You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4635 lines
157KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ENDOFSEQ = 0x0000010A,
  50. VC1_CODE_SLICE,
  51. VC1_CODE_FIELD,
  52. VC1_CODE_FRAME,
  53. VC1_CODE_ENTRYPOINT,
  54. VC1_CODE_SEQHDR,
  55. };
  56. //@}
  57. /** Available Profiles */
  58. //@{
  59. enum Profile {
  60. PROFILE_SIMPLE,
  61. PROFILE_MAIN,
  62. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  63. PROFILE_ADVANCED
  64. };
  65. //@}
  66. /** Sequence quantizer mode */
  67. //@{
  68. enum QuantMode {
  69. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  70. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  71. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  72. QUANT_UNIFORM ///< Uniform quant used for all frames
  73. };
  74. //@}
  75. /** Where quant can be changed */
  76. //@{
  77. enum DQProfile {
  78. DQPROFILE_FOUR_EDGES,
  79. DQPROFILE_DOUBLE_EDGES,
  80. DQPROFILE_SINGLE_EDGE,
  81. DQPROFILE_ALL_MBS
  82. };
  83. //@}
  84. /** @name Where quant can be changed
  85. */
  86. //@{
  87. enum DQSingleEdge {
  88. DQSINGLE_BEDGE_LEFT,
  89. DQSINGLE_BEDGE_TOP,
  90. DQSINGLE_BEDGE_RIGHT,
  91. DQSINGLE_BEDGE_BOTTOM
  92. };
  93. //@}
  94. /** Which pair of edges is quantized with ALTPQUANT */
  95. //@{
  96. enum DQDoubleEdge {
  97. DQDOUBLE_BEDGE_TOPLEFT,
  98. DQDOUBLE_BEDGE_TOPRIGHT,
  99. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMLEFT
  101. };
  102. //@}
  103. /** MV modes for P frames */
  104. //@{
  105. enum MVModes {
  106. MV_PMODE_1MV_HPEL_BILIN,
  107. MV_PMODE_1MV,
  108. MV_PMODE_1MV_HPEL,
  109. MV_PMODE_MIXED_MV,
  110. MV_PMODE_INTENSITY_COMP
  111. };
  112. //@}
  113. /** @name MV types for B frames */
  114. //@{
  115. enum BMVTypes {
  116. BMV_TYPE_BACKWARD,
  117. BMV_TYPE_FORWARD,
  118. BMV_TYPE_INTERPOLATED
  119. };
  120. //@}
  121. /** @name Block types for P/B frames */
  122. //@{
  123. enum TransformTypes {
  124. TT_8X8,
  125. TT_8X4_BOTTOM,
  126. TT_8X4_TOP,
  127. TT_8X4, //Both halves
  128. TT_4X8_RIGHT,
  129. TT_4X8_LEFT,
  130. TT_4X8, //Both halves
  131. TT_4X4
  132. };
  133. //@}
  134. /** Table for conversion between TTBLK and TTMB */
  135. static const int ttblk_to_tt[3][8] = {
  136. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  137. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  138. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  139. };
  140. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  141. /** MV P mode - the 5th element is only used for mode 1 */
  142. static const uint8_t mv_pmode_table[2][5] = {
  143. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  144. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  145. };
  146. static const uint8_t mv_pmode_table2[2][4] = {
  147. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  148. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  149. };
  150. /** One more frame type */
  151. #define BI_TYPE 7
  152. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  153. fps_dr[2] = { 1000, 1001 };
  154. static const uint8_t pquant_table[3][32] = {
  155. { /* Implicit quantizer */
  156. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  157. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  158. },
  159. { /* Explicit quantizer, pquantizer uniform */
  160. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  161. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  162. },
  163. { /* Explicit quantizer, pquantizer non-uniform */
  164. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  165. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  166. }
  167. };
  168. /** @name VC-1 VLC tables and defines
  169. * @todo TODO move this into the context
  170. */
  171. //@{
  172. #define VC1_BFRACTION_VLC_BITS 7
  173. static VLC vc1_bfraction_vlc;
  174. #define VC1_IMODE_VLC_BITS 4
  175. static VLC vc1_imode_vlc;
  176. #define VC1_NORM2_VLC_BITS 3
  177. static VLC vc1_norm2_vlc;
  178. #define VC1_NORM6_VLC_BITS 9
  179. static VLC vc1_norm6_vlc;
  180. /* Could be optimized, one table only needs 8 bits */
  181. #define VC1_TTMB_VLC_BITS 9 //12
  182. static VLC vc1_ttmb_vlc[3];
  183. #define VC1_MV_DIFF_VLC_BITS 9 //15
  184. static VLC vc1_mv_diff_vlc[4];
  185. #define VC1_CBPCY_P_VLC_BITS 9 //14
  186. static VLC vc1_cbpcy_p_vlc[4];
  187. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  188. static VLC vc1_4mv_block_pattern_vlc[4];
  189. #define VC1_TTBLK_VLC_BITS 5
  190. static VLC vc1_ttblk_vlc[3];
  191. #define VC1_SUBBLKPAT_VLC_BITS 6
  192. static VLC vc1_subblkpat_vlc[3];
  193. static VLC vc1_ac_coeff_table[8];
  194. //@}
  195. enum CodingSet {
  196. CS_HIGH_MOT_INTRA = 0,
  197. CS_HIGH_MOT_INTER,
  198. CS_LOW_MOT_INTRA,
  199. CS_LOW_MOT_INTER,
  200. CS_MID_RATE_INTRA,
  201. CS_MID_RATE_INTER,
  202. CS_HIGH_RATE_INTRA,
  203. CS_HIGH_RATE_INTER
  204. };
  205. /** @name Overlap conditions for Advanced Profile */
  206. //@{
  207. enum COTypes {
  208. CONDOVER_NONE = 0,
  209. CONDOVER_ALL,
  210. CONDOVER_SELECT
  211. };
  212. //@}
  213. /** The VC1 Context
  214. * @fixme Change size wherever another size is more efficient
  215. * Many members are only used for Advanced Profile
  216. */
  217. typedef struct VC1Context{
  218. MpegEncContext s;
  219. int bits;
  220. /** Simple/Main Profile sequence header */
  221. //@{
  222. int res_sm; ///< reserved, 2b
  223. int res_x8; ///< reserved
  224. int multires; ///< frame-level RESPIC syntax element present
  225. int res_fasttx; ///< reserved, always 1
  226. int res_transtab; ///< reserved, always 0
  227. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  228. ///< at frame level
  229. int res_rtm_flag; ///< reserved, set to 1
  230. int reserved; ///< reserved
  231. //@}
  232. /** Advanced Profile */
  233. //@{
  234. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  235. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  236. int postprocflag; ///< Per-frame processing suggestion flag present
  237. int broadcast; ///< TFF/RFF present
  238. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  239. int tfcntrflag; ///< TFCNTR present
  240. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  241. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  242. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  243. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  244. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  245. int hrd_param_flag; ///< Presence of Hypothetical Reference
  246. ///< Decoder parameters
  247. int psf; ///< Progressive Segmented Frame
  248. //@}
  249. /** Sequence header data for all Profiles
  250. * TODO: choose between ints, uint8_ts and monobit flags
  251. */
  252. //@{
  253. int profile; ///< 2bits, Profile
  254. int frmrtq_postproc; ///< 3bits,
  255. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  256. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  257. int extended_mv; ///< Ext MV in P/B (not in Simple)
  258. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  259. int vstransform; ///< variable-size [48]x[48] transform type + info
  260. int overlap; ///< overlapped transforms in use
  261. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  262. int finterpflag; ///< INTERPFRM present
  263. //@}
  264. /** Frame decoding info for all profiles */
  265. //@{
  266. uint8_t mv_mode; ///< MV coding monde
  267. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  268. int k_x; ///< Number of bits for MVs (depends on MV range)
  269. int k_y; ///< Number of bits for MVs (depends on MV range)
  270. int range_x, range_y; ///< MV range
  271. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  272. /** pquant parameters */
  273. //@{
  274. uint8_t dquantfrm;
  275. uint8_t dqprofile;
  276. uint8_t dqsbedge;
  277. uint8_t dqbilevel;
  278. //@}
  279. /** AC coding set indexes
  280. * @see 8.1.1.10, p(1)10
  281. */
  282. //@{
  283. int c_ac_table_index; ///< Chroma index from ACFRM element
  284. int y_ac_table_index; ///< Luma index from AC2FRM element
  285. //@}
  286. int ttfrm; ///< Transform type info present at frame level
  287. uint8_t ttmbf; ///< Transform type flag
  288. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  289. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  290. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  291. int pqindex; ///< raw pqindex used in coding set selection
  292. int a_avail, c_avail;
  293. uint8_t *mb_type_base, *mb_type[3];
  294. /** Luma compensation parameters */
  295. //@{
  296. uint8_t lumscale;
  297. uint8_t lumshift;
  298. //@}
  299. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  300. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  301. uint8_t respic; ///< Frame-level flag for resized images
  302. int buffer_fullness; ///< HRD info
  303. /** Ranges:
  304. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  305. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  306. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  307. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  308. */
  309. uint8_t mvrange;
  310. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  311. VLC *cbpcy_vlc; ///< CBPCY VLC table
  312. int tt_index; ///< Index for Transform Type tables
  313. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  314. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  315. int mv_type_is_raw; ///< mv type mb plane is not coded
  316. int dmb_is_raw; ///< direct mb plane is raw
  317. int skip_is_raw; ///< skip mb plane is not coded
  318. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  319. int use_ic; ///< use intensity compensation in B-frames
  320. int rnd; ///< rounding control
  321. /** Frame decoding info for S/M profiles only */
  322. //@{
  323. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  324. uint8_t interpfrm;
  325. //@}
  326. /** Frame decoding info for Advanced profile */
  327. //@{
  328. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  329. uint8_t numpanscanwin;
  330. uint8_t tfcntr;
  331. uint8_t rptfrm, tff, rff;
  332. uint16_t topleftx;
  333. uint16_t toplefty;
  334. uint16_t bottomrightx;
  335. uint16_t bottomrighty;
  336. uint8_t uvsamp;
  337. uint8_t postproc;
  338. int hrd_num_leaky_buckets;
  339. uint8_t bit_rate_exponent;
  340. uint8_t buffer_size_exponent;
  341. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  342. int acpred_is_raw;
  343. uint8_t* over_flags_plane; ///< Overflags bitplane
  344. int overflg_is_raw;
  345. uint8_t condover;
  346. uint16_t *hrd_rate, *hrd_buffer;
  347. uint8_t *hrd_fullness;
  348. uint8_t range_mapy_flag;
  349. uint8_t range_mapuv_flag;
  350. uint8_t range_mapy;
  351. uint8_t range_mapuv;
  352. //@}
  353. int p_frame_skipped;
  354. int bi_type;
  355. } VC1Context;
  356. /**
  357. * Get unary code of limited length
  358. * @fixme FIXME Slow and ugly
  359. * @param gb GetBitContext
  360. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  361. * @param[in] len Maximum length
  362. * @return Unary length/index
  363. */
  364. static int get_prefix(GetBitContext *gb, int stop, int len)
  365. {
  366. #if 1
  367. int i;
  368. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  369. return i;
  370. /* int i = 0, tmp = !stop;
  371. while (i != len && tmp != stop)
  372. {
  373. tmp = get_bits(gb, 1);
  374. i++;
  375. }
  376. if (i == len && tmp != stop) return len+1;
  377. return i;*/
  378. #else
  379. unsigned int buf;
  380. int log;
  381. OPEN_READER(re, gb);
  382. UPDATE_CACHE(re, gb);
  383. buf=GET_CACHE(re, gb); //Still not sure
  384. if (stop) buf = ~buf;
  385. log= av_log2(-buf); //FIXME: -?
