You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2106 lines
76KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/ppc/cpu.h"
  47. #include "libavutil/x86/asm.h"
  48. #include "libavutil/x86/cpu.h"
  49. #include "rgb2rgb.h"
  50. #include "swscale.h"
  51. #include "swscale_internal.h"
  52. static void handle_formats(SwsContext *c);
  53. unsigned swscale_version(void)
  54. {
  55. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  56. return LIBSWSCALE_VERSION_INT;
  57. }
  58. const char *swscale_configuration(void)
  59. {
  60. return FFMPEG_CONFIGURATION;
  61. }
  62. const char *swscale_license(void)
  63. {
  64. #define LICENSE_PREFIX "libswscale license: "
  65. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  66. }
  67. #define RET 0xC3 // near return opcode for x86
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  91. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  92. [AV_PIX_FMT_BGR8] = { 1, 1 },
  93. [AV_PIX_FMT_BGR4] = { 0, 1 },
  94. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_RGB8] = { 1, 1 },
  96. [AV_PIX_FMT_RGB4] = { 0, 1 },
  97. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  98. [AV_PIX_FMT_NV12] = { 1, 1 },
  99. [AV_PIX_FMT_NV21] = { 1, 1 },
  100. [AV_PIX_FMT_ARGB] = { 1, 1 },
  101. [AV_PIX_FMT_RGBA] = { 1, 1 },
  102. [AV_PIX_FMT_ABGR] = { 1, 1 },
  103. [AV_PIX_FMT_BGRA] = { 1, 1 },
  104. [AV_PIX_FMT_0RGB] = { 1, 1 },
  105. [AV_PIX_FMT_RGB0] = { 1, 1 },
  106. [AV_PIX_FMT_0BGR] = { 1, 1 },
  107. [AV_PIX_FMT_BGR0] = { 1, 1 },
  108. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  133. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  135. [AV_PIX_FMT_RGBA64BE] = { 1, 1 },
  136. [AV_PIX_FMT_RGBA64LE] = { 1, 1 },
  137. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  151. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  152. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  153. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  154. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  155. [AV_PIX_FMT_Y400A] = { 1, 0 },
  156. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  157. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  158. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  159. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  160. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  194. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  195. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  196. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  197. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  198. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  199. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  200. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  201. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  202. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  203. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  204. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  205. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  212. };
  213. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  214. {
  215. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  216. format_entries[pix_fmt].is_supported_in : 0;
  217. }
  218. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  219. {
  220. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  221. format_entries[pix_fmt].is_supported_out : 0;
  222. }
  223. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  224. {
  225. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  226. format_entries[pix_fmt].is_supported_endianness : 0;
  227. }
  228. #if FF_API_SWS_FORMAT_NAME
  229. const char *sws_format_name(enum AVPixelFormat format)
  230. {
  231. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  232. if (desc)
  233. return desc->name;
  234. else
  235. return "Unknown format";
  236. }
  237. #endif
  238. static double getSplineCoeff(double a, double b, double c, double d,
  239. double dist)
  240. {
  241. if (dist <= 1.0)
  242. return ((d * dist + c) * dist + b) * dist + a;
  243. else
  244. return getSplineCoeff(0.0,
  245. b + 2.0 * c + 3.0 * d,
  246. c + 3.0 * d,
  247. -b - 3.0 * c - 6.0 * d,
  248. dist - 1.0);
  249. }
  250. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  251. {
  252. if (pos < 0) {
  253. pos = (128 << chr_subsample) - 128;
  254. }
  255. pos += 128; // relative to ideal left edge
  256. return pos >> chr_subsample;
  257. }
  258. typedef struct {
  259. int flag; ///< flag associated to the algorithm
  260. const char *description; ///< human-readable description
  261. int size_factor; ///< size factor used when initing the filters
  262. } ScaleAlgorithm;
  263. static const ScaleAlgorithm scale_algorithms[] = {
  264. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  265. { SWS_BICUBIC, "bicubic", 4 },
  266. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  267. { SWS_BILINEAR, "bilinear", 2 },
  268. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  269. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  270. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  271. { SWS_POINT, "nearest neighbor / point", -1 },
  272. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  273. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  274. { SWS_X, "experimental", 8 },
  275. };
  276. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  277. int *outFilterSize, int xInc, int srcW,
  278. int dstW, int filterAlign, int one,
  279. int flags, int cpu_flags,
  280. SwsVector *srcFilter, SwsVector *dstFilter,
  281. double param[2], int srcPos, int dstPos)
  282. {
  283. int i;
  284. int filterSize;
  285. int filter2Size;
  286. int minFilterSize;
  287. int64_t *filter = NULL;
  288. int64_t *filter2 = NULL;
  289. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  290. int ret = -1;
  291. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  292. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  293. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  294. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  295. int i;
  296. filterSize = 1;
  297. FF_ALLOCZ_OR_GOTO(NULL, filter,
  298. dstW * sizeof(*filter) * filterSize, fail);
  299. for (i = 0; i < dstW; i++) {
  300. filter[i * filterSize] = fone;
  301. (*filterPos)[i] = i;
  302. }
  303. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  304. int i;
  305. int64_t xDstInSrc;
  306. filterSize = 1;
  307. FF_ALLOC_OR_GOTO(NULL, filter,
  308. dstW * sizeof(*filter) * filterSize, fail);
  309. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  310. for (i = 0; i < dstW; i++) {
  311. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  312. (*filterPos)[i] = xx;
  313. filter[i] = fone;
  314. xDstInSrc += xInc;
  315. }
