You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

510 lines
21KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <stdlib.h>
  19. #include <stdio.h>
  20. #include "../dsputil.h"
  21. #include "../mpegvideo.h"
  22. // Used when initializing constant vectors
  23. #define FOUR_INSTANCES(x) x,x,x,x
  24. // Swaps two variables (used for altivec registers)
  25. #define SWAP(a,b) \
  26. do { \
  27. __typeof__(a) swap_temp=a; \
  28. a=b; \
  29. b=swap_temp; \
  30. } while (0)
  31. // transposes a matrix consisting of four vectors with four elements each
  32. #define TRANSPOSE4(a,b,c,d) \
  33. do { \
  34. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  35. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  36. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  37. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  38. \
  39. a = vec_mergeh(_trans_ach, _trans_bdh); \
  40. b = vec_mergel(_trans_ach, _trans_bdh); \
  41. c = vec_mergeh(_trans_acl, _trans_bdl); \
  42. d = vec_mergel(_trans_acl, _trans_bdl); \
  43. } while (0)
  44. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  45. do { \
  46. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  47. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  48. \
  49. _A1 = vec_mergeh (a, e); \
  50. _B1 = vec_mergel (a, e); \
  51. _C1 = vec_mergeh (b, f); \
  52. _D1 = vec_mergel (b, f); \
  53. _E1 = vec_mergeh (c, g); \
  54. _F1 = vec_mergel (c, g); \
  55. _G1 = vec_mergeh (d, h); \
  56. _H1 = vec_mergel (d, h); \
  57. \
  58. _A2 = vec_mergeh (_A1, _E1); \
  59. _B2 = vec_mergel (_A1, _E1); \
  60. _C2 = vec_mergeh (_B1, _F1); \
  61. _D2 = vec_mergel (_B1, _F1); \
  62. _E2 = vec_mergeh (_C1, _G1); \
  63. _F2 = vec_mergel (_C1, _G1); \
  64. _G2 = vec_mergeh (_D1, _H1); \
  65. _H2 = vec_mergel (_D1, _H1); \
  66. \
  67. a = vec_mergeh (_A2, _E2); \
  68. b = vec_mergel (_A2, _E2); \
  69. c = vec_mergeh (_B2, _F2); \
  70. d = vec_mergel (_B2, _F2); \
  71. e = vec_mergeh (_C2, _G2); \
  72. f = vec_mergel (_C2, _G2); \
  73. g = vec_mergeh (_D2, _H2); \
  74. h = vec_mergel (_D2, _H2); \
  75. } while (0)
  76. // Loads a four-byte value (int or float) from the target address
  77. // into every element in the target vector. Only works if the
  78. // target address is four-byte aligned (which should be always).
  79. #define LOAD4(vec, address) \
  80. { \
  81. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  82. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  83. vec = vec_ld(0, _load_addr); \
  84. vec = vec_perm(vec, vec, _perm_vec); \
  85. vec = vec_splat(vec, 0); \
  86. }
  87. int dct_quantize_altivec(MpegEncContext* s,
  88. DCTELEM* data, int n,
  89. int qscale, int* overflow)
  90. {
  91. int lastNonZero;
  92. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  93. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  94. const vector float zero = {FOUR_INSTANCES(0.0f)};
  95. // Load the data into the row/alt vectors
  96. {
  97. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  98. data0 = vec_ld(0, data);
  99. data1 = vec_ld(16, data);
  100. data2 = vec_ld(32, data);
  101. data3 = vec_ld(48, data);
  102. data4 = vec_ld(64, data);
  103. data5 = vec_ld(80, data);
  104. data6 = vec_ld(96, data);
  105. data7 = vec_ld(112, data);
  106. // Transpose the data before we start
  107. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  108. // load the data into floating point vectors. We load
  109. // the high half of each row into the main row vectors
  110. // and the low half into the alt vectors.
  111. row0 = vec_ctf(vec_unpackh(data0), 0);
  112. alt0 = vec_ctf(vec_unpackl(data0), 0);
  113. row1 = vec_ctf(vec_unpackh(data1), 0);
  114. alt1 = vec_ctf(vec_unpackl(data1), 0);
  115. row2 = vec_ctf(vec_unpackh(data2), 0);
  116. alt2 = vec_ctf(vec_unpackl(data2), 0);
  117. row3 = vec_ctf(vec_unpackh(data3), 0);
  118. alt3 = vec_ctf(vec_unpackl(data3), 0);
  119. row4 = vec_ctf(vec_unpackh(data4), 0);
  120. alt4 = vec_ctf(vec_unpackl(data4), 0);
  121. row5 = vec_ctf(vec_unpackh(data5), 0);
  122. alt5 = vec_ctf(vec_unpackl(data5), 0);
  123. row6 = vec_ctf(vec_unpackh(data6), 0);
  124. alt6 = vec_ctf(vec_unpackl(data6), 0);
  125. row7 = vec_ctf(vec_unpackh(data7), 0);
  126. alt7 = vec_ctf(vec_unpackl(data7), 0);
  127. }
  128. // The following block could exist as a separate an altivec dct
  129. // function. However, if we put it inline, the DCT data can remain
  130. // in the vector local variables, as floats, which we'll use during the
  131. // quantize step...