  386. if (log < limit){
  387. LAST_SKIP_BITS(re, gb, log+1);
  388. CLOSE_READER(re, gb);
  389. return log;
  390. }
  391. LAST_SKIP_BITS(re, gb, limit);
  392. CLOSE_READER(re, gb);
  393. return limit;
  394. #endif
  395. }
  396. static inline int decode210(GetBitContext *gb){
  397. int n;
  398. n = get_bits1(gb);
  399. if (n == 1)
  400. return 0;
  401. else
  402. return 2 - get_bits1(gb);
  403. }
  404. /**
  405. * Init VC-1 specific tables and VC1Context members
  406. * @param v The VC1Context to initialize
  407. * @return Status
  408. */
  409. static int vc1_init_common(VC1Context *v)
  410. {
  411. static int done = 0;
  412. int i = 0;
  413. v->hrd_rate = v->hrd_buffer = NULL;
  414. /* VLC tables */
  415. if(!done)
  416. {
  417. done = 1;
  418. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  419. vc1_bfraction_bits, 1, 1,
  420. vc1_bfraction_codes, 1, 1, 1);
  421. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  422. vc1_norm2_bits, 1, 1,
  423. vc1_norm2_codes, 1, 1, 1);
  424. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  425. vc1_norm6_bits, 1, 1,
  426. vc1_norm6_codes, 2, 2, 1);
  427. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  428. vc1_imode_bits, 1, 1,
  429. vc1_imode_codes, 1, 1, 1);
  430. for (i=0; i<3; i++)
  431. {
  432. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  433. vc1_ttmb_bits[i], 1, 1,
  434. vc1_ttmb_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  436. vc1_ttblk_bits[i], 1, 1,
  437. vc1_ttblk_codes[i], 1, 1, 1);
  438. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  439. vc1_subblkpat_bits[i], 1, 1,
  440. vc1_subblkpat_codes[i], 1, 1, 1);
  441. }
  442. for(i=0; i<4; i++)
  443. {
  444. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  445. vc1_4mv_block_pattern_bits[i], 1, 1,
  446. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  447. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  448. vc1_cbpcy_p_bits[i], 1, 1,
  449. vc1_cbpcy_p_codes[i], 2, 2, 1);
  450. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  451. vc1_mv_diff_bits[i], 1, 1,
  452. vc1_mv_diff_codes[i], 2, 2, 1);
  453. }
  454. for(i=0; i<8; i++)
  455. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  456. &vc1_ac_tables[i][0][1], 8, 4,
  457. &vc1_ac_tables[i][0][0], 8, 4, 1);
  458. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  459. &ff_msmp4_mb_i_table[0][1], 4, 2,
  460. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  461. }
  462. /* Other defaults */
  463. v->pq = -1;
  464. v->mvrange = 0; /* 7.1.1.18, p80 */
  465. return 0;
  466. }
  467. /***********************************************************************/
  468. /**
  469. * @defgroup bitplane VC9 Bitplane decoding
  470. * @see 8.7, p56
  471. * @{
  472. */
  473. /** @addtogroup bitplane
  474. * Imode types
  475. * @{
  476. */
  477. enum Imode {
  478. IMODE_RAW,
  479. IMODE_NORM2,
  480. IMODE_DIFF2,
  481. IMODE_NORM6,
  482. IMODE_DIFF6,
  483. IMODE_ROWSKIP,
  484. IMODE_COLSKIP
  485. };
  486. /** @} */ //imode defines
  487. /** Decode rows by checking if they are skipped
  488. * @param plane Buffer to store decoded bits
  489. * @param[in] width Width of this buffer
  490. * @param[in] height Height of this buffer
  491. * @param[in] stride of this buffer
  492. */
  493. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  494. int x, y;
  495. for (y=0; y<height; y++){
  496. if (!get_bits(gb, 1)) //rowskip
  497. memset(plane, 0, width);
  498. else
  499. for (x=0; x<width; x++)
  500. plane[x] = get_bits(gb, 1);
  501. plane += stride;
  502. }
  503. }
  504. /** Decode columns by checking if they are skipped
  505. * @param plane Buffer to store decoded bits
  506. * @param[in] width Width of this buffer
  507. * @param[in] height Height of this buffer
  508. * @param[in] stride of this buffer
  509. * @fixme FIXME: Optimize
  510. */
  511. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  512. int x, y;
  513. for (x=0; x<width; x++){
  514. if (!get_bits(gb, 1)) //colskip
  515. for (y=0; y<height; y++)
  516. plane[y*stride] = 0;
  517. else
  518. for (y=0; y<height; y++)
  519. plane[y*stride] = get_bits(gb, 1);
  520. plane ++;
  521. }
  522. }
  523. /** Decode a bitplane's bits
  524. * @param bp Bitplane where to store the decode bits
  525. * @param v VC-1 context for bit reading and logging
  526. * @return Status
  527. * @fixme FIXME: Optimize
  528. */
  529. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  530. {
  531. GetBitContext *gb = &v->s.gb;
  532. int imode, x, y, code, offset;
  533. uint8_t invert, *planep = data;
  534. int width, height, stride;
  535. width = v->s.mb_width;
  536. height = v->s.mb_height;
  537. stride = v->s.mb_stride;
  538. invert = get_bits(gb, 1);
  539. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  540. *raw_flag = 0;
  541. switch (imode)
  542. {
  543. case IMODE_RAW:
  544. //Data is actually read in the MB layer (same for all tests == "raw")
  545. *raw_flag = 1; //invert ignored
  546. return invert;
  547. case IMODE_DIFF2:
  548. case IMODE_NORM2:
  549. if ((height * width) & 1)
  550. {
  551. *planep++ = get_bits(gb, 1);
  552. offset = 1;
  553. }
  554. else offset = 0;
  555. // decode bitplane as one long line
  556. for (y = offset; y < height * width; y += 2) {
  557. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  558. *planep++ = code & 1;
  559. offset++;
  560. if(offset == width) {
  561. offset = 0;
  562. planep += stride - width;
  563. }
  564. *planep++ = code >> 1;
  565. offset++;
  566. if(offset == width) {
  567. offset = 0;
  568. planep += stride - width;
  569. }
  570. }
  571. break;
  572. case IMODE_DIFF6:
  573. case IMODE_NORM6:
  574. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  575. for(y = 0; y < height; y+= 3) {
  576. for(x = width & 1; x < width; x += 2) {
  577. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  578. if(code < 0){
  579. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  580. return -1;
  581. }
  582. planep[x + 0] = (code >> 0) & 1;
  583. planep[x + 1] = (code >> 1) & 1;
  584. planep[x + 0 + stride] = (code >> 2) & 1;
  585. planep[x + 1 + stride] = (code >> 3) & 1;
  586. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  587. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  588. }
  589. planep += stride * 3;
  590. }
  591. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  592. } else { // 3x2
  593. planep += (height & 1) * stride;
  594. for(y = height & 1; y < height; y += 2) {
  595. for(x = width % 3; x < width; x += 3) {
  596. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  597. if(code < 0){
  598. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  599. return -1;
  600. }
  601. planep[x + 0] = (code >> 0) & 1;
  602. planep[x + 1] = (code >> 1) & 1;
  603. planep[x + 2] = (code >> 2) & 1;
  604. planep[x + 0 + stride] = (code >> 3) & 1;
  605. planep[x + 1 + stride] = (code >> 4) & 1;
  606. planep[x + 2 + stride] = (code >> 5) & 1;
  607. }
  608. planep += stride * 2;
  609. }
  610. x = width % 3;
  611. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  612. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  613. }
  614. break;
  615. case IMODE_ROWSKIP:
  616. decode_rowskip(data, width, height, stride, &v->s.gb);
  617. break;
  618. case IMODE_COLSKIP:
  619. decode_colskip(data, width, height, stride, &v->s.gb);
  620. break;
  621. default: break;
  622. }
  623. /* Applying diff operator */
  624. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  625. {
  626. planep = data;
  627. planep[0] ^= invert;
  628. for (x=1; x<width; x++)
  629. planep[x] ^= planep[x-1];
  630. for (y=1; y<height; y++)
  631. {
  632. planep += stride;
  633. planep[0] ^= planep[-stride];
  634. for (x=1; x<width; x++)
  635. {
  636. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  637. else planep[x] ^= planep[x-1];
  638. }
  639. }
  640. }
  641. else if (invert)
  642. {
  643. planep = data;
  644. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  645. }
  646. return (imode<<1) + invert;
  647. }
  648. /** @} */ //Bitplane group
  649. /***********************************************************************/
  650. /** VOP Dquant decoding
  651. * @param v VC-1 Context
  652. */
  653. static int vop_dquant_decoding(VC1Context *v)
  654. {
  655. GetBitContext *gb = &v->s.gb;
  656. int pqdiff;
  657. //variable size
  658. if (v->dquant == 2)
  659. {
  660. pqdiff = get_bits(gb, 3);
  661. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  662. else v->altpq = v->pq + pqdiff + 1;
  663. }
  664. else
  665. {
  666. v->dquantfrm = get_bits(gb, 1);
  667. if ( v->dquantfrm )
  668. {
  669. v->dqprofile = get_bits(gb, 2);
  670. switch (v->dqprofile)
  671. {
  672. case DQPROFILE_SINGLE_EDGE:
  673. case DQPROFILE_DOUBLE_EDGES:
  674. v->dqsbedge = get_bits(gb, 2);
  675. break;
  676. case DQPROFILE_ALL_MBS:
  677. v->dqbilevel = get_bits(gb, 1);
  678. default: break; //Forbidden ?