  316. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  317. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  318. int i;
  319. int64_t xDstInSrc;
  320. filterSize = 2;
  321. FF_ALLOC_OR_GOTO(NULL, filter,
  322. dstW * sizeof(*filter) * filterSize, fail);
  323. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  324. for (i = 0; i < dstW; i++) {
  325. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  326. int j;
  327. (*filterPos)[i] = xx;
  328. // bilinear upscale / linear interpolate / area averaging
  329. for (j = 0; j < filterSize; j++) {
  330. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  331. if (coeff < 0)
  332. coeff = 0;
  333. filter[i * filterSize + j] = coeff;
  334. xx++;
  335. }
  336. xDstInSrc += xInc;
  337. }
  338. } else {
  339. int64_t xDstInSrc;
  340. int sizeFactor = -1;
  341. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  342. if (flags & scale_algorithms[i].flag) {
  343. sizeFactor = scale_algorithms[i].size_factor;
  344. break;
  345. }
  346. }
  347. if (flags & SWS_LANCZOS)
  348. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  349. av_assert0(sizeFactor > 0);
  350. if (xInc <= 1 << 16)
  351. filterSize = 1 + sizeFactor; // upscale
  352. else
  353. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  354. filterSize = FFMIN(filterSize, srcW - 2);
  355. filterSize = FFMAX(filterSize, 1);
  356. FF_ALLOC_OR_GOTO(NULL, filter,
  357. dstW * sizeof(*filter) * filterSize, fail);
  358. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  359. for (i = 0; i < dstW; i++) {
  360. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  361. int j;
  362. (*filterPos)[i] = xx;
  363. for (j = 0; j < filterSize; j++) {
  364. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  365. double floatd;
  366. int64_t coeff;
  367. if (xInc > 1 << 16)
  368. d = d * dstW / srcW;
  369. floatd = d * (1.0 / (1 << 30));
  370. if (flags & SWS_BICUBIC) {
  371. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  372. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  373. if (d >= 1LL << 31) {
  374. coeff = 0.0;
  375. } else {
  376. int64_t dd = (d * d) >> 30;
  377. int64_t ddd = (dd * d) >> 30;
  378. if (d < 1LL << 30)
  379. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  380. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  381. (6 * (1 << 24) - 2 * B) * (1 << 30);
  382. else
  383. coeff = (-B - 6 * C) * ddd +
  384. (6 * B + 30 * C) * dd +
  385. (-12 * B - 48 * C) * d +
  386. (8 * B + 24 * C) * (1 << 30);
  387. }
  388. coeff /= (1LL<<54)/fone;
  389. }
  390. #if 0
  391. else if (flags & SWS_X) {
  392. double p = param ? param * 0.01 : 0.3;
  393. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  394. coeff *= pow(2.0, -p * d * d);
  395. }
  396. #endif
  397. else if (flags & SWS_X) {
  398. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  399. double c;
  400. if (floatd < 1.0)
  401. c = cos(floatd * M_PI);
  402. else
  403. c = -1.0;
  404. if (c < 0.0)
  405. c = -pow(-c, A);
  406. else
  407. c = pow(c, A);
  408. coeff = (c * 0.5 + 0.5) * fone;
  409. } else if (flags & SWS_AREA) {
  410. int64_t d2 = d - (1 << 29);
  411. if (d2 * xInc < -(1LL << (29 + 16)))
  412. coeff = 1.0 * (1LL << (30 + 16));
  413. else if (d2 * xInc < (1LL << (29 + 16)))
  414. coeff = -d2 * xInc + (1LL << (29 + 16));
  415. else
  416. coeff = 0.0;
  417. coeff *= fone >> (30 + 16);
  418. } else if (flags & SWS_GAUSS) {
  419. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  420. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  421. } else if (flags & SWS_SINC) {
  422. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  423. } else if (flags & SWS_LANCZOS) {
  424. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  425. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  426. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  427. if (floatd > p)
  428. coeff = 0;
  429. } else if (flags & SWS_BILINEAR) {
  430. coeff = (1 << 30) - d;
  431. if (coeff < 0)
  432. coeff = 0;
  433. coeff *= fone >> 30;
  434. } else if (flags & SWS_SPLINE) {
  435. double p = -2.196152422706632;
  436. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  437. } else {
  438. av_assert0(0);
  439. }
  440. filter[i * filterSize + j] = coeff;
  441. xx++;
  442. }
  443. xDstInSrc += 2 * xInc;
  444. }
  445. }
  446. /* apply src & dst Filter to filter -> filter2
  447. * av_free(filter);
  448. */
  449. av_assert0(filterSize > 0);
  450. filter2Size = filterSize;
  451. if (srcFilter)
  452. filter2Size += srcFilter->length - 1;
  453. if (dstFilter)
  454. filter2Size += dstFilter->length - 1;
  455. av_assert0(filter2Size > 0);
  456. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  457. for (i = 0; i < dstW; i++) {
  458. int j, k;
  459. if (srcFilter) {
  460. for (k = 0; k < srcFilter->length; k++) {
  461. for (j = 0; j < filterSize; j++)
  462. filter2[i * filter2Size + k + j] +=
  463. srcFilter->coeff[k] * filter[i * filterSize + j];
  464. }
  465. } else {
  466. for (j = 0; j < filterSize; j++)
  467. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  468. }
  469. // FIXME dstFilter
  470. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  471. }
  472. av_freep(&filter);
  473. /* try to reduce the filter-size (step1 find size and shift left) */
  474. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  475. minFilterSize = 0;
  476. for (i = dstW - 1; i >= 0; i--) {
  477. int min = filter2Size;
  478. int j;
  479. int64_t cutOff = 0.0;
  480. /* get rid of near zero elements on the left by shifting left */
  481. for (j = 0; j < filter2Size; j++) {
  482. int k;
  483. cutOff += FFABS(filter2[i * filter2Size]);
  484. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  485. break;
  486. /* preserve monotonicity because the core can't handle the
  487. * filter otherwise */
  488. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  489. break;
  490. // move filter coefficients left
  491. for (k = 1; k < filter2Size; k++)
  492. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  493. filter2[i * filter2Size + k - 1] = 0;
  494. (*filterPos)[i]++;
  495. }
  496. cutOff = 0;
  497. /* count near zeros on the right */
  498. for (j = filter2Size - 1; j > 0; j--) {
  499. cutOff += FFABS(filter2[i * filter2Size + j]);
  500. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  501. break;
  502. min--;
  503. }
  504. if (min > minFilterSize)
  505. minFilterSize = min;
  506. }
  507. if (PPC_ALTIVEC(cpu_flags)) {
  508. // we can handle the special case 4, so we don't want to go the full 8
  509. if (minFilterSize < 5)
  510. filterAlign = 4;
  511. /* We really don't want to waste our time doing useless computation, so
  512. * fall back on the scalar C code for very small filters.
