb_coefs[ch];i++) {
 -             q = qmant[ch][i];
 -             b = bap[ch][i];
 -             switch(b) {
 -             case 0:
 -                 break;
 -             case 1:
 -                 if (q != 128)
 -                     put_bits(&s->pb, 5, q);
 -                 break;
 -             case 2:
 -                 if (q != 128)
 -                     put_bits(&s->pb, 7, q);
 -                 break;
 -             case 3:
 -                 put_bits(&s->pb, 3, q);
 -                 break;
 -             case 4:
 -                 if (q != 128)
 -                     put_bits(&s->pb, 7, q);
 -                 break;
 -             case 14:
 -                 put_bits(&s->pb, 14, q);
 -                 break;
 -             case 15:
 -                 put_bits(&s->pb, 16, q);
 -                 break;
 -             default:
 -                 put_bits(&s->pb, b - 1, q);
 -                 break;
 -             }
 -         }
 -     }
 - }
 - 
 - #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
 - 
 - static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
 - {
 -     unsigned int c;
 - 
 -     c = 0;
 -     while (a) {
 -         if (a & 1)
 -             c ^= b;
 -         a = a >> 1;
 -         b = b << 1;
 -         if (b & (1 << 16))
 -             b ^= poly;
 -     }
 -     return c;
 - }
 - 
 - static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
 - {
 -     unsigned int r;
 -     r = 1;
 -     while (n) {
 -         if (n & 1)
 -             r = mul_poly(r, a, poly);
 -         a = mul_poly(a, a, poly);
 -         n >>= 1;
 -     }
 -     return r;
 - }
 - 
 - 
 - /* compute log2(max(abs(tab[]))) */
 - static int log2_tab(int16_t *tab, int n)
 - {
 -     int i, v;
 - 
 -     v = 0;
 -     for(i=0;i<n;i++) {
 -         v |= abs(tab[i]);
 -     }
 -     return av_log2(v);
 - }
 - 
 - static void lshift_tab(int16_t *tab, int n, int lshift)
 - {
 -     int i;
 - 
 -     if (lshift > 0) {
 -         for(i=0;i<n;i++) {
 -             tab[i] <<= lshift;
 -         }
 -     } else if (lshift < 0) {
 -         lshift = -lshift;
 -         for(i=0;i<n;i++) {
 -             tab[i] >>= lshift;
 -         }
 -     }
 - }
 - 
 - /* fill the end of the frame and compute the two crcs */
 - static int output_frame_end(AC3EncodeContext *s)
 - {
 -     int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
 -     uint8_t *frame;
 - 
 -     frame_size = s->frame_size; /* frame size in words */
 -     /* align to 8 bits */
 -     flush_put_bits(&s->pb);
 -     /* add zero bytes to reach the frame size */
 -     frame = s->pb.buf;
 -     n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
 -     assert(n >= 0);
 -     if(n>0)
 -       memset(pbBufPtr(&s->pb), 0, n);
 - 
 -     /* Now we must compute both crcs : this is not so easy for crc1
 -        because it is at the beginning of the data... */
 -     frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
 -     crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
 -                            frame + 4, 2 * frame_size_58 - 4));
 -     /* XXX: could precompute crc_inv */
 -     crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
 -     crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
 -     AV_WB16(frame+2,crc1);
 - 
 -     crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
 -                            frame + 2 * frame_size_58,
 -                            (frame_size - frame_size_58) * 2 - 2));
 -     AV_WB16(frame+2*frame_size-2,crc2);
 - 
 -     //    printf("n=%d frame_size=%d\n", n, frame_size);
 -     return frame_size * 2;
 - }
 - 
 - static int AC3_encode_frame(AVCodecContext *avctx,
 -                             unsigned char *frame, int buf_size, void *data)
 - {
 -     AC3EncodeContext *s = avctx->priv_data;
 -     int16_t *samples = data;
 -     int i, j, k, v, ch;
 -     int16_t input_samples[N];
 -     int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
 -     uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 -     int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
 -     int frame_bits;
 - 
 -     frame_bits = 0;
 -     for(ch=0;ch<s->nb_all_channels;ch++) {
 -         /* fixed mdct to the six sub blocks & exponent computation */
 -         for(i=0;i<NB_BLOCKS;i++) {
 -             int16_t *sptr;
 -             int sinc;
 - 
 -             /* compute input samples */
 -             memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
 -             sinc = s->nb_all_channels;
 -             sptr = samples + (sinc * (N/2) * i) + ch;
 -             for(j=0;j<N/2;j++) {
 -                 v = *sptr;
 -                 input_samples[j + N/2] = v;
 -                 s->last_samples[ch][j] = v;
 -                 sptr += sinc;
 -             }
 - 
 -             /* apply the MDCT window */
 -             for(j=0;j<N/2;j++) {
 -                 input_samples[j] = MUL16(input_samples[j],
 -                                          ff_ac3_window[j]) >> 15;
 -                 input_samples[N-j-1] = MUL16(input_samples[N-j-1],
 -                                              ff_ac3_window[j]) >> 15;
 -             }
 - 
 -             /* Normalize the samples to use the maximum available
 -                precision */
 -             v = 14 - log2_tab(input_samples, N);
 -             if (v < 0)
 -                 v = 0;
