You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

225 lines
7.4KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. */
  20. /**
  21. * @file resample2.c
  22. * audio resampling
  23. * @author Michael Niedermayer <michaelni@gmx.at>
  24. */
  25. #include "avcodec.h"
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #define PHASE_SHIFT 10
  29. #define PHASE_COUNT (1<<PHASE_SHIFT)
  30. #define PHASE_MASK (PHASE_COUNT-1)
  31. #define FILTER_SHIFT 15
  32. typedef struct AVResampleContext{
  33. short *filter_bank;
  34. int filter_length;
  35. int ideal_dst_incr;
  36. int dst_incr;
  37. int index;
  38. int frac;
  39. int src_incr;
  40. int compensation_distance;
  41. }AVResampleContext;
  42. /**
  43. * 0th order modified bessel function of the first kind.
  44. */
  45. double bessel(double x){
  46. double v=1;
  47. double t=1;
  48. int i;
  49. for(i=1; i<50; i++){
  50. t *= i;
  51. v += pow(x*x/4, i)/(t*t);
  52. }
  53. return v;
  54. }
  55. /**
  56. * builds a polyphase filterbank.
  57. * @param factor resampling factor
  58. * @param scale wanted sum of coefficients for each filter
  59. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
  60. */
  61. void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){
  62. int ph, i, v;
  63. double x, y, w, tab[tap_count];
  64. const int center= (tap_count-1)/2;
  65. /* if upsampling, only need to interpolate, no filter */
  66. if (factor > 1.0)
  67. factor = 1.0;
  68. for(ph=0;ph<phase_count;ph++) {
  69. double norm = 0;
  70. double e= 0;
  71. for(i=0;i<tap_count;i++) {
  72. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  73. if (x == 0) y = 1.0;
  74. else y = sin(x) / x;
  75. switch(type){
  76. case 0:{
  77. const float d= -0.5; //first order derivative = -0.5
  78. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  79. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  80. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  81. break;}
  82. case 1:
  83. w = 2.0*x / (factor*tap_count) + M_PI;
  84. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  85. break;
  86. case 2:
  87. w = 2.0*x / (factor*tap_count*M_PI);
  88. y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
  89. break;
  90. }
  91. tab[i] = y;
  92. norm += y;
  93. }
  94. /* normalize so that an uniform color remains the same */
  95. for(i=0;i<tap_count;i++) {
  96. v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767);
  97. filter[ph * tap_count + i] = v;
  98. e += tab[i] * scale / norm - v;
  99. }
  100. }
  101. }
  102. /**
  103. * initalizes a audio resampler.
  104. * note, if either rate is not a integer then simply scale both rates up so they are
  105. */
  106. AVResampleContext *av_resample_init(int out_rate, int in_rate){
  107. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  108. double factor= FFMIN(out_rate / (double)in_rate, 1.0);
  109. memset(c, 0, sizeof(AVResampleContext));
  110. c->filter_length= ceil(16.0/factor);
  111. c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short));
  112. av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1);
  113. c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1)/2 + 1]= (1<<FILTER_SHIFT)-1;
  114. c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1)/2 + 2]= 1;
  115. c->src_incr= out_rate;
  116. c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT;
  117. c->index= -PHASE_COUNT*((c->filter_length-1)/2);
  118. return c;
  119. }
  120. void av_resample_close(AVResampleContext *c){
  121. av_freep(&c->filter_bank);
  122. av_freep(&c);
  123. }
  124. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  125. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  126. c->compensation_distance= compensation_distance;
  127. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  128. }
  129. /**
  130. * resamples.
  131. * @param src an array of unconsumed samples
  132. * @param consumed the number of samples of src which have been consumed are returned here
  133. * @param src_size the number of unconsumed samples available
  134. * @param dst_size the amount of space in samples available in dst
  135. * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
  136. * @return the number of samples written in dst or -1 if an error occured
  137. */
  138. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  139. int dst_index, i;
  140. int index= c->index;
  141. int frac= c->frac;
  142. int dst_incr_frac= c->dst_incr % c->src_incr;
  143. int dst_incr= c->dst_incr / c->src_incr;
  144. if(c->compensation_distance && c->compensation_distance < dst_size)
  145. dst_size= c->compensation_distance;
  146. for(dst_index=0; dst_index < dst_size; dst_index++){
  147. short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK);
  148. int sample_index= index >> PHASE_SHIFT;
  149. int val=0;
  150. if(sample_index < 0){
  151. for(i=0; i<c->filter_length; i++)
  152. val += src[ABS(sample_index + i) % src_size] * filter[i];
  153. }else if(sample_index + c->filter_length > src_size){
  154. break;
  155. }else{
  156. #if 0
  157. int64_t v=0;
  158. int sub_phase= (frac<<12) / c->src_incr;
  159. for(i=0; i<c->filter_length; i++){
  160. int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase;
  161. v += src[sample_index + i] * coeff;
  162. }
  163. val= v>>12;
  164. #else
  165. for(i=0; i<c->filter_length; i++){
  166. val += src[sample_index + i] * filter[i];
  167. }
  168. #endif
  169. }
  170. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  171. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  172. frac += dst_incr_frac;
  173. index += dst_incr;
  174. if(frac >= c->src_incr){
  175. frac -= c->src_incr;
  176. index++;
  177. }
  178. }
  179. *consumed= FFMAX(index, 0) >> PHASE_SHIFT;
  180. index= FFMIN(index, 0);
  181. if(update_ctx){
  182. if(c->compensation_distance){
  183. c->compensation_distance -= dst_index;
  184. if(!c->compensation_distance)
  185. c->dst_incr= c->ideal_dst_incr;
  186. }
  187. c->frac= frac;
  188. c->index= index;
  189. }
  190. #if 0
  191. if(update_ctx && !c->compensation_distance){
  192. #undef rand
  193. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  194. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  195. }
  196. #endif
  197. return dst_index;
  198. }