  513. * Vectorizing is worth it only if you have a decent-sized vector. */
  514. if (minFilterSize < 3)
  515. filterAlign = 1;
  516. }
  517. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  518. // special case for unscaled vertical filtering
  519. if (minFilterSize == 1 && filterAlign == 2)
  520. filterAlign = 1;
  521. }
  522. av_assert0(minFilterSize > 0);
  523. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  524. av_assert0(filterSize > 0);
  525. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  526. if (filterSize >= MAX_FILTER_SIZE * 16 /
  527. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  528. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreme scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  529. goto fail;
  530. }
  531. *outFilterSize = filterSize;
  532. if (flags & SWS_PRINT_INFO)
  533. av_log(NULL, AV_LOG_VERBOSE,
  534. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  535. filter2Size, filterSize);
  536. /* try to reduce the filter-size (step2 reduce it) */
  537. for (i = 0; i < dstW; i++) {
  538. int j;
  539. for (j = 0; j < filterSize; j++) {
  540. if (j >= filter2Size)
  541. filter[i * filterSize + j] = 0;
  542. else
  543. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  544. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  545. filter[i * filterSize + j] = 0;
  546. }
  547. }
  548. // FIXME try to align filterPos if possible
  549. // fix borders
  550. for (i = 0; i < dstW; i++) {
  551. int j;
  552. if ((*filterPos)[i] < 0) {
  553. // move filter coefficients left to compensate for filterPos
  554. for (j = 1; j < filterSize; j++) {
  555. int left = FFMAX(j + (*filterPos)[i], 0);
  556. filter[i * filterSize + left] += filter[i * filterSize + j];
  557. filter[i * filterSize + j] = 0;
  558. }
  559. (*filterPos)[i]= 0;
  560. }
  561. if ((*filterPos)[i] + filterSize > srcW) {
  562. int shift = (*filterPos)[i] + filterSize - srcW;
  563. // move filter coefficients right to compensate for filterPos
  564. for (j = filterSize - 2; j >= 0; j--) {
  565. int right = FFMIN(j + shift, filterSize - 1);
  566. filter[i * filterSize + right] += filter[i * filterSize + j];
  567. filter[i * filterSize + j] = 0;
  568. }
  569. (*filterPos)[i]= srcW - filterSize;
  570. }
  571. }
  572. // Note the +1 is for the MMX scaler which reads over the end
  573. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  574. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  575. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  576. /* normalize & store in outFilter */
  577. for (i = 0; i < dstW; i++) {
  578. int j;
  579. int64_t error = 0;
  580. int64_t sum = 0;
  581. for (j = 0; j < filterSize; j++) {
  582. sum += filter[i * filterSize + j];
  583. }
  584. sum = (sum + one / 2) / one;
  585. if (!sum) {
  586. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  587. sum = 1;
  588. }
  589. for (j = 0; j < *outFilterSize; j++) {
  590. int64_t v = filter[i * filterSize + j] + error;
  591. int intV = ROUNDED_DIV(v, sum);
  592. (*outFilter)[i * (*outFilterSize) + j] = intV;
  593. error = v - intV * sum;
  594. }
  595. }
  596. (*filterPos)[dstW + 0] =
  597. (*filterPos)[dstW + 1] =
  598. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  599. * read over the end */
  600. for (i = 0; i < *outFilterSize; i++) {
  601. int k = (dstW - 1) * (*outFilterSize) + i;
  602. (*outFilter)[k + 1 * (*outFilterSize)] =
  603. (*outFilter)[k + 2 * (*outFilterSize)] =
  604. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  605. }
  606. ret = 0;
  607. fail:
  608. if(ret < 0)
  609. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  610. av_free(filter);
  611. av_free(filter2);
  612. return ret;
  613. }
  614. #if HAVE_MMXEXT_INLINE
  615. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  616. int16_t *filter, int32_t *filterPos,
  617. int numSplits)
  618. {
  619. uint8_t *fragmentA;
  620. x86_reg imm8OfPShufW1A;
  621. x86_reg imm8OfPShufW2A;
  622. x86_reg fragmentLengthA;
  623. uint8_t *fragmentB;
  624. x86_reg imm8OfPShufW1B;
  625. x86_reg imm8OfPShufW2B;
  626. x86_reg fragmentLengthB;
  627. int fragmentPos;
  628. int xpos, i;
  629. // create an optimized horizontal scaling routine
  630. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  631. * pshufw instructions. For every four output pixels, if four input pixels
  632. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  633. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  634. */
  635. // code fragment
  636. __asm__ volatile (
  637. "jmp 9f \n\t"
  638. // Begin
  639. "0: \n\t"
  640. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  641. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  642. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  643. "punpcklbw %%mm7, %%mm1 \n\t"
  644. "punpcklbw %%mm7, %%mm0 \n\t"
  645. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  646. "1: \n\t"
  647. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  648. "2: \n\t"
  649. "psubw %%mm1, %%mm0 \n\t"
  650. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  651. "pmullw %%mm3, %%mm0 \n\t"
  652. "psllw $7, %%mm1 \n\t"
  653. "paddw %%mm1, %%mm0 \n\t"
  654. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  655. "add $8, %%"REG_a" \n\t"
  656. // End
  657. "9: \n\t"
  658. // "int $3 \n\t"
  659. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  660. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  661. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  662. "dec %1 \n\t"
  663. "dec %2 \n\t"
  664. "sub %0, %1 \n\t"
  665. "sub %0, %2 \n\t"
  666. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  667. "sub %0, %3 \n\t"
  668. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  669. "=r" (fragmentLengthA)
  670. );
  671. __asm__ volatile (
  672. "jmp 9f \n\t"
  673. // Begin
  674. "0: \n\t"
  675. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  676. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  677. "punpcklbw %%mm7, %%mm0 \n\t"
  678. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  679. "1: \n\t"
  680. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  681. "2: \n\t"
  682. "psubw %%mm1, %%mm0 \n\t"
  683. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  684. "pmullw %%mm3, %%mm0 \n\t"
  685. "psllw $7, %%mm1 \n\t"
  686. "paddw %%mm1, %%mm0 \n\t"
  687. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  688. "add $8, %%"REG_a" \n\t"
  689. // End
  690. "9: \n\t"
  691. // "int $3 \n\t"
  692. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  693. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  694. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  695. "dec %1 \n\t"
  696. "dec %2 \n\t"
  697. "sub %0, %1 \n\t"
  698. "sub %0, %2 \n\t"
  699. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  700. "sub %0, %3 \n\t"
  701. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  702. "=r" (fragmentLengthB)
  703. );
  704. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  705. fragmentPos = 0;
  706. for (i = 0; i < dstW / numSplits; i++) {
  707. int xx = xpos >> 16;
  708. if ((i & 3) == 0) {
  709. int a = 0;
  710. int b = ((xpos + xInc) >> 16) - xx;
  711. int c = ((xpos + xInc * 2) >> 16) - xx;
  712. int d = ((xpos + xInc * 3) >> 16) - xx;
  713. int inc = (d + 1 < 4);
  714. uint8_t *fragment = inc ? fragmentB : fragmentA;
  715. x86_reg imm8OfPShufW1 = inc ? imm8OfPShufW1B : imm8OfPShufW1A;
  716. x86_reg imm8OfPShufW2 = inc ? imm8OfPShufW2B : imm8OfPShufW2A;
  717. x86_reg fragmentLength = inc ? fragmentLengthB : fragmentLengthA;
  718. int maxShift = 3 - (d + inc);
  719. int shift = 0;
  720. if (filterCode) {
  721. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  722. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  723. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  724. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  725. filterPos[i / 2] = xx;
  726. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  727. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  728. ((b + inc) << 2) |
  729. ((c + inc) << 4) |
  730. ((d + inc) << 6);
  731. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  732. (c << 4) |
  733. (d << 6);
  734. if (i + 4 - inc >= dstW)
  735. shift = maxShift; // avoid overread
  736. else if ((filterPos[i / 2] & 3) <= maxShift)
  737. shift = filterPos[i / 2] & 3; // align
  738. if (shift && i >= shift) {
  739. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  740. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  741. filterPos[i / 2] -= shift;
  742. }
  743. }
  744. fragmentPos += fragmentLength;
  745. if (filterCode)
  746. filterCode[fragmentPos] = RET;
  747. }
  748. xpos += xInc;
  749. }
  750. if (filterCode)
  751. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  752. return fragmentPos + 1;
  753. }
  754. #endif /* HAVE_MMXEXT_INLINE */
  755. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  756. {
  757. int64_t W, V, Z, Cy, Cu, Cv;
  758. int64_t vr = table[0];
  759. int64_t ub = table[1];
  760. int64_t ug = -table[2];
  761. int64_t vg = -table[3];
  762. int64_t ONE = 65536;
  763. int64_t cy = ONE;