 -             exp_samples[i][ch] = v - 9;
 -             lshift_tab(input_samples, N, v);
 - 
 -             /* do the MDCT */
 -             mdct512(mdct_coef[i][ch], input_samples);
 - 
 -             /* compute "exponents". We take into account the
 -                normalization there */
 -             for(j=0;j<N/2;j++) {
 -                 int e;
 -                 v = abs(mdct_coef[i][ch][j]);
 -                 if (v == 0)
 -                     e = 24;
 -                 else {
 -                     e = 23 - av_log2(v) + exp_samples[i][ch];
 -                     if (e >= 24) {
 -                         e = 24;
 -                         mdct_coef[i][ch][j] = 0;
 -                     }
 -                 }
 -                 exp[i][ch][j] = e;
 -             }
 -         }
 - 
 -         compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
 - 
 -         /* compute the exponents as the decoder will see them. The
 -            EXP_REUSE case must be handled carefully : we select the
 -            min of the exponents */
 -         i = 0;
 -         while (i < NB_BLOCKS) {
 -             j = i + 1;
 -             while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
 -                 exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
 -                 j++;
 -             }
 -             frame_bits += encode_exp(encoded_exp[i][ch],
 -                                      exp[i][ch], s->nb_coefs[ch],
 -                                      exp_strategy[i][ch]);
 -             /* copy encoded exponents for reuse case */
 -             for(k=i+1;k<j;k++) {
 -                 memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
 -                        s->nb_coefs[ch] * sizeof(uint8_t));
 -             }
 -             i = j;
 -         }
 -     }
 - 
 -     /* adjust for fractional frame sizes */
 -     while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
 -         s->bits_written -= s->bit_rate;
 -         s->samples_written -= s->sample_rate;
 -     }
 -     s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
 -     s->bits_written += s->frame_size * 16;
 -     s->samples_written += AC3_FRAME_SIZE;
 - 
 -     compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
 -     /* everything is known... let's output the frame */
 -     output_frame_header(s, frame);
 - 
 -     for(i=0;i<NB_BLOCKS;i++) {
 -         output_audio_block(s, exp_strategy[i], encoded_exp[i],
 -                            bap[i], mdct_coef[i], exp_samples[i], i);
 -     }
 -     return output_frame_end(s);
 - }
 - 
 - static av_cold int AC3_encode_close(AVCodecContext *avctx)
 - {
 -     av_freep(&avctx->coded_frame);
 -     return 0;
 - }
 - 
 - #if 0
 - /*************************************************************************/
 - /* TEST */
 - 
 - #undef random
 - #define FN (N/4)
 - 
 - void fft_test(void)
 - {
 -     IComplex in[FN], in1[FN];
 -     int k, n, i;
 -     float sum_re, sum_im, a;
 - 
 -     /* FFT test */
 - 
 -     for(i=0;i<FN;i++) {
 -         in[i].re = random() % 65535 - 32767;
 -         in[i].im = random() % 65535 - 32767;
 -         in1[i] = in[i];
 -     }
 -     fft(in, 7);
 - 
 -     /* do it by hand */
 -     for(k=0;k<FN;k++) {
 -         sum_re = 0;
 -         sum_im = 0;
 -         for(n=0;n<FN;n++) {
 -             a = -2 * M_PI * (n * k) / FN;
 -             sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
 -             sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
 -         }
 -         printf("%3d: %6d,%6d %6.0f,%6.0f\n",
 -                k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
 -     }
 - }
 - 
 - void mdct_test(void)
 - {
 -     int16_t input[N];
 -     int32_t output[N/2];
 -     float input1[N];
 -     float output1[N/2];
 -     float s, a, err, e, emax;
 -     int i, k, n;
 - 
 -     for(i=0;i<N;i++) {
 -         input[i] = (random() % 65535 - 32767) * 9 / 10;
 -         input1[i] = input[i];
 -     }
 - 
 -     mdct512(output, input);
 - 
 -     /* do it by hand */
 -     for(k=0;k<N/2;k++) {
 -         s = 0;
 -         for(n=0;n<N;n++) {
 -             a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
 -             s += input1[n] * cos(a);
 -         }
 -         output1[k] = -2 * s / N;
 -     }
 - 
 -     err = 0;
 -     emax = 0;
 -     for(i=0;i<N/2;i++) {
 -         printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
 -         e = output[i] - output1[i];
 -         if (e > emax)
 -             emax = e;
 -         err += e * e;
 -     }
 -     printf("err2=%f emax=%f\n", err / (N/2), emax);
 - }
 - 
 - void test_ac3(void)
 - {
 -     AC3EncodeContext ctx;
 -     unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
 -     short samples[AC3_FRAME_SIZE];
 -     int ret, i;
 - 
 -     AC3_encode_init(&ctx, 44100, 64000, 1);
 - 
 -     fft_test();
 -     mdct_test();
 - 
 -     for(i=0;i<AC3_FRAME_SIZE;i++)
 -         samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
 -     ret = AC3_encode_frame(&ctx, frame, samples);
 -     printf("ret=%d\n", ret);
 - }
 - #endif
 - 
 - AVCodec ac3_encoder = {
 -     "ac3",
 -     CODEC_TYPE_AUDIO,
 -     CODEC_ID_AC3,
 -     sizeof(AC3EncodeContext),
 -     AC3_encode_init,
 -     AC3_encode_frame,
 -     AC3_encode_close,
 -     NULL,
 -     .long_name = "ATSC A/52 / AC-3",
 - };
 
 
  |