  679. }
  680. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  681. {
  682. pqdiff = get_bits(gb, 3);
  683. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  684. else v->altpq = v->pq + pqdiff + 1;
  685. }
  686. }
  687. }
  688. return 0;
  689. }
  690. /** Put block onto picture
  691. */
  692. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  693. {
  694. uint8_t *Y;
  695. int ys, us, vs;
  696. DSPContext *dsp = &v->s.dsp;
  697. if(v->rangeredfrm) {
  698. int i, j, k;
  699. for(k = 0; k < 6; k++)
  700. for(j = 0; j < 8; j++)
  701. for(i = 0; i < 8; i++)
  702. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  703. }
  704. ys = v->s.current_picture.linesize[0];
  705. us = v->s.current_picture.linesize[1];
  706. vs = v->s.current_picture.linesize[2];
  707. Y = v->s.dest[0];
  708. dsp->put_pixels_clamped(block[0], Y, ys);
  709. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  710. Y += ys * 8;
  711. dsp->put_pixels_clamped(block[2], Y, ys);
  712. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  713. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  714. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  715. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  716. }
  717. }
  718. /** Do motion compensation over 1 macroblock
  719. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  720. */
  721. static void vc1_mc_1mv(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. DSPContext *dsp = &v->s.dsp;
  725. uint8_t *srcY, *srcU, *srcV;
  726. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  727. if(!v->s.last_picture.data[0])return;
  728. mx = s->mv[dir][0][0];
  729. my = s->mv[dir][0][1];
  730. // store motion vectors for further use in B frames
  731. if(s->pict_type == P_TYPE) {
  732. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  733. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  734. }
  735. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  736. uvmy = (my + ((my & 3) == 3)) >> 1;
  737. if(v->fastuvmc) {
  738. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  739. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  740. }
  741. if(!dir) {
  742. srcY = s->last_picture.data[0];
  743. srcU = s->last_picture.data[1];
  744. srcV = s->last_picture.data[2];
  745. } else {
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. }
  750. src_x = s->mb_x * 16 + (mx >> 2);
  751. src_y = s->mb_y * 16 + (my >> 2);
  752. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  753. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  754. if(v->profile != PROFILE_ADVANCED){
  755. src_x = av_clip( src_x, -16, s->mb_width * 16);
  756. src_y = av_clip( src_y, -16, s->mb_height * 16);
  757. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  758. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  759. }else{
  760. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  761. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  762. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  763. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  764. }
  765. srcY += src_y * s->linesize + src_x;
  766. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  767. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  768. /* for grayscale we should not try to read from unknown area */
  769. if(s->flags & CODEC_FLAG_GRAY) {
  770. srcU = s->edge_emu_buffer + 18 * s->linesize;
  771. srcV = s->edge_emu_buffer + 18 * s->linesize;
  772. }
  773. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  774. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  775. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  776. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  777. srcY -= s->mspel * (1 + s->linesize);
  778. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  779. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  780. srcY = s->edge_emu_buffer;
  781. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  782. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  783. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  784. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  785. srcU = uvbuf;
  786. srcV = uvbuf + 16;
  787. /* if we deal with range reduction we need to scale source blocks */
  788. if(v->rangeredfrm) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = ((src[i] - 128) >> 1) + 128;
  800. src2[i] = ((src2[i] - 128) >> 1) + 128;
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. /* if we deal with intensity compensation we need to scale source blocks */
  807. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  808. int i, j;
  809. uint8_t *src, *src2;
  810. src = srcY;
  811. for(j = 0; j < 17 + s->mspel*2; j++) {
  812. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  813. src += s->linesize;
  814. }
  815. src = srcU; src2 = srcV;
  816. for(j = 0; j < 9; j++) {
  817. for(i = 0; i < 9; i++) {
  818. src[i] = v->lutuv[src[i]];
  819. src2[i] = v->lutuv[src2[i]];
  820. }
  821. src += s->uvlinesize;
  822. src2 += s->uvlinesize;
  823. }
  824. }
  825. srcY += s->mspel * (1 + s->linesize);
  826. }
  827. if(s->mspel) {
  828. dxy = ((my & 3) << 2) | (mx & 3);
  829. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  830. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  831. srcY += s->linesize * 8;
  832. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  833. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  834. } else { // hpel mc - always used for luma
  835. dxy = (my & 2) | ((mx & 2) >> 1);
  836. if(!v->rnd)
  837. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  838. else
  839. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  840. }
  841. if(s->flags & CODEC_FLAG_GRAY) return;
  842. /* Chroma MC always uses qpel bilinear */
  843. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  844. uvmx = (uvmx&3)<<1;
  845. uvmy = (uvmy&3)<<1;
  846. if(!v->rnd){
  847. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  848. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  849. }else{
  850. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  851. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  852. }
  853. }
  854. /** Do motion compensation for 4-MV macroblock - luminance block
  855. */
  856. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  857. {
  858. MpegEncContext *s = &v->s;
  859. DSPContext *dsp = &v->s.dsp;
  860. uint8_t *srcY;
  861. int dxy, mx, my, src_x, src_y;
  862. int off;
  863. if(!v->s.last_picture.data[0])return;
  864. mx = s->mv[0][n][0];
  865. my = s->mv[0][n][1];
  866. srcY = s->last_picture.data[0];
  867. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  868. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  869. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  870. if(v->profile != PROFILE_ADVANCED){
  871. src_x = av_clip( src_x, -16, s->mb_width * 16);
  872. src_y = av_clip( src_y, -16, s->mb_height * 16);
  873. }else{
  874. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  875. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  876. }
  877. srcY += src_y * s->linesize + src_x;
  878. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  879. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  880. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  881. srcY -= s->mspel * (1 + s->linesize);
  882. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  883. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  884. srcY = s->edge_emu_buffer;
  885. /* if we deal with range reduction we need to scale source blocks */
  886. if(v->rangeredfrm) {
  887. int i, j;
  888. uint8_t *src;
  889. src = srcY;
  890. for(j = 0; j < 9 + s->mspel*2; j++) {
  891. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  892. src += s->linesize;
  893. }
  894. }
  895. /* if we deal with intensity compensation we need to scale source blocks */
  896. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  897. int i, j;
  898. uint8_t *src;
  899. src = srcY;
  900. for(j = 0; j < 9 + s->mspel*2; j++) {
  901. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  902. src += s->linesize;
  903. }
  904. }
  905. srcY += s->mspel * (1 + s->linesize);
  906. }
  907. if(s->mspel) {
  908. dxy = ((my & 3) << 2) | (mx & 3);
  909. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  910. } else { // hpel mc - always used for luma
  911. dxy = (my & 2) | ((mx & 2) >> 1);
  912. if(!v->rnd)
  913. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  914. else
  915. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  916. }
  917. }
  918. static inline int median4(int a, int b, int c, int d)
  919. {
  920. if(a < b) {
  921. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  922. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  923. } else {
  924. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  925. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  926. }
  927. }
  928. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  929. */
  930. static void vc1_mc_4mv_chroma(VC1Context *v)
  931. {
  932. MpegEncContext *s = &v->s;
  933. DSPContext *dsp = &v->s.dsp;
  934. uint8_t *srcU, *srcV;
  935. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  936. int i, idx, tx = 0, ty = 0;
  937. int mvx[4], mvy[4], intra[4];
  938. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  939. if(!v->s.last_picture.data[0])return;
  940. if(s->flags & CODEC_FLAG_GRAY) return;
  941. for(i = 0; i < 4; i++) {
  942. mvx[i] = s->mv[0][i][0];
  943. mvy[i] = s->mv[0][i][1];
  944. intra[i] = v->mb_type[0][s->block_index[i]];
  945. }
  946. /* calculate chroma MV vector from four luma MVs */
  947. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  948. if(!idx) { // all blocks are inter
  949. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  950. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  951. } else if(count[idx] == 1) { // 3 inter blocks
  952. switch(idx) {
  953. case 0x1:
  954. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  955. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  956. break;
  957. case 0x2:
  958. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  959. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  960. break;