  764. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  765. int i;
  766. static const int8_t map[] = {
  767. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  768. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  769. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  770. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  771. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  772. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  773. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  774. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  775. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  776. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  777. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  778. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  779. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  780. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  781. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  782. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  783. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  784. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  785. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  786. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  787. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  788. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  789. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  790. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  791. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  792. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  793. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  794. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  795. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  796. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  797. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  798. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  799. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  800. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  801. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  802. };
  803. dstRange = 0; //FIXME range = 1 is handled elsewhere
  804. if (!dstRange) {
  805. cy = cy * 255 / 219;
  806. } else {
  807. vr = vr * 224 / 255;
  808. ub = ub * 224 / 255;
  809. ug = ug * 224 / 255;
  810. vg = vg * 224 / 255;
  811. }
  812. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  813. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  814. Z = ONE*ONE-W-V;
  815. Cy = ROUNDED_DIV(cy*Z, ONE);
  816. Cu = ROUNDED_DIV(ub*Z, ONE);
  817. Cv = ROUNDED_DIV(vr*Z, ONE);
  818. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  819. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  820. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  821. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  822. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  823. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  824. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  825. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  826. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  827. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  828. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  829. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  830. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  831. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  832. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  833. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  834. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  835. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  836. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  837. }
  838. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  839. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  840. }
  841. static void fill_xyztables(struct SwsContext *c)
  842. {
  843. int i;
  844. double xyzgamma = XYZ_GAMMA;
  845. double rgbgamma = 1.0 / RGB_GAMMA;
  846. double xyzgammainv = 1.0 / XYZ_GAMMA;
  847. double rgbgammainv = RGB_GAMMA;
  848. static const int16_t xyz2rgb_matrix[3][4] = {
  849. {13270, -6295, -2041},
  850. {-3969, 7682, 170},
  851. { 228, -835, 4329} };
  852. static const int16_t rgb2xyz_matrix[3][4] = {
  853. {1689, 1464, 739},
  854. { 871, 2929, 296},
  855. { 79, 488, 3891} };
  856. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  857. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  858. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  859. c->xyzgamma = xyzgamma_tab;
  860. c->rgbgamma = rgbgamma_tab;
  861. c->xyzgammainv = xyzgammainv_tab;
  862. c->rgbgammainv = rgbgammainv_tab;
  863. if (rgbgamma_tab[4095])
  864. return;
  865. /* set gamma vectors */
  866. for (i = 0; i < 4096; i++) {
  867. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  868. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  869. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  870. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  871. }
  872. }
  873. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  874. int srcRange, const int table[4], int dstRange,
  875. int brightness, int contrast, int saturation)
  876. {
  877. const AVPixFmtDescriptor *desc_dst;
  878. const AVPixFmtDescriptor *desc_src;
  879. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  880. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  881. handle_formats(c);
  882. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  883. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  884. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  885. dstRange = 0;
  886. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  887. srcRange = 0;
  888. c->brightness = brightness;
  889. c->contrast = contrast;
  890. c->saturation = saturation;
  891. c->srcRange = srcRange;
  892. c->dstRange = dstRange;
  893. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  894. return -1;
  895. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  896. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  897. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  898. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  899. contrast, saturation);
  900. // FIXME factorize
  901. if (ARCH_PPC)
  902. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  903. contrast, saturation);
  904. }
  905. fill_rgb2yuv_table(c, table, dstRange);
  906. return 0;
  907. }
  908. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  909. int *srcRange, int **table, int *dstRange,
  910. int *brightness, int *contrast, int *saturation)
  911. {
  912. if (!c )
  913. return -1;
  914. *inv_table = c->srcColorspaceTable;
  915. *table = c->dstColorspaceTable;
  916. *srcRange = c->srcRange;
  917. *dstRange = c->dstRange;
  918. *brightness = c->brightness;
  919. *contrast = c->contrast;
  920. *saturation = c->saturation;
  921. return 0;
  922. }
  923. static int handle_jpeg(enum AVPixelFormat *format)
  924. {
  925. switch (*format) {
  926. case AV_PIX_FMT_YUVJ420P:
  927. *format = AV_PIX_FMT_YUV420P;
  928. return 1;
  929. case AV_PIX_FMT_YUVJ411P:
  930. *format = AV_PIX_FMT_YUV411P;
  931. return 1;
  932. case AV_PIX_FMT_YUVJ422P:
  933. *format = AV_PIX_FMT_YUV422P;
  934. return 1;
  935. case AV_PIX_FMT_YUVJ444P:
  936. *format = AV_PIX_FMT_YUV444P;
  937. return 1;
  938. case AV_PIX_FMT_YUVJ440P:
  939. *format = AV_PIX_FMT_YUV440P;
  940. return 1;
  941. case AV_PIX_FMT_GRAY8:
  942. return 1;
  943. default:
  944. return 0;
  945. }
  946. }
  947. static int handle_0alpha(enum AVPixelFormat *format)
  948. {
  949. switch (*format) {
  950. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  951. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  952. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  953. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  954. default: return 0;
  955. }
  956. }
  957. static int handle_xyz(enum AVPixelFormat *format)
  958. {
  959. switch (*format) {
  960. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  961. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  962. default: return 0;
  963. }
  964. }
  965. static void handle_formats(SwsContext *c)
  966. {
  967. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  968. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  969. c->srcXYZ |= handle_xyz(&c->srcFormat);
  970. c->dstXYZ |= handle_xyz(&c->dstFormat);
  971. if (c->srcXYZ || c->dstXYZ)
  972. fill_xyztables(c);
  973. }
  974. SwsContext *sws_alloc_context(void)
  975. {
  976. SwsContext *c = av_mallocz(sizeof(SwsContext));
  977. if (c) {
  978. c->av_class = &sws_context_class;
  979. av_opt_set_defaults(c);
  980. }
  981. return c;
  982. }
  983. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  984. SwsFilter *dstFilter)
  985. {
  986. int i, j;
  987. int usesVFilter, usesHFilter;
  988. int unscaled;
  989. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  990. int srcW = c->srcW;
  991. int srcH = c->srcH;
  992. int dstW = c->dstW;
  993. int dstH = c->dstH;
  994. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  995. int flags, cpu_flags;
