You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

238 lines
7.1KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/attributes.h"
  23. #include "sbrdsp.h"
  24. static void sbr_sum64x5_c(float *z)
  25. {
  26. int k;
  27. for (k = 0; k < 64; k++) {
  28. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  29. z[k] = f;
  30. }
  31. }
  32. static float sbr_sum_square_c(float (*x)[2], int n)
  33. {
  34. float sum = 0.0f;
  35. int i;
  36. for (i = 0; i < n; i++)
  37. sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  38. return sum;
  39. }
  40. static void sbr_neg_odd_64_c(float *x)
  41. {
  42. int i;
  43. for (i = 1; i < 64; i += 2)
  44. x[i] = -x[i];
  45. }
  46. static void sbr_qmf_pre_shuffle_c(float *z)
  47. {
  48. int k;
  49. z[64] = z[0];
  50. z[65] = z[1];
  51. for (k = 1; k < 32; k++) {
  52. z[64+2*k ] = -z[64 - k];
  53. z[64+2*k+1] = z[ k + 1];
  54. }
  55. }
  56. static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
  57. {
  58. int k;
  59. for (k = 0; k < 32; k++) {
  60. W[k][0] = -z[63-k];
  61. W[k][1] = z[k];
  62. }
  63. }
  64. static void sbr_qmf_deint_neg_c(float *v, const float *src)
  65. {
  66. int i;
  67. for (i = 0; i < 32; i++) {
  68. v[ i] = src[63 - 2*i ];
  69. v[63 - i] = -src[63 - 2*i - 1];
  70. }
  71. }
  72. static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
  73. {
  74. int i;
  75. for (i = 0; i < 64; i++) {
  76. v[ i] = src0[i] - src1[63 - i];
  77. v[127 - i] = src0[i] + src1[63 - i];
  78. }
  79. }
  80. static av_always_inline void autocorrelate(const float x[40][2],
  81. float phi[3][2][2], int lag)
  82. {
  83. int i;
  84. float real_sum = 0.0f;
  85. float imag_sum = 0.0f;
  86. if (lag) {
  87. for (i = 1; i < 38; i++) {
  88. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  89. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  90. }
  91. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  92. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  93. if (lag == 1) {
  94. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  95. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  96. }
  97. } else {
  98. for (i = 1; i < 38; i++) {
  99. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  100. }
  101. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  102. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  103. }
  104. }
  105. static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
  106. {
  107. autocorrelate(x, phi, 0);
  108. autocorrelate(x, phi, 1);
  109. autocorrelate(x, phi, 2);
  110. }
  111. static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
  112. const float alpha0[2], const float alpha1[2],
  113. float bw, int start, int end)
  114. {
  115. float alpha[4];
  116. int i;
  117. alpha[0] = alpha1[0] * bw * bw;
  118. alpha[1] = alpha1[1] * bw * bw;
  119. alpha[2] = alpha0[0] * bw;
  120. alpha[3] = alpha0[1] * bw;
  121. for (i = start; i < end; i++) {
  122. X_high[i][0] =
  123. X_low[i - 2][0] * alpha[0] -
  124. X_low[i - 2][1] * alpha[1] +
  125. X_low[i - 1][0] * alpha[2] -
  126. X_low[i - 1][1] * alpha[3] +
  127. X_low[i][0];
  128. X_high[i][1] =
  129. X_low[i - 2][1] * alpha[0] +
  130. X_low[i - 2][0] * alpha[1] +
  131. X_low[i - 1][1] * alpha[2] +
  132. X_low[i - 1][0] * alpha[3] +
  133. X_low[i][1];
  134. }
  135. }
  136. static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
  137. const float *g_filt, int m_max, int ixh)
  138. {
  139. int m;
  140. for (m = 0; m < m_max; m++) {
  141. Y[m][0] = X_high[m][ixh][0] * g_filt[m];
  142. Y[m][1] = X_high[m][ixh][1] * g_filt[m];
  143. }
  144. }
  145. static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
  146. const float *s_m,
  147. const float *q_filt,
  148. int noise,
  149. float phi_sign0,
  150. float phi_sign1,
  151. int m_max)
  152. {
  153. int m;
  154. for (m = 0; m < m_max; m++) {
  155. float y0 = Y[m][0];
  156. float y1 = Y[m][1];
  157. noise = (noise + 1) & 0x1ff;
  158. if (s_m[m]) {
  159. y0 += s_m[m] * phi_sign0;
  160. y1 += s_m[m] * phi_sign1;
  161. } else {
  162. y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
  163. y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
  164. }
  165. Y[m][0] = y0;
  166. Y[m][1] = y1;
  167. phi_sign1 = -phi_sign1;
  168. }
  169. }
  170. static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
  171. const float *q_filt, int noise,
  172. int kx, int m_max)
  173. {
  174. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
  175. }
  176. static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
  177. const float *q_filt, int noise,
  178. int kx, int m_max)
  179. {
  180. float phi_sign = 1 - 2 * (kx & 1);
  181. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
  182. }
  183. static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
  184. const float *q_filt, int noise,
  185. int kx, int m_max)
  186. {
  187. sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
  188. }
  189. static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
  190. const float *q_filt, int noise,
  191. int kx, int m_max)
  192. {
  193. float phi_sign = 1 - 2 * (kx & 1);
  194. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
  195. }
  196. av_cold void ff_sbrdsp_init(SBRDSPContext *s)
  197. {
  198. s->sum64x5 = sbr_sum64x5_c;
  199. s->sum_square = sbr_sum_square_c;
  200. s->neg_odd_64 = sbr_neg_odd_64_c;
  201. s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
  202. s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
  203. s->qmf_deint_neg = sbr_qmf_deint_neg_c;
  204. s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
  205. s->autocorrelate = sbr_autocorrelate_c;
  206. s->hf_gen = sbr_hf_gen_c;
  207. s->hf_g_filt = sbr_hf_g_filt_c;
  208. s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
  209. s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
  210. s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
  211. s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
  212. }