  961. case 0x4:
  962. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  963. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  964. break;
  965. case 0x8:
  966. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  967. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  968. break;
  969. }
  970. } else if(count[idx] == 2) {
  971. int t1 = 0, t2 = 0;
  972. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  973. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  974. tx = (mvx[t1] + mvx[t2]) / 2;
  975. ty = (mvy[t1] + mvy[t2]) / 2;
  976. } else {
  977. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  978. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  979. return; //no need to do MC for inter blocks
  980. }
  981. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  982. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  983. uvmx = (tx + ((tx&3) == 3)) >> 1;
  984. uvmy = (ty + ((ty&3) == 3)) >> 1;
  985. if(v->fastuvmc) {
  986. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  987. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  988. }
  989. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  990. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  991. if(v->profile != PROFILE_ADVANCED){
  992. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  993. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  994. }else{
  995. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  996. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  997. }
  998. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  999. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1000. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1001. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  1002. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1003. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1004. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1005. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1006. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1007. srcU = s->edge_emu_buffer;
  1008. srcV = s->edge_emu_buffer + 16;
  1009. /* if we deal with range reduction we need to scale source blocks */
  1010. if(v->rangeredfrm) {
  1011. int i, j;
  1012. uint8_t *src, *src2;
  1013. src = srcU; src2 = srcV;
  1014. for(j = 0; j < 9; j++) {
  1015. for(i = 0; i < 9; i++) {
  1016. src[i] = ((src[i] - 128) >> 1) + 128;
  1017. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1018. }
  1019. src += s->uvlinesize;
  1020. src2 += s->uvlinesize;
  1021. }
  1022. }
  1023. /* if we deal with intensity compensation we need to scale source blocks */
  1024. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1025. int i, j;
  1026. uint8_t *src, *src2;
  1027. src = srcU; src2 = srcV;
  1028. for(j = 0; j < 9; j++) {
  1029. for(i = 0; i < 9; i++) {
  1030. src[i] = v->lutuv[src[i]];
  1031. src2[i] = v->lutuv[src2[i]];
  1032. }
  1033. src += s->uvlinesize;
  1034. src2 += s->uvlinesize;
  1035. }
  1036. }
  1037. }
  1038. /* Chroma MC always uses qpel bilinear */
  1039. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1040. uvmx = (uvmx&3)<<1;
  1041. uvmy = (uvmy&3)<<1;
  1042. if(!v->rnd){
  1043. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1044. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1045. }else{
  1046. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1047. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1048. }
  1049. }
  1050. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1051. /**
  1052. * Decode Simple/Main Profiles sequence header
  1053. * @see Figure 7-8, p16-17
  1054. * @param avctx Codec context
  1055. * @param gb GetBit context initialized from Codec context extra_data
  1056. * @return Status
  1057. */
  1058. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1059. {
  1060. VC1Context *v = avctx->priv_data;
  1061. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1062. v->profile = get_bits(gb, 2);
  1063. if (v->profile == PROFILE_COMPLEX)
  1064. {
  1065. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  1066. }
  1067. if (v->profile == PROFILE_ADVANCED)
  1068. {
  1069. return decode_sequence_header_adv(v, gb);
  1070. }
  1071. else
  1072. {
  1073. v->res_sm = get_bits(gb, 2); //reserved
  1074. if (v->res_sm)
  1075. {
  1076. av_log(avctx, AV_LOG_ERROR,
  1077. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1078. return -1;
  1079. }
  1080. }
  1081. // (fps-2)/4 (->30)
  1082. v->frmrtq_postproc = get_bits(gb, 3); //common
  1083. // (bitrate-32kbps)/64kbps
  1084. v->bitrtq_postproc = get_bits(gb, 5); //common
  1085. v->s.loop_filter = get_bits(gb, 1); //common
  1086. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1087. {
  1088. av_log(avctx, AV_LOG_ERROR,
  1089. "LOOPFILTER shell not be enabled in simple profile\n");
  1090. }
  1091. v->res_x8 = get_bits(gb, 1); //reserved
  1092. if (v->res_x8)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_X8 is forbidden\n");
  1096. //return -1;
  1097. }
  1098. v->multires = get_bits(gb, 1);
  1099. v->res_fasttx = get_bits(gb, 1);
  1100. if (!v->res_fasttx)
  1101. {
  1102. av_log(avctx, AV_LOG_ERROR,
  1103. "0 for reserved RES_FASTTX is forbidden\n");
  1104. //return -1;
  1105. }
  1106. v->fastuvmc = get_bits(gb, 1); //common
  1107. if (!v->profile && !v->fastuvmc)
  1108. {
  1109. av_log(avctx, AV_LOG_ERROR,
  1110. "FASTUVMC unavailable in Simple Profile\n");
  1111. return -1;
  1112. }
  1113. v->extended_mv = get_bits(gb, 1); //common
  1114. if (!v->profile && v->extended_mv)
  1115. {
  1116. av_log(avctx, AV_LOG_ERROR,
  1117. "Extended MVs unavailable in Simple Profile\n");
  1118. return -1;
  1119. }
  1120. v->dquant = get_bits(gb, 2); //common
  1121. v->vstransform = get_bits(gb, 1); //common
  1122. v->res_transtab = get_bits(gb, 1);
  1123. if (v->res_transtab)
  1124. {
  1125. av_log(avctx, AV_LOG_ERROR,
  1126. "1 for reserved RES_TRANSTAB is forbidden\n");
  1127. return -1;
  1128. }
  1129. v->overlap = get_bits(gb, 1); //common
  1130. v->s.resync_marker = get_bits(gb, 1);
  1131. v->rangered = get_bits(gb, 1);
  1132. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1133. {
  1134. av_log(avctx, AV_LOG_INFO,
  1135. "RANGERED should be set to 0 in simple profile\n");
  1136. }
  1137. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1138. v->quantizer_mode = get_bits(gb, 2); //common
  1139. v->finterpflag = get_bits(gb, 1); //common
  1140. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1141. if (!v->res_rtm_flag)
  1142. {
  1143. // av_log(avctx, AV_LOG_ERROR,
  1144. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1145. av_log(avctx, AV_LOG_ERROR,
  1146. "Old WMV3 version detected, only I-frames will be decoded\n");
  1147. //return -1;
  1148. }
  1149. //TODO: figure out what they mean (always 0x402F)
  1150. if(!v->res_fasttx) skip_bits(gb, 16);
  1151. av_log(avctx, AV_LOG_DEBUG,
  1152. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1153. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1154. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1155. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1156. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1157. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1158. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1159. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1160. );
  1161. return 0;
  1162. }
  1163. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1164. {
  1165. v->res_rtm_flag = 1;
  1166. v->level = get_bits(gb, 3);
  1167. if(v->level >= 5)
  1168. {
  1169. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1170. }
  1171. v->chromaformat = get_bits(gb, 2);
  1172. if (v->chromaformat != 1)
  1173. {
  1174. av_log(v->s.avctx, AV_LOG_ERROR,
  1175. "Only 4:2:0 chroma format supported\n");
  1176. return -1;
  1177. }
  1178. // (fps-2)/4 (->30)
  1179. v->frmrtq_postproc = get_bits(gb, 3); //common
  1180. // (bitrate-32kbps)/64kbps
  1181. v->bitrtq_postproc = get_bits(gb, 5); //common
  1182. v->postprocflag = get_bits(gb, 1); //common
  1183. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1184. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1185. v->s.avctx->width = v->s.avctx->coded_width;
  1186. v->s.avctx->height = v->s.avctx->coded_height;
  1187. v->broadcast = get_bits1(gb);
  1188. v->interlace = get_bits1(gb);
  1189. v->tfcntrflag = get_bits1(gb);
  1190. v->finterpflag = get_bits1(gb);
  1191. get_bits1(gb); // reserved
  1192. v->s.h_edge_pos = v->s.avctx->coded_width;
  1193. v->s.v_edge_pos = v->s.avctx->coded_height;
  1194. av_log(v->s.avctx, AV_LOG_DEBUG,
  1195. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1196. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1197. "TFCTRflag=%i, FINTERPflag=%i\n",
  1198. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1199. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1200. v->tfcntrflag, v->finterpflag
  1201. );
  1202. v->psf = get_bits1(gb);
  1203. if(v->psf) { //PsF, 6.1.13
  1204. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1205. return -1;
  1206. }
  1207. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1208. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1209. int w, h, ar = 0;
  1210. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1211. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1212. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1213. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1214. if(get_bits1(gb))
  1215. ar = get_bits(gb, 4);
  1216. if(ar && ar < 14){
  1217. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1218. }else if(ar == 15){
  1219. w = get_bits(gb, 8);
  1220. h = get_bits(gb, 8);
  1221. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1222. }
  1223. if(get_bits1(gb)){ //framerate stuff
  1224. if(get_bits1(gb)) {
  1225. v->s.avctx->time_base.num = 32;
  1226. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1227. } else {
  1228. int nr, dr;
  1229. nr = get_bits(gb, 8);
  1230. dr = get_bits(gb, 4);
  1231. if(nr && nr < 8 && dr && dr < 3){
  1232. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1233. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1234. }
  1235. }
  1236. }