  996. enum AVPixelFormat srcFormat = c->srcFormat;
  997. enum AVPixelFormat dstFormat = c->dstFormat;
  998. const AVPixFmtDescriptor *desc_src;
  999. const AVPixFmtDescriptor *desc_dst;
  1000. cpu_flags = av_get_cpu_flags();
  1001. flags = c->flags;
  1002. emms_c();
  1003. if (!rgb15to16)
  1004. sws_rgb2rgb_init();
  1005. unscaled = (srcW == dstW && srcH == dstH);
  1006. c->srcRange |= handle_jpeg(&c->srcFormat);
  1007. c->dstRange |= handle_jpeg(&c->dstFormat);
  1008. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1009. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1010. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1011. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1012. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1013. c->dstRange, 0, 1 << 16, 1 << 16);
  1014. handle_formats(c);
  1015. srcFormat = c->srcFormat;
  1016. dstFormat = c->dstFormat;
  1017. desc_src = av_pix_fmt_desc_get(srcFormat);
  1018. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1019. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1020. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1021. if (!sws_isSupportedInput(srcFormat)) {
  1022. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1023. av_get_pix_fmt_name(srcFormat));
  1024. return AVERROR(EINVAL);
  1025. }
  1026. if (!sws_isSupportedOutput(dstFormat)) {
  1027. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1028. av_get_pix_fmt_name(dstFormat));
  1029. return AVERROR(EINVAL);
  1030. }
  1031. }
  1032. i = flags & (SWS_POINT |
  1033. SWS_AREA |
  1034. SWS_BILINEAR |
  1035. SWS_FAST_BILINEAR |
  1036. SWS_BICUBIC |
  1037. SWS_X |
  1038. SWS_GAUSS |
  1039. SWS_LANCZOS |
  1040. SWS_SINC |
  1041. SWS_SPLINE |
  1042. SWS_BICUBLIN);
  1043. /* provide a default scaler if not set by caller */
  1044. if (!i) {
  1045. if (dstW < srcW && dstH < srcH)
  1046. flags |= SWS_BICUBIC;
  1047. else if (dstW > srcW && dstH > srcH)
  1048. flags |= SWS_BICUBIC;
  1049. else
  1050. flags |= SWS_BICUBIC;
  1051. c->flags = flags;
  1052. } else if (i & (i - 1)) {
  1053. av_log(c, AV_LOG_ERROR,
  1054. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1055. return AVERROR(EINVAL);
  1056. }
  1057. /* sanity check */
  1058. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1059. /* FIXME check if these are enough and try to lower them after
  1060. * fixing the relevant parts of the code */
  1061. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1062. srcW, srcH, dstW, dstH);
  1063. return AVERROR(EINVAL);
  1064. }
  1065. if (!dstFilter)
  1066. dstFilter = &dummyFilter;
  1067. if (!srcFilter)
  1068. srcFilter = &dummyFilter;
  1069. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1070. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1071. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1072. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1073. c->vRounder = 4 * 0x0001000100010001ULL;
  1074. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1075. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1076. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1077. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1078. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1079. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1080. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1081. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1082. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1083. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1084. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1085. if (dstW&1) {
  1086. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1087. flags |= SWS_FULL_CHR_H_INT;
  1088. c->flags = flags;
  1089. }
  1090. if ( c->chrSrcHSubSample == 0
  1091. && c->chrSrcVSubSample == 0
  1092. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1093. && !(c->flags & SWS_FAST_BILINEAR)
  1094. ) {
  1095. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1096. flags |= SWS_FULL_CHR_H_INT;
  1097. c->flags = flags;
  1098. }
  1099. }
  1100. if (c->dither == SWS_DITHER_AUTO) {
  1101. if (flags & SWS_ERROR_DIFFUSION)
  1102. c->dither = SWS_DITHER_ED;
  1103. }
  1104. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1105. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1106. dstFormat == AV_PIX_FMT_BGR8 ||
  1107. dstFormat == AV_PIX_FMT_RGB8) {
  1108. if (c->dither == SWS_DITHER_AUTO)
  1109. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1110. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1111. if (c->dither == SWS_DITHER_ED) {
  1112. av_log(c, AV_LOG_DEBUG,
  1113. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1114. av_get_pix_fmt_name(dstFormat));
  1115. flags |= SWS_FULL_CHR_H_INT;
  1116. c->flags = flags;
  1117. }
  1118. }
  1119. if (flags & SWS_FULL_CHR_H_INT) {
  1120. if (c->dither == SWS_DITHER_BAYER) {
  1121. av_log(c, AV_LOG_DEBUG,
  1122. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1123. av_get_pix_fmt_name(dstFormat));
  1124. c->dither = SWS_DITHER_ED;
  1125. }
  1126. }
  1127. }
  1128. if (isPlanarRGB(dstFormat)) {
  1129. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1130. av_log(c, AV_LOG_DEBUG,
  1131. "%s output is not supported with half chroma resolution, switching to full\n",
  1132. av_get_pix_fmt_name(dstFormat));
  1133. flags |= SWS_FULL_CHR_H_INT;
  1134. c->flags = flags;
  1135. }
  1136. }
  1137. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1138. * chroma interpolation */
  1139. if (flags & SWS_FULL_CHR_H_INT &&
  1140. isAnyRGB(dstFormat) &&
  1141. !isPlanarRGB(dstFormat) &&
  1142. dstFormat != AV_PIX_FMT_RGBA &&
  1143. dstFormat != AV_PIX_FMT_ARGB &&
  1144. dstFormat != AV_PIX_FMT_BGRA &&
  1145. dstFormat != AV_PIX_FMT_ABGR &&
  1146. dstFormat != AV_PIX_FMT_RGB24 &&
  1147. dstFormat != AV_PIX_FMT_BGR24 &&
  1148. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1149. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1150. dstFormat != AV_PIX_FMT_BGR8 &&
  1151. dstFormat != AV_PIX_FMT_RGB8
  1152. ) {
  1153. av_log(c, AV_LOG_WARNING,
  1154. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1155. av_get_pix_fmt_name(dstFormat));
  1156. flags &= ~SWS_FULL_CHR_H_INT;
  1157. c->flags = flags;
  1158. }
  1159. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1160. c->chrDstHSubSample = 1;
  1161. // drop some chroma lines if the user wants it
  1162. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1163. SWS_SRC_V_CHR_DROP_SHIFT;
  1164. c->chrSrcVSubSample += c->vChrDrop;
  1165. /* drop every other pixel for chroma calculation unless user
  1166. * wants full chroma */
  1167. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1168. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1169. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1170. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1171. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1172. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1173. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1174. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1175. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1176. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1177. (flags & SWS_FAST_BILINEAR)))
  1178. c->chrSrcHSubSample = 1;
  1179. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1180. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1181. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1182. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1183. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1184. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1185. /* unscaled special cases */
  1186. if (unscaled && !usesHFilter && !usesVFilter &&
  1187. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1188. ff_get_unscaled_swscale(c);
  1189. if (c->swscale) {
  1190. if (flags & SWS_PRINT_INFO)
  1191. av_log(c, AV_LOG_INFO,
  1192. "using unscaled %s -> %s special converter\n",
  1193. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1194. return 0;
  1195. }
  1196. }
  1197. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1198. if (c->srcBpc < 8)
  1199. c->srcBpc = 8;
  1200. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1201. if (c->dstBpc < 8)
  1202. c->dstBpc = 8;
  1203. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1204. c->srcBpc = 16;
  1205. if (c->dstBpc == 16)
  1206. dst_stride <<= 1;
  1207. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1208. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1209. c->chrDstW >= c->chrSrcW &&
  1210. (srcW & 15) == 0;
  1211. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1212. && (flags & SWS_FAST_BILINEAR)) {
  1213. if (flags & SWS_PRINT_INFO)
  1214. av_log(c, AV_LOG_INFO,
  1215. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1216. }
  1217. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1218. c->canMMXEXTBeUsed = 0;
  1219. } else
  1220. c->canMMXEXTBeUsed = 0;
  1221. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1222. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1223. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1224. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1225. * correct scaling.