  132. {
  133. const vector float vec_0_298631336 = {FOUR_INSTANCES(0.298631336f)};
  134. const vector float vec_0_390180644 = {FOUR_INSTANCES(-0.390180644f)};
  135. const vector float vec_0_541196100 = {FOUR_INSTANCES(0.541196100f)};
  136. const vector float vec_0_765366865 = {FOUR_INSTANCES(0.765366865f)};
  137. const vector float vec_0_899976223 = {FOUR_INSTANCES(-0.899976223f)};
  138. const vector float vec_1_175875602 = {FOUR_INSTANCES(1.175875602f)};
  139. const vector float vec_1_501321110 = {FOUR_INSTANCES(1.501321110f)};
  140. const vector float vec_1_847759065 = {FOUR_INSTANCES(-1.847759065f)};
  141. const vector float vec_1_961570560 = {FOUR_INSTANCES(-1.961570560f)};
  142. const vector float vec_2_053119869 = {FOUR_INSTANCES(2.053119869f)};
  143. const vector float vec_2_562915447 = {FOUR_INSTANCES(-2.562915447f)};
  144. const vector float vec_3_072711026 = {FOUR_INSTANCES(3.072711026f)};
  145. int whichPass, whichHalf;
  146. for(whichPass = 1; whichPass<=2; whichPass++)
  147. {
  148. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  149. {
  150. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  151. vector float tmp10, tmp11, tmp12, tmp13;
  152. vector float z1, z2, z3, z4, z5;
  153. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  154. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  155. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  156. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  157. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  158. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  159. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  160. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  161. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  162. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  163. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  164. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  165. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  166. row0 = vec_add(tmp10, tmp11);
  167. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  168. row4 = vec_sub(tmp10, tmp11);
  169. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  170. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  171. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  172. // CONST_BITS-PASS1_BITS);
  173. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  174. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  175. // CONST_BITS-PASS1_BITS);
  176. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  177. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  178. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  179. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  180. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  181. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  182. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  183. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  184. z3 = vec_madd(z3, vec_1_961570560, z5);
  185. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  186. z4 = vec_madd(z4, vec_0_390180644, z5);
  187. // The following adds are rolled into the multiplies above
  188. // z3 = vec_add(z3, z5); // z3 += z5;
  189. // z4 = vec_add(z4, z5); // z4 += z5;
  190. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  191. // Wow! It's actually more effecient to roll this multiply
  192. // into the adds below, even thought the multiply gets done twice!
  193. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  194. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  195. // Same with this one...
  196. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  197. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  198. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  199. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  200. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  201. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  202. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  203. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  204. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  205. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  206. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  207. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  208. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  209. // Swap the row values with the alts. If this is the first half,
  210. // this sets up the low values to be acted on in the second half.
  211. // If this is the second half, it puts the high values back in
  212. // the row values where they are expected to be when we're done.
  213. SWAP(row0, alt0);
  214. SWAP(row1, alt1);
  215. SWAP(row2, alt2);
  216. SWAP(row3, alt3);
  217. SWAP(row4, alt4);
  218. SWAP(row5, alt5);
  219. SWAP(row6, alt6);
  220. SWAP(row7, alt7);
  221. }
  222. if (whichPass == 1)
  223. {
  224. // transpose the data for the second pass
  225. // First, block transpose the upper right with lower left.
  226. SWAP(row4, alt0);
  227. SWAP(row5, alt1);
  228. SWAP(row6, alt2);
  229. SWAP(row7, alt3);
  230. // Now, transpose each block of four
  231. TRANSPOSE4(row0, row1, row2, row3);
  232. TRANSPOSE4(row4, row5, row6, row7);
  233. TRANSPOSE4(alt0, alt1, alt2, alt3);
  234. TRANSPOSE4(alt4, alt5, alt6, alt7);
  235. }
  236. }
  237. }
  238. // used after quantise step
  239. int oldBaseValue = 0;
  240. // perform the quantise step, using the floating point data
  241. // still in the row/alt registers
  242. {
  243. const int* biasAddr;
  244. const vector signed int* qmat;
  245. vector float bias, negBias;
  246. if (s->mb_intra)
  247. {
  248. vector signed int baseVector;
  249. // We must cache element 0 in the intra case
  250. // (it needs special handling).
  251. baseVector = vec_cts(vec_splat(row0, 0), 0);
  252. vec_ste(baseVector, 0, &oldBaseValue);
  253. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  254. biasAddr = &(s->intra_quant_bias);
  255. }
  256. else
  257. {
  258. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  259. biasAddr = &(s->inter_quant_bias);
  260. }
  261. // Load the bias vector (We add 0.5 to the bias so that we're
  262. // rounding when we convert to int, instead of flooring.)