  1237. if(get_bits1(gb)){
  1238. v->color_prim = get_bits(gb, 8);
  1239. v->transfer_char = get_bits(gb, 8);
  1240. v->matrix_coef = get_bits(gb, 8);
  1241. }
  1242. }
  1243. v->hrd_param_flag = get_bits1(gb);
  1244. if(v->hrd_param_flag) {
  1245. int i;
  1246. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1247. get_bits(gb, 4); //bitrate exponent
  1248. get_bits(gb, 4); //buffer size exponent
  1249. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1250. get_bits(gb, 16); //hrd_rate[n]
  1251. get_bits(gb, 16); //hrd_buffer[n]
  1252. }
  1253. }
  1254. return 0;
  1255. }
  1256. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1257. {
  1258. VC1Context *v = avctx->priv_data;
  1259. int i, blink, clentry, refdist;
  1260. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1261. blink = get_bits1(gb); // broken link
  1262. clentry = get_bits1(gb); // closed entry
  1263. v->panscanflag = get_bits1(gb);
  1264. refdist = get_bits1(gb); // refdist flag
  1265. v->s.loop_filter = get_bits1(gb);
  1266. v->fastuvmc = get_bits1(gb);
  1267. v->extended_mv = get_bits1(gb);
  1268. v->dquant = get_bits(gb, 2);
  1269. v->vstransform = get_bits1(gb);
  1270. v->overlap = get_bits1(gb);
  1271. v->quantizer_mode = get_bits(gb, 2);
  1272. if(v->hrd_param_flag){
  1273. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1274. get_bits(gb, 8); //hrd_full[n]
  1275. }
  1276. }
  1277. if(get_bits1(gb)){
  1278. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1279. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1280. }
  1281. if(v->extended_mv)
  1282. v->extended_dmv = get_bits1(gb);
  1283. if(get_bits1(gb)) {
  1284. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1285. skip_bits(gb, 3); // Y range, ignored for now
  1286. }
  1287. if(get_bits1(gb)) {
  1288. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1289. skip_bits(gb, 3); // UV range, ignored for now
  1290. }
  1291. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1292. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1293. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1294. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1295. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1296. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1297. return 0;
  1298. }
  1299. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1300. {
  1301. int pqindex, lowquant, status;
  1302. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1303. skip_bits(gb, 2); //framecnt unused
  1304. v->rangeredfrm = 0;
  1305. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1306. v->s.pict_type = get_bits(gb, 1);
  1307. if (v->s.avctx->max_b_frames) {
  1308. if (!v->s.pict_type) {
  1309. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1310. else v->s.pict_type = B_TYPE;
  1311. } else v->s.pict_type = P_TYPE;
  1312. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1313. v->bi_type = 0;
  1314. if(v->s.pict_type == B_TYPE) {
  1315. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1316. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1317. if(v->bfraction == 0) {
  1318. v->s.pict_type = BI_TYPE;
  1319. }
  1320. }
  1321. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1322. get_bits(gb, 7); // skip buffer fullness
  1323. /* calculate RND */
  1324. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1325. v->rnd = 1;
  1326. if(v->s.pict_type == P_TYPE)
  1327. v->rnd ^= 1;
  1328. /* Quantizer stuff */
  1329. pqindex = get_bits(gb, 5);
  1330. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1331. v->pq = pquant_table[0][pqindex];
  1332. else
  1333. v->pq = pquant_table[1][pqindex];
  1334. v->pquantizer = 1;
  1335. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1336. v->pquantizer = pqindex < 9;
  1337. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1338. v->pquantizer = 0;
  1339. v->pqindex = pqindex;
  1340. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1341. else v->halfpq = 0;
  1342. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1343. v->pquantizer = get_bits(gb, 1);
  1344. v->dquantfrm = 0;
  1345. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1346. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1347. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1348. v->range_x = 1 << (v->k_x - 1);
  1349. v->range_y = 1 << (v->k_y - 1);
  1350. if (v->profile == PROFILE_ADVANCED)
  1351. {
  1352. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1353. }
  1354. else
  1355. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1356. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1357. if(get_bits1(gb))return -1;
  1358. }
  1359. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1360. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1361. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1362. switch(v->s.pict_type) {
  1363. case P_TYPE:
  1364. if (v->pq < 5) v->tt_index = 0;
  1365. else if(v->pq < 13) v->tt_index = 1;
  1366. else v->tt_index = 2;
  1367. lowquant = (v->pq > 12) ? 0 : 1;
  1368. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1369. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1370. {
  1371. int scale, shift, i;
  1372. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1373. v->lumscale = get_bits(gb, 6);
  1374. v->lumshift = get_bits(gb, 6);
  1375. v->use_ic = 1;
  1376. /* fill lookup tables for intensity compensation */
  1377. if(!v->lumscale) {
  1378. scale = -64;
  1379. shift = (255 - v->lumshift * 2) << 6;
  1380. if(v->lumshift > 31)
  1381. shift += 128 << 6;
  1382. } else {
  1383. scale = v->lumscale + 32;
  1384. if(v->lumshift > 31)
  1385. shift = (v->lumshift - 64) << 6;
  1386. else
  1387. shift = v->lumshift << 6;
  1388. }
  1389. for(i = 0; i < 256; i++) {
  1390. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1391. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1392. }
  1393. }
  1394. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1395. v->s.quarter_sample = 0;
  1396. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1397. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1398. v->s.quarter_sample = 0;
  1399. else
  1400. v->s.quarter_sample = 1;
  1401. } else
  1402. v->s.quarter_sample = 1;
  1403. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1404. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1405. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1406. || v->mv_mode == MV_PMODE_MIXED_MV)
  1407. {
  1408. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1409. if (status < 0) return -1;
  1410. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1411. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1412. } else {
  1413. v->mv_type_is_raw = 0;
  1414. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1415. }
  1416. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1417. if (status < 0) return -1;
  1418. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1419. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1420. /* Hopefully this is correct for P frames */
  1421. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1422. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1423. if (v->dquant)
  1424. {
  1425. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1426. vop_dquant_decoding(v);
  1427. }
  1428. v->ttfrm = 0; //FIXME Is that so ?
  1429. if (v->vstransform)
  1430. {
  1431. v->ttmbf = get_bits(gb, 1);
  1432. if (v->ttmbf)
  1433. {
  1434. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1435. }
  1436. } else {
  1437. v->ttmbf = 1;
  1438. v->ttfrm = TT_8X8;
  1439. }
  1440. break;
  1441. case B_TYPE:
  1442. if (v->pq < 5) v->tt_index = 0;
  1443. else if(v->pq < 13) v->tt_index = 1;
  1444. else v->tt_index = 2;
  1445. lowquant = (v->pq > 12) ? 0 : 1;
  1446. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1447. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1448. v->s.mspel = v->s.quarter_sample;
  1449. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1450. if (status < 0) return -1;
  1451. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1452. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1453. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1454. if (status < 0) return -1;
  1455. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1456. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1457. v->s.mv_table_index = get_bits(gb, 2);
  1458. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1459. if (v->dquant)
  1460. {
  1461. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1462. vop_dquant_decoding(v);
  1463. }
  1464. v->ttfrm = 0;
  1465. if (v->vstransform)
  1466. {
  1467. v->ttmbf = get_bits(gb, 1);
  1468. if (v->ttmbf)
  1469. {
  1470. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1471. }
  1472. } else {
  1473. v->ttmbf = 1;
  1474. v->ttfrm = TT_8X8;
  1475. }
  1476. break;
  1477. }
  1478. /* AC Syntax */
  1479. v->c_ac_table_index = decode012(gb);
  1480. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1481. {
  1482. v->y_ac_table_index = decode012(gb);
  1483. }
  1484. /* DC Syntax */
  1485. v->s.dc_table_index = get_bits(gb, 1);
  1486. if(v->s.pict_type == BI_TYPE) {
  1487. v->s.pict_type = B_TYPE;
  1488. v->bi_type = 1;
  1489. }
  1490. return 0;
  1491. }
  1492. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1493. {
  1494. int pqindex, lowquant;
  1495. int status;
  1496. v->p_frame_skipped = 0;
  1497. if(v->interlace){
  1498. v->fcm = decode012(gb);
  1499. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1500. }
  1501. switch(get_prefix(gb, 0, 4)) {
  1502. case 0:
  1503. v->s.pict_type = P_TYPE;
  1504. break;
  1505. case 1:
  1506. v->s.pict_type = B_TYPE;
  1507. break;
  1508. case 2:
  1509. v->s.pict_type = I_TYPE;
  1510. break;
  1511. case 3:
  1512. v->s.pict_type = BI_TYPE;
  1513. break;
  1514. case 4:
  1515. v->s.pict_type = P_TYPE; // skipped pic
  1516. v->p_frame_skipped = 1;
  1517. return 0;
  1518. }
  1519. if(v->tfcntrflag)
  1520. get_bits(gb, 8);
  1521. if(v->broadcast) {
  1522. if(!v->interlace || v->psf) {
  1523. v->rptfrm = get_bits(gb, 2);
  1524. } else {
  1525. v->tff = get_bits1(gb);
  1526. v->rptfrm = get_bits1(gb);
  1527. }
  1528. }
  1529. if(v->panscanflag) {
  1530. //...