  1226. * n-2 is the last chrominance sample available.
  1227. * This is not perfect, but no one should notice the difference, the more
  1228. * correct variant would be like the vertical one, but that would require
  1229. * some special code for the first and last pixel */
  1230. if (flags & SWS_FAST_BILINEAR) {
  1231. if (c->canMMXEXTBeUsed) {
  1232. c->lumXInc += 20;
  1233. c->chrXInc += 20;
  1234. }
  1235. // we don't use the x86 asm scaler if MMX is available
  1236. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1237. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1238. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1239. }
  1240. }
  1241. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1242. /* precalculate horizontal scaler filter coefficients */
  1243. {
  1244. #if HAVE_MMXEXT_INLINE
  1245. // can't downscale !!!
  1246. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1247. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1248. NULL, NULL, 8);
  1249. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1250. NULL, NULL, NULL, 4);
  1251. #if USE_MMAP
  1252. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1253. PROT_READ | PROT_WRITE,
  1254. MAP_PRIVATE | MAP_ANONYMOUS,
  1255. -1, 0);
  1256. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1257. PROT_READ | PROT_WRITE,
  1258. MAP_PRIVATE | MAP_ANONYMOUS,
  1259. -1, 0);
  1260. #elif HAVE_VIRTUALALLOC
  1261. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1262. c->lumMmxextFilterCodeSize,
  1263. MEM_COMMIT,
  1264. PAGE_EXECUTE_READWRITE);
  1265. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1266. c->chrMmxextFilterCodeSize,
  1267. MEM_COMMIT,
  1268. PAGE_EXECUTE_READWRITE);
  1269. #else
  1270. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1271. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1272. #endif
  1273. #ifdef MAP_ANONYMOUS
  1274. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1275. #else
  1276. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1277. #endif
  1278. {
  1279. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1280. return AVERROR(ENOMEM);
  1281. }
  1282. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1283. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1284. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1285. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1286. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1287. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1288. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1289. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1290. #if USE_MMAP
  1291. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1292. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1293. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1294. goto fail;
  1295. }
  1296. #endif
  1297. } else
  1298. #endif /* HAVE_MMXEXT_INLINE */
  1299. {
  1300. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1301. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1302. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1303. &c->hLumFilterSize, c->lumXInc,
  1304. srcW, dstW, filterAlign, 1 << 14,
  1305. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1306. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1307. c->param,
  1308. get_local_pos(c, 0, 0, 0),
  1309. get_local_pos(c, 0, 0, 0)) < 0)
  1310. goto fail;
  1311. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1312. &c->hChrFilterSize, c->chrXInc,
  1313. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1314. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1315. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1316. c->param,
  1317. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1318. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0)
  1319. goto fail;
  1320. }
  1321. } // initialize horizontal stuff
  1322. /* precalculate vertical scaler filter coefficients */
  1323. {
  1324. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1325. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1326. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1327. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1328. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1329. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1330. c->param,
  1331. get_local_pos(c, 0, 0, 1),
  1332. get_local_pos(c, 0, 0, 1)) < 0)
  1333. goto fail;
  1334. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1335. c->chrYInc, c->chrSrcH, c->chrDstH,
  1336. filterAlign, (1 << 12),
  1337. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1338. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1339. c->param,
  1340. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1341. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0)
  1342. goto fail;
  1343. #if HAVE_ALTIVEC
  1344. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1345. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1346. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1347. int j;
  1348. short *p = (short *)&c->vYCoeffsBank[i];
  1349. for (j = 0; j < 8; j++)
  1350. p[j] = c->vLumFilter[i];
  1351. }
  1352. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1353. int j;
  1354. short *p = (short *)&c->vCCoeffsBank[i];
  1355. for (j = 0; j < 8; j++)
  1356. p[j] = c->vChrFilter[i];
  1357. }
  1358. #endif
  1359. }
  1360. // calculate buffer sizes so that they won't run out while handling these damn slices
  1361. c->vLumBufSize = c->vLumFilterSize;
  1362. c->vChrBufSize = c->vChrFilterSize;
  1363. for (i = 0; i < dstH; i++) {
  1364. int chrI = (int64_t)i * c->chrDstH / dstH;
  1365. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1366. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1367. << c->chrSrcVSubSample));
  1368. nextSlice >>= c->chrSrcVSubSample;
  1369. nextSlice <<= c->chrSrcVSubSample;
  1370. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1371. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1372. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1373. (nextSlice >> c->chrSrcVSubSample))
  1374. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1375. c->vChrFilterPos[chrI];
  1376. }
  1377. for (i = 0; i < 4; i++)
  1378. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1379. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1380. * need to allocate several megabytes to handle all possible cases) */
  1381. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1382. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1383. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1384. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1385. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1386. /* Note we need at least one pixel more at the end because of the MMX code
  1387. * (just in case someone wants to replace the 4000/8000). */
  1388. /* align at 16 bytes for AltiVec */
  1389. for (i = 0; i < c->vLumBufSize; i++) {
  1390. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1391. dst_stride + 16, fail);
  1392. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1393. }
  1394. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1395. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1396. c->uv_offx2 = dst_stride + 16;
  1397. for (i = 0; i < c->vChrBufSize; i++) {