  263. {
  264. vector signed int biasInt;
  265. const vector float negOneFloat = (vector float)(FOUR_INSTANCES(-1.0f));
  266. LOAD4(biasInt, biasAddr);
  267. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  268. negBias = vec_madd(bias, negOneFloat, zero);
  269. }
  270. {
  271. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  272. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  273. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  274. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  275. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  276. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  277. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  278. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  279. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  280. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  281. vec_cmpgt(row0, zero));
  282. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  283. vec_cmpgt(row1, zero));
  284. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  285. vec_cmpgt(row2, zero));
  286. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  287. vec_cmpgt(row3, zero));
  288. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  289. vec_cmpgt(row4, zero));
  290. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  291. vec_cmpgt(row5, zero));
  292. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  293. vec_cmpgt(row6, zero));
  294. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  295. vec_cmpgt(row7, zero));
  296. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  297. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  298. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  299. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  300. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  301. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  302. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  303. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  304. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  305. vec_cmpgt(alt0, zero));
  306. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  307. vec_cmpgt(alt1, zero));
  308. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  309. vec_cmpgt(alt2, zero));
  310. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  311. vec_cmpgt(alt3, zero));
  312. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  313. vec_cmpgt(alt4, zero));
  314. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  315. vec_cmpgt(alt5, zero));
  316. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  317. vec_cmpgt(alt6, zero));
  318. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  319. vec_cmpgt(alt7, zero));
  320. }
  321. }
  322. // Store the data back into the original block
  323. {
  324. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  325. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  326. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  327. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  328. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  329. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  330. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  331. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  332. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  333. {
  334. // Clamp for overflow
  335. vector signed int max_q_int, min_q_int;
  336. vector signed short max_q, min_q;
  337. LOAD4(max_q_int, &(s->max_qcoeff));
  338. LOAD4(min_q_int, &(s->min_qcoeff));
  339. max_q = vec_pack(max_q_int, max_q_int);
  340. min_q = vec_pack(min_q_int, min_q_int);
  341. data0 = vec_max(vec_min(data0, max_q), min_q);
  342. data1 = vec_max(vec_min(data1, max_q), min_q);
  343. data2 = vec_max(vec_min(data2, max_q), min_q);
  344. data4 = vec_max(vec_min(data4, max_q), min_q);
  345. data5 = vec_max(vec_min(data5, max_q), min_q);
  346. data6 = vec_max(vec_min(data6, max_q), min_q);
  347. data7 = vec_max(vec_min(data7, max_q), min_q);
  348. }
  349. vector bool char zero_01, zero_23, zero_45, zero_67;
  350. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  351. vector signed char negOne = vec_splat_s8(-1);
  352. vector signed char* scanPtr =
  353. (vector signed char*)(s->intra_scantable.inverse);
  354. // Determine the largest non-zero index.
  355. zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
  356. vec_cmpeq(data1, (vector short)zero));
  357. zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
  358. vec_cmpeq(data3, (vector short)zero));
  359. zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
  360. vec_cmpeq(data5, (vector short)zero));
  361. zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
  362. vec_cmpeq(data7, (vector short)zero));
  363. // 64 biggest values
  364. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  365. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  366. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  367. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  368. // 32 largest values
  369. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  370. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  371. // 16 largest values
  372. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  373. // 8 largest values
  374. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  375. vec_mergel(scanIndices_01, negOne));
  376. // 4 largest values
  377. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  378. vec_mergel(scanIndices_01, negOne));
  379. // 2 largest values
  380. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  381. vec_mergel(scanIndices_01, negOne));
  382. // largest value
  383. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  384. vec_mergel(scanIndices_01, negOne));
  385. scanIndices_01 = vec_splat(scanIndices_01, 0);
  386. signed char lastNonZeroChar;
  387. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  388. lastNonZero = lastNonZeroChar;
  389. // While the data is still in vectors we check for the transpose IDCT permute
  390. // and handle it using the vector unit if we can. This is the permute used
  391. // by the altivec idct, so it is common when using the altivec dct.
  392. if ((lastNonZero > 0) && (s->idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  393. {
  394. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  395. }
  396. vec_st(data0, 0, data);
  397. vec_st(data1, 16, data);
  398. vec_st(data2, 32, data);
  399. vec_st(data3, 48, data);
  400. vec_st(data4, 64, data);
  401. vec_st(data5, 80, data);
  402. vec_st(data6, 96, data);
  403. vec_st(data7, 112, data);
  404. }
  405. // special handling of block[0]
  406. if (s->mb_intra)
  407. {
  408. if (!s->h263_aic)
  409. {
  410. if (n < 4)
  411. oldBaseValue /= s->y_dc_scale;
  412. else
  413. oldBaseValue /= s->c_dc_scale;
  414. }
  415. // Divide by 8, rounding the result
  416. data[0] = (oldBaseValue + 4) >> 3;
  417. }
  418. // We handled the tranpose permutation above and we don't
  419. // need to permute the "no" permutation case.
  420. if ((lastNonZero > 0) &&
  421. (s->idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  422. (s->idct_permutation_type != FF_NO_IDCT_PERM))
  423. {
  424. ff_block_permute(data, s->idct_permutation,
  425. s->intra_scantable.scantable, lastNonZero);
  426. }
  427. return lastNonZero;
  428. }