  1531. }
  1532. v->rnd = get_bits1(gb);
  1533. if(v->interlace)
  1534. v->uvsamp = get_bits1(gb);
  1535. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1536. if(v->s.pict_type == B_TYPE) {
  1537. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1538. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1539. if(v->bfraction == 0) {
  1540. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1541. }
  1542. }
  1543. pqindex = get_bits(gb, 5);
  1544. v->pqindex = pqindex;
  1545. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1546. v->pq = pquant_table[0][pqindex];
  1547. else
  1548. v->pq = pquant_table[1][pqindex];
  1549. v->pquantizer = 1;
  1550. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1551. v->pquantizer = pqindex < 9;
  1552. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1553. v->pquantizer = 0;
  1554. v->pqindex = pqindex;
  1555. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1556. else v->halfpq = 0;
  1557. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1558. v->pquantizer = get_bits(gb, 1);
  1559. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1560. switch(v->s.pict_type) {
  1561. case I_TYPE:
  1562. case BI_TYPE:
  1563. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1564. if (status < 0) return -1;
  1565. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1566. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1567. v->condover = CONDOVER_NONE;
  1568. if(v->overlap && v->pq <= 8) {
  1569. v->condover = decode012(gb);
  1570. if(v->condover == CONDOVER_SELECT) {
  1571. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1572. if (status < 0) return -1;
  1573. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1574. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1575. }
  1576. }
  1577. break;
  1578. case P_TYPE:
  1579. if(v->postprocflag)
  1580. v->postproc = get_bits1(gb);
  1581. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1582. else v->mvrange = 0;
  1583. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1584. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1585. v->range_x = 1 << (v->k_x - 1);
  1586. v->range_y = 1 << (v->k_y - 1);
  1587. if (v->pq < 5) v->tt_index = 0;
  1588. else if(v->pq < 13) v->tt_index = 1;
  1589. else v->tt_index = 2;
  1590. lowquant = (v->pq > 12) ? 0 : 1;
  1591. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1592. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1593. {
  1594. int scale, shift, i;
  1595. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1596. v->lumscale = get_bits(gb, 6);
  1597. v->lumshift = get_bits(gb, 6);
  1598. /* fill lookup tables for intensity compensation */
  1599. if(!v->lumscale) {
  1600. scale = -64;
  1601. shift = (255 - v->lumshift * 2) << 6;
  1602. if(v->lumshift > 31)
  1603. shift += 128 << 6;
  1604. } else {
  1605. scale = v->lumscale + 32;
  1606. if(v->lumshift > 31)
  1607. shift = (v->lumshift - 64) << 6;
  1608. else
  1609. shift = v->lumshift << 6;
  1610. }
  1611. for(i = 0; i < 256; i++) {
  1612. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1613. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1614. }
  1615. v->use_ic = 1;
  1616. }
  1617. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1618. v->s.quarter_sample = 0;
  1619. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1620. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1621. v->s.quarter_sample = 0;
  1622. else
  1623. v->s.quarter_sample = 1;
  1624. } else
  1625. v->s.quarter_sample = 1;
  1626. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1627. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1628. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1629. || v->mv_mode == MV_PMODE_MIXED_MV)
  1630. {
  1631. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1632. if (status < 0) return -1;
  1633. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1634. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1635. } else {
  1636. v->mv_type_is_raw = 0;
  1637. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1638. }
  1639. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1640. if (status < 0) return -1;
  1641. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1642. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1643. /* Hopefully this is correct for P frames */
  1644. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1645. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1646. if (v->dquant)
  1647. {
  1648. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1649. vop_dquant_decoding(v);
  1650. }
  1651. v->ttfrm = 0; //FIXME Is that so ?
  1652. if (v->vstransform)
  1653. {
  1654. v->ttmbf = get_bits(gb, 1);
  1655. if (v->ttmbf)
  1656. {
  1657. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1658. }
  1659. } else {
  1660. v->ttmbf = 1;
  1661. v->ttfrm = TT_8X8;
  1662. }
  1663. break;
  1664. case B_TYPE:
  1665. if(v->postprocflag)
  1666. v->postproc = get_bits1(gb);
  1667. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1668. else v->mvrange = 0;
  1669. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1670. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1671. v->range_x = 1 << (v->k_x - 1);
  1672. v->range_y = 1 << (v->k_y - 1);
  1673. if (v->pq < 5) v->tt_index = 0;
  1674. else if(v->pq < 13) v->tt_index = 1;
  1675. else v->tt_index = 2;
  1676. lowquant = (v->pq > 12) ? 0 : 1;
  1677. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1678. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1679. v->s.mspel = v->s.quarter_sample;
  1680. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1681. if (status < 0) return -1;
  1682. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1683. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1684. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1685. if (status < 0) return -1;
  1686. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1687. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1688. v->s.mv_table_index = get_bits(gb, 2);
  1689. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1690. if (v->dquant)
  1691. {
  1692. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1693. vop_dquant_decoding(v);
  1694. }
  1695. v->ttfrm = 0;
  1696. if (v->vstransform)
  1697. {
  1698. v->ttmbf = get_bits(gb, 1);
  1699. if (v->ttmbf)
  1700. {
  1701. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1702. }
  1703. } else {
  1704. v->ttmbf = 1;
  1705. v->ttfrm = TT_8X8;
  1706. }
  1707. break;
  1708. }
  1709. /* AC Syntax */
  1710. v->c_ac_table_index = decode012(gb);
  1711. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1712. {
  1713. v->y_ac_table_index = decode012(gb);
  1714. }
  1715. /* DC Syntax */
  1716. v->s.dc_table_index = get_bits(gb, 1);
  1717. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1718. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1719. vop_dquant_decoding(v);
  1720. }
  1721. v->bi_type = 0;
  1722. if(v->s.pict_type == BI_TYPE) {
  1723. v->s.pict_type = B_TYPE;
  1724. v->bi_type = 1;
  1725. }
  1726. return 0;
  1727. }
  1728. /***********************************************************************/
  1729. /**
  1730. * @defgroup block VC-1 Block-level functions
  1731. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1732. * @{
  1733. */
  1734. /**
  1735. * @def GET_MQUANT
  1736. * @brief Get macroblock-level quantizer scale
  1737. */
  1738. #define GET_MQUANT() \
  1739. if (v->dquantfrm) \
  1740. { \
  1741. int edges = 0; \
  1742. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1743. { \
  1744. if (v->dqbilevel) \
  1745. { \
  1746. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1747. } \
  1748. else \
  1749. { \
  1750. mqdiff = get_bits(gb, 3); \
  1751. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1752. else mquant = get_bits(gb, 5); \
  1753. } \
  1754. } \
  1755. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1756. edges = 1 << v->dqsbedge; \
  1757. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1758. edges = (3 << v->dqsbedge) % 15; \
  1759. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1760. edges = 15; \
  1761. if((edges&1) && !s->mb_x) \
  1762. mquant = v->altpq; \
  1763. if((edges&2) && s->first_slice_line) \
  1764. mquant = v->altpq; \
  1765. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1766. mquant = v->altpq; \
  1767. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1768. mquant = v->altpq; \
  1769. }
  1770. /**
  1771. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1772. * @brief Get MV differentials
  1773. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1774. * @param _dmv_x Horizontal differential for decoded MV
  1775. * @param _dmv_y Vertical differential for decoded MV
  1776. */
  1777. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1778. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1779. VC1_MV_DIFF_VLC_BITS, 2); \
  1780. if (index > 36) \
  1781. { \
  1782. mb_has_coeffs = 1; \
  1783. index -= 37; \
  1784. } \
  1785. else mb_has_coeffs = 0; \
  1786. s->mb_intra = 0; \
  1787. if (!index) { _dmv_x = _dmv_y = 0; } \
  1788. else if (index == 35) \
  1789. { \
  1790. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1791. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1792. } \
  1793. else if (index == 36) \
  1794. { \
  1795. _dmv_x = 0; \
  1796. _dmv_y = 0; \
  1797. s->mb_intra = 1; \
  1798. } \
  1799. else \
  1800. { \
  1801. index1 = index%6; \
  1802. if (!s->quarter_sample && index1 == 5) val = 1; \
  1803. else val = 0; \
  1804. if(size_table[index1] - val > 0) \
  1805. val = get_bits(gb, size_table[index1] - val); \
  1806. else val = 0; \
  1807. sign = 0 - (val&1); \
  1808. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1809. \
  1810. index1 = index/6; \
  1811. if (!s->quarter_sample && index1 == 5) val = 1; \
  1812. else val = 0; \