  1398. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1399. dst_stride * 2 + 32, fail);
  1400. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1401. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1402. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1403. }
  1404. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1405. for (i = 0; i < c->vLumBufSize; i++) {
  1406. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1407. dst_stride + 16, fail);
  1408. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1409. }
  1410. // try to avoid drawing green stuff between the right end and the stride end
  1411. for (i = 0; i < c->vChrBufSize; i++)
  1412. if(desc_dst->comp[0].depth_minus1 == 15){
  1413. av_assert0(c->dstBpc > 14);
  1414. for(j=0; j<dst_stride/2+1; j++)
  1415. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1416. } else
  1417. for(j=0; j<dst_stride+1; j++)
  1418. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1419. av_assert0(c->chrDstH <= dstH);
  1420. if (flags & SWS_PRINT_INFO) {
  1421. const char *scaler = NULL, *cpucaps;
  1422. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1423. if (flags & scale_algorithms[i].flag) {
  1424. scaler = scale_algorithms[i].description;
  1425. break;
  1426. }
  1427. }
  1428. if (!scaler)
  1429. scaler = "ehh flags invalid?!";
  1430. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1431. scaler,
  1432. av_get_pix_fmt_name(srcFormat),
  1433. #ifdef DITHER1XBPP
  1434. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1435. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1436. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1437. "dithered " : "",
  1438. #else
  1439. "",
  1440. #endif
  1441. av_get_pix_fmt_name(dstFormat));
  1442. if (INLINE_MMXEXT(cpu_flags))
  1443. cpucaps = "MMXEXT";
  1444. else if (INLINE_AMD3DNOW(cpu_flags))
  1445. cpucaps = "3DNOW";
  1446. else if (INLINE_MMX(cpu_flags))
  1447. cpucaps = "MMX";
  1448. else if (PPC_ALTIVEC(cpu_flags))
  1449. cpucaps = "AltiVec";
  1450. else
  1451. cpucaps = "C";
  1452. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1453. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1454. av_log(c, AV_LOG_DEBUG,
  1455. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1456. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1457. av_log(c, AV_LOG_DEBUG,
  1458. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1459. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1460. c->chrXInc, c->chrYInc);
  1461. }
  1462. c->swscale = ff_getSwsFunc(c);
  1463. return 0;
  1464. fail: // FIXME replace things by appropriate error codes
  1465. return -1;
  1466. }
  1467. #if FF_API_SWS_GETCONTEXT
  1468. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1469. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1470. int flags, SwsFilter *srcFilter,
  1471. SwsFilter *dstFilter, const double *param)
  1472. {
  1473. SwsContext *c;
  1474. if (!(c = sws_alloc_context()))
  1475. return NULL;
  1476. c->flags = flags;
  1477. c->srcW = srcW;
  1478. c->srcH = srcH;
  1479. c->dstW = dstW;
  1480. c->dstH = dstH;
  1481. c->srcFormat = srcFormat;
  1482. c->dstFormat = dstFormat;
  1483. if (param) {
  1484. c->param[0] = param[0];
  1485. c->param[1] = param[1];
  1486. }
  1487. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1488. sws_freeContext(c);
  1489. return NULL;
  1490. }
  1491. return c;
  1492. }
  1493. #endif
  1494. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1495. float lumaSharpen, float chromaSharpen,
  1496. float chromaHShift, float chromaVShift,
  1497. int verbose)
  1498. {
  1499. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1500. if (!filter)
  1501. return NULL;
  1502. if (lumaGBlur != 0.0) {
  1503. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1504. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1505. } else {
  1506. filter->lumH = sws_getIdentityVec();
  1507. filter->lumV = sws_getIdentityVec();
  1508. }
  1509. if (chromaGBlur != 0.0) {
  1510. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1511. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1512. } else {
  1513. filter->chrH = sws_getIdentityVec();
  1514. filter->chrV = sws_getIdentityVec();
  1515. }
  1516. if (chromaSharpen != 0.0) {
  1517. SwsVector *id = sws_getIdentityVec();
  1518. sws_scaleVec(filter->chrH, -chromaSharpen);
  1519. sws_scaleVec(filter->chrV, -chromaSharpen);
  1520. sws_addVec(filter->chrH, id);
  1521. sws_addVec(filter->chrV, id);
  1522. sws_freeVec(id);
  1523. }
  1524. if (lumaSharpen != 0.0) {
  1525. SwsVector *id = sws_getIdentityVec();
  1526. sws_scaleVec(filter->lumH, -lumaSharpen);
  1527. sws_scaleVec(filter->lumV, -lumaSharpen);
  1528. sws_addVec(filter->lumH, id);
  1529. sws_addVec(filter->lumV, id);
  1530. sws_freeVec(id);
  1531. }
  1532. if (chromaHShift != 0.0)
  1533. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1534. if (chromaVShift != 0.0)
  1535. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1536. sws_normalizeVec(filter->chrH, 1.0);
  1537. sws_normalizeVec(filter->chrV, 1.0);
  1538. sws_normalizeVec(filter->lumH, 1.0);
  1539. sws_normalizeVec(filter->lumV, 1.0);
  1540. if (verbose)
  1541. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1542. if (verbose)
  1543. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1544. return filter;
  1545. }
  1546. SwsVector *sws_allocVec(int length)
  1547. {
  1548. SwsVector *vec;
  1549. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1550. return NULL;
  1551. vec = av_malloc(sizeof(SwsVector));
  1552. if (!vec)
  1553. return NULL;
  1554. vec->length = length;
  1555. vec->coeff = av_malloc(sizeof(double) * length);
  1556. if (!vec->coeff)
  1557. av_freep(&vec);
  1558. return vec;
  1559. }
  1560. SwsVector *sws_getGaussianVec(double variance, double quality)
  1561. {
  1562. const int length = (int)(variance * quality + 0.5) | 1;
  1563. int i;
  1564. double middle = (length - 1) * 0.5;
  1565. SwsVector *vec;
  1566. if(variance < 0 || quality < 0)
  1567. return NULL;
  1568. vec = sws_allocVec(length);
  1569. if (!vec)
  1570. return NULL;
  1571. for (i = 0; i < length; i++) {
  1572. double dist = i - middle;
  1573. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1574. sqrt(2 * variance * M_PI);
  1575. }
  1576. sws_normalizeVec(vec, 1.0);
  1577. return vec;
  1578. }
  1579. SwsVector *sws_getConstVec(double c, int length)
  1580. {
  1581. int i;
  1582. SwsVector *vec = sws_allocVec(length);
  1583. if (!vec)
  1584. return NULL;
  1585. for (i = 0; i < length; i++)
  1586. vec->coeff[i] = c;
  1587. return vec;
  1588. }
  1589. SwsVector *sws_getIdentityVec(void)
  1590. {
  1591. return sws_getConstVec(1.0, 1);
  1592. }
  1593. static double sws_dcVec(SwsVector *a)
  1594. {
  1595. int i;
  1596. double sum = 0;
  1597. for (i = 0; i < a->length; i++)
  1598. sum += a->coeff[i];
  1599. return sum;
  1600. }
  1601. void sws_scaleVec(SwsVector *a, double scalar)
  1602. {
  1603. int i;
  1604. for (i = 0; i < a->length; i++)
  1605. a->coeff[i] *= scalar;
  1606. }
  1607. void sws_normalizeVec(SwsVector *a, double height)
  1608. {
  1609. sws_scaleVec(a, height / sws_dcVec(a));
  1610. }
  1611. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1612. {