  1813. if(size_table[index1] - val > 0) \
  1814. val = get_bits(gb, size_table[index1] - val); \
  1815. else val = 0; \
  1816. sign = 0 - (val&1); \
  1817. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1818. }
  1819. /** Predict and set motion vector
  1820. */
  1821. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1822. {
  1823. int xy, wrap, off = 0;
  1824. int16_t *A, *B, *C;
  1825. int px, py;
  1826. int sum;
  1827. /* scale MV difference to be quad-pel */
  1828. dmv_x <<= 1 - s->quarter_sample;
  1829. dmv_y <<= 1 - s->quarter_sample;
  1830. wrap = s->b8_stride;
  1831. xy = s->block_index[n];
  1832. if(s->mb_intra){
  1833. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1834. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1835. s->current_picture.motion_val[1][xy][0] = 0;
  1836. s->current_picture.motion_val[1][xy][1] = 0;
  1837. if(mv1) { /* duplicate motion data for 1-MV block */
  1838. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1839. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1840. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1841. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1842. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1843. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1844. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1845. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1846. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1847. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1848. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1849. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1850. }
  1851. return;
  1852. }
  1853. C = s->current_picture.motion_val[0][xy - 1];
  1854. A = s->current_picture.motion_val[0][xy - wrap];
  1855. if(mv1)
  1856. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1857. else {
  1858. //in 4-MV mode different blocks have different B predictor position
  1859. switch(n){
  1860. case 0:
  1861. off = (s->mb_x > 0) ? -1 : 1;
  1862. break;
  1863. case 1:
  1864. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1865. break;
  1866. case 2:
  1867. off = 1;
  1868. break;
  1869. case 3:
  1870. off = -1;
  1871. }
  1872. }
  1873. B = s->current_picture.motion_val[0][xy - wrap + off];
  1874. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1875. if(s->mb_width == 1) {
  1876. px = A[0];
  1877. py = A[1];
  1878. } else {
  1879. px = mid_pred(A[0], B[0], C[0]);
  1880. py = mid_pred(A[1], B[1], C[1]);
  1881. }
  1882. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1883. px = C[0];
  1884. py = C[1];
  1885. } else {
  1886. px = py = 0;
  1887. }
  1888. /* Pullback MV as specified in 8.3.5.3.4 */
  1889. {
  1890. int qx, qy, X, Y;
  1891. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1892. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1893. X = (s->mb_width << 6) - 4;
  1894. Y = (s->mb_height << 6) - 4;
  1895. if(mv1) {
  1896. if(qx + px < -60) px = -60 - qx;
  1897. if(qy + py < -60) py = -60 - qy;
  1898. } else {
  1899. if(qx + px < -28) px = -28 - qx;
  1900. if(qy + py < -28) py = -28 - qy;
  1901. }
  1902. if(qx + px > X) px = X - qx;
  1903. if(qy + py > Y) py = Y - qy;
  1904. }
  1905. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1906. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1907. if(is_intra[xy - wrap])
  1908. sum = FFABS(px) + FFABS(py);
  1909. else
  1910. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1911. if(sum > 32) {
  1912. if(get_bits1(&s->gb)) {
  1913. px = A[0];
  1914. py = A[1];
  1915. } else {
  1916. px = C[0];
  1917. py = C[1];
  1918. }
  1919. } else {
  1920. if(is_intra[xy - 1])
  1921. sum = FFABS(px) + FFABS(py);
  1922. else
  1923. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1924. if(sum > 32) {
  1925. if(get_bits1(&s->gb)) {
  1926. px = A[0];
  1927. py = A[1];
  1928. } else {
  1929. px = C[0];
  1930. py = C[1];
  1931. }
  1932. }
  1933. }
  1934. }
  1935. /* store MV using signed modulus of MV range defined in 4.11 */
  1936. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1937. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1938. if(mv1) { /* duplicate motion data for 1-MV block */
  1939. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1940. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1941. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1942. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1943. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1944. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1945. }
  1946. }
  1947. /** Motion compensation for direct or interpolated blocks in B-frames
  1948. */
  1949. static void vc1_interp_mc(VC1Context *v)
  1950. {
  1951. MpegEncContext *s = &v->s;
  1952. DSPContext *dsp = &v->s.dsp;
  1953. uint8_t *srcY, *srcU, *srcV;
  1954. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1955. if(!v->s.next_picture.data[0])return;
  1956. mx = s->mv[1][0][0];
  1957. my = s->mv[1][0][1];
  1958. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1959. uvmy = (my + ((my & 3) == 3)) >> 1;
  1960. if(v->fastuvmc) {
  1961. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1962. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1963. }
  1964. srcY = s->next_picture.data[0];
  1965. srcU = s->next_picture.data[1];
  1966. srcV = s->next_picture.data[2];
  1967. src_x = s->mb_x * 16 + (mx >> 2);
  1968. src_y = s->mb_y * 16 + (my >> 2);
  1969. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1970. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1971. if(v->profile != PROFILE_ADVANCED){
  1972. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1973. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1974. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1975. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1976. }else{
  1977. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1978. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1979. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1980. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1981. }
  1982. srcY += src_y * s->linesize + src_x;
  1983. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1984. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1985. /* for grayscale we should not try to read from unknown area */
  1986. if(s->flags & CODEC_FLAG_GRAY) {
  1987. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1988. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1989. }
  1990. if(v->rangeredfrm
  1991. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1992. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1993. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1994. srcY -= s->mspel * (1 + s->linesize);
  1995. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1996. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1997. srcY = s->edge_emu_buffer;
  1998. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1999. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  2000. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  2001. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  2002. srcU = uvbuf;
  2003. srcV = uvbuf + 16;
  2004. /* if we deal with range reduction we need to scale source blocks */
  2005. if(v->rangeredfrm) {
  2006. int i, j;
  2007. uint8_t *src, *src2;
  2008. src = srcY;
  2009. for(j = 0; j < 17 + s->mspel*2; j++) {
  2010. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  2011. src += s->linesize;
  2012. }
  2013. src = srcU; src2 = srcV;
  2014. for(j = 0; j < 9; j++) {
  2015. for(i = 0; i < 9; i++) {
  2016. src[i] = ((src[i] - 128) >> 1) + 128;
  2017. src2[i] = ((src2[i] - 128) >> 1) + 128;
  2018. }
  2019. src += s->uvlinesize;
  2020. src2 += s->uvlinesize;
  2021. }
  2022. }
  2023. srcY += s->mspel * (1 + s->linesize);
  2024. }
  2025. mx >>= 1;
  2026. my >>= 1;
  2027. dxy = ((my & 1) << 1) | (mx & 1);
  2028. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  2029. if(s->flags & CODEC_FLAG_GRAY) return;
  2030. /* Chroma MC always uses qpel blilinear */
  2031. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  2032. uvmx = (uvmx&3)<<1;
  2033. uvmy = (uvmy&3)<<1;
  2034. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  2035. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  2036. }
  2037. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  2038. {
  2039. int n = bfrac;
  2040. #if B_FRACTION_DEN==256
  2041. if(inv)
  2042. n -= 256;
  2043. if(!qs)
  2044. return 2 * ((value * n + 255) >> 9);
  2045. return (value * n + 128) >> 8;
  2046. #else
  2047. if(inv)
  2048. n -= B_FRACTION_DEN;
  2049. if(!qs)
  2050. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2051. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2052. #endif
  2053. }
  2054. /** Reconstruct motion vector for B-frame and do motion compensation
  2055. */
  2056. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2057. {
  2058. if(v->use_ic) {
  2059. v->mv_mode2 = v->mv_mode;
  2060. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2061. }
  2062. if(direct) {
  2063. vc1_mc_1mv(v, 0);
  2064. vc1_interp_mc(v);
  2065. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2066. return;
  2067. }
  2068. if(mode == BMV_TYPE_INTERPOLATED) {
  2069. vc1_mc_1mv(v, 0);
  2070. vc1_interp_mc(v);
  2071. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2072. return;
  2073. }
  2074. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2075. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2076. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2077. }
  2078. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2079. {
  2080. MpegEncContext *s = &v->s;
  2081. int xy, wrap, off = 0;
  2082. int16_t *A, *B, *C;
  2083. int px, py;
  2084. int sum;
  2085. int r_x, r_y;
  2086. const uint8_t *is_intra = v->mb_type[0];
  2087. r_x = v->range_x;
  2088. r_y = v->range_y;