  1613. int length = a->length + b->length - 1;
  1614. int i, j;
  1615. SwsVector *vec = sws_getConstVec(0.0, length);
  1616. if (!vec)
  1617. return NULL;
  1618. for (i = 0; i < a->length; i++) {
  1619. for (j = 0; j < b->length; j++) {
  1620. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1621. }
  1622. }
  1623. return vec;
  1624. }
  1625. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1626. {
  1627. int length = FFMAX(a->length, b->length);
  1628. int i;
  1629. SwsVector *vec = sws_getConstVec(0.0, length);
  1630. if (!vec)
  1631. return NULL;
  1632. for (i = 0; i < a->length; i++)
  1633. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1634. for (i = 0; i < b->length; i++)
  1635. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1636. return vec;
  1637. }
  1638. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1639. {
  1640. int length = FFMAX(a->length, b->length);
  1641. int i;
  1642. SwsVector *vec = sws_getConstVec(0.0, length);
  1643. if (!vec)
  1644. return NULL;
  1645. for (i = 0; i < a->length; i++)
  1646. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1647. for (i = 0; i < b->length; i++)
  1648. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1649. return vec;
  1650. }
  1651. /* shift left / or right if "shift" is negative */
  1652. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1653. {
  1654. int length = a->length + FFABS(shift) * 2;
  1655. int i;
  1656. SwsVector *vec = sws_getConstVec(0.0, length);
  1657. if (!vec)
  1658. return NULL;
  1659. for (i = 0; i < a->length; i++) {
  1660. vec->coeff[i + (length - 1) / 2 -
  1661. (a->length - 1) / 2 - shift] = a->coeff[i];
  1662. }
  1663. return vec;
  1664. }
  1665. void sws_shiftVec(SwsVector *a, int shift)
  1666. {
  1667. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1668. av_free(a->coeff);
  1669. a->coeff = shifted->coeff;
  1670. a->length = shifted->length;
  1671. av_free(shifted);
  1672. }
  1673. void sws_addVec(SwsVector *a, SwsVector *b)
  1674. {
  1675. SwsVector *sum = sws_sumVec(a, b);
  1676. av_free(a->coeff);
  1677. a->coeff = sum->coeff;
  1678. a->length = sum->length;
  1679. av_free(sum);
  1680. }
  1681. void sws_subVec(SwsVector *a, SwsVector *b)
  1682. {
  1683. SwsVector *diff = sws_diffVec(a, b);
  1684. av_free(a->coeff);
  1685. a->coeff = diff->coeff;
  1686. a->length = diff->length;
  1687. av_free(diff);
  1688. }
  1689. void sws_convVec(SwsVector *a, SwsVector *b)
  1690. {
  1691. SwsVector *conv = sws_getConvVec(a, b);
  1692. av_free(a->coeff);
  1693. a->coeff = conv->coeff;
  1694. a->length = conv->length;
  1695. av_free(conv);
  1696. }
  1697. SwsVector *sws_cloneVec(SwsVector *a)
  1698. {
  1699. SwsVector *vec = sws_allocVec(a->length);
  1700. if (!vec)
  1701. return NULL;
  1702. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1703. return vec;
  1704. }
  1705. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1706. {
  1707. int i;
  1708. double max = 0;
  1709. double min = 0;
  1710. double range;
  1711. for (i = 0; i < a->length; i++)
  1712. if (a->coeff[i] > max)
  1713. max = a->coeff[i];
  1714. for (i = 0; i < a->length; i++)
  1715. if (a->coeff[i] < min)
  1716. min = a->coeff[i];
  1717. range = max - min;
  1718. for (i = 0; i < a->length; i++) {
  1719. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1720. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1721. for (; x > 0; x--)
  1722. av_log(log_ctx, log_level, " ");
  1723. av_log(log_ctx, log_level, "|\n");
  1724. }
  1725. }
  1726. void sws_freeVec(SwsVector *a)
  1727. {
  1728. if (!a)
  1729. return;
  1730. av_freep(&a->coeff);
  1731. a->length = 0;
  1732. av_free(a);
  1733. }
  1734. void sws_freeFilter(SwsFilter *filter)
  1735. {
  1736. if (!filter)
  1737. return;
  1738. sws_freeVec(filter->lumH);
  1739. sws_freeVec(filter->lumV);
  1740. sws_freeVec(filter->chrH);
  1741. sws_freeVec(filter->chrV);
  1742. av_free(filter);
  1743. }
  1744. void sws_freeContext(SwsContext *c)
  1745. {
  1746. int i;
  1747. if (!c)
  1748. return;
  1749. if (c->lumPixBuf) {
  1750. for (i = 0; i < c->vLumBufSize; i++)
  1751. av_freep(&c->lumPixBuf[i]);
  1752. av_freep(&c->lumPixBuf);
  1753. }
  1754. if (c->chrUPixBuf) {
  1755. for (i = 0; i < c->vChrBufSize; i++)
  1756. av_freep(&c->chrUPixBuf[i]);
  1757. av_freep(&c->chrUPixBuf);
  1758. av_freep(&c->chrVPixBuf);
  1759. }
  1760. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1761. for (i = 0; i < c->vLumBufSize; i++)
  1762. av_freep(&c->alpPixBuf[i]);
  1763. av_freep(&c->alpPixBuf);
  1764. }
  1765. for (i = 0; i < 4; i++)
  1766. av_freep(&c->dither_error[i]);
  1767. av_freep(&c->vLumFilter);
  1768. av_freep(&c->vChrFilter);
  1769. av_freep(&c->hLumFilter);
  1770. av_freep(&c->hChrFilter);
  1771. #if HAVE_ALTIVEC
  1772. av_freep(&c->vYCoeffsBank);
  1773. av_freep(&c->vCCoeffsBank);
  1774. #endif
  1775. av_freep(&c->vLumFilterPos);
  1776. av_freep(&c->vChrFilterPos);
  1777. av_freep(&c->hLumFilterPos);
  1778. av_freep(&c->hChrFilterPos);
  1779. #if HAVE_MMX_INLINE
  1780. #if USE_MMAP
  1781. if (c->lumMmxextFilterCode)
  1782. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1783. if (c->chrMmxextFilterCode)
  1784. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1785. #elif HAVE_VIRTUALALLOC
  1786. if (c->lumMmxextFilterCode)
  1787. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1788. if (c->chrMmxextFilterCode)
  1789. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1790. #else
  1791. av_free(c->lumMmxextFilterCode);
  1792. av_free(c->chrMmxextFilterCode);
  1793. #endif
  1794. c->lumMmxextFilterCode = NULL;
  1795. c->chrMmxextFilterCode = NULL;
  1796. #endif /* HAVE_MMX_INLINE */
  1797. av_freep(&c->yuvTable);
  1798. av_freep(&c->formatConvBuffer);
  1799. av_free(c);
  1800. }
  1801. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1802. int srcH, enum AVPixelFormat srcFormat,
  1803. int dstW, int dstH,
  1804. enum AVPixelFormat dstFormat, int flags,
  1805. SwsFilter *srcFilter,
  1806. SwsFilter *dstFilter,
  1807. const double *param)
  1808. {
  1809. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1810. SWS_PARAM_DEFAULT };
  1811. if (!param)
  1812. param = default_param;
  1813. if (context &&
  1814. (context->srcW != srcW ||
  1815. context->srcH != srcH ||
  1816. context->srcFormat != srcFormat ||
  1817. context->dstW != dstW ||
  1818. context->dstH != dstH ||
  1819. context->dstFormat != dstFormat ||
  1820. context->flags != flags ||
  1821. context->param[0] != param[0] ||
  1822. context->param[1] != param[1])) {
  1823. sws_freeContext(context);
  1824. context = NULL;
  1825. }
  1826. if (!context) {
  1827. if (!(context = sws_alloc_context()))
  1828. return NULL;
  1829. context->srcW = srcW;
  1830. context->srcH = srcH;
  1831. context->srcFormat = srcFormat;
  1832. context->dstW = dstW;
  1833. context->dstH = dstH;
  1834. context->dstFormat = dstFormat;
  1835. context->flags = flags;
  1836. context->param[0] = param[0];
  1837. context->param[1] = param[1];
  1838. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1839. sws_freeContext(context);
  1840. return NULL;
  1841. }
  1842. }
  1843. return context;
  1844. }