  2089. /* scale MV difference to be quad-pel */
  2090. dmv_x[0] <<= 1 - s->quarter_sample;
  2091. dmv_y[0] <<= 1 - s->quarter_sample;
  2092. dmv_x[1] <<= 1 - s->quarter_sample;
  2093. dmv_y[1] <<= 1 - s->quarter_sample;
  2094. wrap = s->b8_stride;
  2095. xy = s->block_index[0];
  2096. if(s->mb_intra) {
  2097. s->current_picture.motion_val[0][xy][0] =
  2098. s->current_picture.motion_val[0][xy][1] =
  2099. s->current_picture.motion_val[1][xy][0] =
  2100. s->current_picture.motion_val[1][xy][1] = 0;
  2101. return;
  2102. }
  2103. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2104. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2105. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2106. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2107. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  2108. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2109. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2110. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  2111. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  2112. if(direct) {
  2113. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2114. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2115. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2116. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2117. return;
  2118. }
  2119. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2120. C = s->current_picture.motion_val[0][xy - 2];
  2121. A = s->current_picture.motion_val[0][xy - wrap*2];
  2122. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2123. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2124. if(!s->mb_x) C[0] = C[1] = 0;
  2125. if(!s->first_slice_line) { // predictor A is not out of bounds
  2126. if(s->mb_width == 1) {
  2127. px = A[0];
  2128. py = A[1];
  2129. } else {
  2130. px = mid_pred(A[0], B[0], C[0]);
  2131. py = mid_pred(A[1], B[1], C[1]);
  2132. }
  2133. } else if(s->mb_x) { // predictor C is not out of bounds
  2134. px = C[0];
  2135. py = C[1];
  2136. } else {
  2137. px = py = 0;
  2138. }
  2139. /* Pullback MV as specified in 8.3.5.3.4 */
  2140. {
  2141. int qx, qy, X, Y;
  2142. if(v->profile < PROFILE_ADVANCED) {
  2143. qx = (s->mb_x << 5);
  2144. qy = (s->mb_y << 5);
  2145. X = (s->mb_width << 5) - 4;
  2146. Y = (s->mb_height << 5) - 4;
  2147. if(qx + px < -28) px = -28 - qx;
  2148. if(qy + py < -28) py = -28 - qy;
  2149. if(qx + px > X) px = X - qx;
  2150. if(qy + py > Y) py = Y - qy;
  2151. } else {
  2152. qx = (s->mb_x << 6);
  2153. qy = (s->mb_y << 6);
  2154. X = (s->mb_width << 6) - 4;
  2155. Y = (s->mb_height << 6) - 4;
  2156. if(qx + px < -60) px = -60 - qx;
  2157. if(qy + py < -60) py = -60 - qy;
  2158. if(qx + px > X) px = X - qx;
  2159. if(qy + py > Y) py = Y - qy;
  2160. }
  2161. }
  2162. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2163. if(0 && !s->first_slice_line && s->mb_x) {
  2164. if(is_intra[xy - wrap])
  2165. sum = FFABS(px) + FFABS(py);
  2166. else
  2167. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2168. if(sum > 32) {
  2169. if(get_bits1(&s->gb)) {
  2170. px = A[0];
  2171. py = A[1];
  2172. } else {
  2173. px = C[0];
  2174. py = C[1];
  2175. }
  2176. } else {
  2177. if(is_intra[xy - 2])
  2178. sum = FFABS(px) + FFABS(py);
  2179. else
  2180. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2181. if(sum > 32) {
  2182. if(get_bits1(&s->gb)) {
  2183. px = A[0];
  2184. py = A[1];
  2185. } else {
  2186. px = C[0];
  2187. py = C[1];
  2188. }
  2189. }
  2190. }
  2191. }
  2192. /* store MV using signed modulus of MV range defined in 4.11 */
  2193. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2194. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2195. }
  2196. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2197. C = s->current_picture.motion_val[1][xy - 2];
  2198. A = s->current_picture.motion_val[1][xy - wrap*2];
  2199. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2200. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2201. if(!s->mb_x) C[0] = C[1] = 0;
  2202. if(!s->first_slice_line) { // predictor A is not out of bounds
  2203. if(s->mb_width == 1) {
  2204. px = A[0];
  2205. py = A[1];
  2206. } else {
  2207. px = mid_pred(A[0], B[0], C[0]);
  2208. py = mid_pred(A[1], B[1], C[1]);
  2209. }
  2210. } else if(s->mb_x) { // predictor C is not out of bounds
  2211. px = C[0];
  2212. py = C[1];
  2213. } else {
  2214. px = py = 0;
  2215. }
  2216. /* Pullback MV as specified in 8.3.5.3.4 */
  2217. {
  2218. int qx, qy, X, Y;
  2219. if(v->profile < PROFILE_ADVANCED) {
  2220. qx = (s->mb_x << 5);
  2221. qy = (s->mb_y << 5);
  2222. X = (s->mb_width << 5) - 4;
  2223. Y = (s->mb_height << 5) - 4;
  2224. if(qx + px < -28) px = -28 - qx;
  2225. if(qy + py < -28) py = -28 - qy;
  2226. if(qx + px > X) px = X - qx;
  2227. if(qy + py > Y) py = Y - qy;
  2228. } else {
  2229. qx = (s->mb_x << 6);
  2230. qy = (s->mb_y << 6);
  2231. X = (s->mb_width << 6) - 4;
  2232. Y = (s->mb_height << 6) - 4;
  2233. if(qx + px < -60) px = -60 - qx;
  2234. if(qy + py < -60) py = -60 - qy;
  2235. if(qx + px > X) px = X - qx;
  2236. if(qy + py > Y) py = Y - qy;
  2237. }
  2238. }
  2239. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2240. if(0 && !s->first_slice_line && s->mb_x) {
  2241. if(is_intra[xy - wrap])
  2242. sum = FFABS(px) + FFABS(py);
  2243. else
  2244. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2245. if(sum > 32) {
  2246. if(get_bits1(&s->gb)) {
  2247. px = A[0];
  2248. py = A[1];
  2249. } else {
  2250. px = C[0];
  2251. py = C[1];
  2252. }
  2253. } else {
  2254. if(is_intra[xy - 2])
  2255. sum = FFABS(px) + FFABS(py);
  2256. else
  2257. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2258. if(sum > 32) {
  2259. if(get_bits1(&s->gb)) {
  2260. px = A[0];
  2261. py = A[1];
  2262. } else {
  2263. px = C[0];
  2264. py = C[1];
  2265. }
  2266. }
  2267. }
  2268. }
  2269. /* store MV using signed modulus of MV range defined in 4.11 */
  2270. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2271. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2272. }
  2273. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2274. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2275. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2276. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2277. }
  2278. /** Get predicted DC value for I-frames only
  2279. * prediction dir: left=0, top=1
  2280. * @param s MpegEncContext
  2281. * @param[in] n block index in the current MB
  2282. * @param dc_val_ptr Pointer to DC predictor
  2283. * @param dir_ptr Prediction direction for use in AC prediction
  2284. */
  2285. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2286. int16_t **dc_val_ptr, int *dir_ptr)
  2287. {
  2288. int a, b, c, wrap, pred, scale;
  2289. int16_t *dc_val;
  2290. static const uint16_t dcpred[32] = {
  2291. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2292. 114, 102, 93, 85, 79, 73, 68, 64,
  2293. 60, 57, 54, 51, 49, 47, 45, 43,
  2294. 41, 39, 38, 37, 35, 34, 33
  2295. };
  2296. /* find prediction - wmv3_dc_scale always used here in fact */
  2297. if (n < 4) scale = s->y_dc_scale;
  2298. else scale = s->c_dc_scale;
  2299. wrap = s->block_wrap[n];
  2300. dc_val= s->dc_val[0] + s->block_index[n];
  2301. /* B A
  2302. * C X
  2303. */
  2304. c = dc_val[ - 1];
  2305. b = dc_val[ - 1 - wrap];
  2306. a = dc_val[ - wrap];
  2307. if (pq < 9 || !overlap)
  2308. {
  2309. /* Set outer values */
  2310. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2311. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2312. }
  2313. else
  2314. {
  2315. /* Set outer values */
  2316. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2317. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2318. }
  2319. if (abs(a - b) <= abs(b - c)) {
  2320. pred = c;
  2321. *dir_ptr = 1;//left
  2322. } else {
  2323. pred = a;
  2324. *dir_ptr = 0;//top
  2325. }
  2326. /* update predictor */
  2327. *dc_val_ptr = &dc_val[0];
  2328. return pred;
  2329. }
  2330. /** Get predicted DC value
  2331. * prediction dir: left=0, top=1
  2332. * @param s MpegEncContext
  2333. * @param[in] n block index in the current MB
  2334. * @param dc_val_ptr Pointer to DC predictor
  2335. * @param dir_ptr Prediction direction for use in AC prediction
  2336. */
  2337. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2338. int a_avail, int c_avail,
  2339. int16_t **dc_val_ptr, int *dir_ptr)
  2340. {
  2341. int a, b, c, wrap, pred, scale;
  2342. int16_t *dc_val;
  2343. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2344. int q1, q2 = 0;
  2345. /* find prediction - wmv3_dc_scale always used here in fact */
  2346. if (n < 4) scale = s->y_dc_scale;
  2347. else scale = s->c_dc_scale;
  2348. wrap = s->block_wrap[n];
  2349. dc_val= s->dc_val[0] + s->block_index[n];
  2350. /* B A
  2351. * C X
  2352. */
  2353. c = dc_val[ - 1];
  2354. b = dc_val[ - 1 - wrap];
  2355. a = dc_val[ - wrap];
  2356. /* scale predictors if needed */
  2357. q1 = s->current_picture.qscale_table[mb_pos];
  2358. if(c_avail && (n!= 1 && n!=3)) {
  2359. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2360. if(q2 && q2 != q1)
  2361. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2362. }
  2363. if(a_avail && (n!= 2 && n!=3)) {
  2364. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2365. if(q2 && q2 != q1)
  2366. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2367. }
  2368. if(a_avail && c_avail && (n!=3)) {
  2369. int off = mb_pos;
  2370. if(n != 1) off--;
  2371. if(n != 2) off -= s->mb_stride;
  2372. q2 = s->current_picture.qscale_table[off];
  2373. if(q2 && q2 != q1)
  2374. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2375. }
  2376. if(a_avail && c_avail) {
  2377. if(abs(a - b) <= abs(b - c)) {
  2378. pred = c;
  2379. *dir_ptr = 1;//left
  2380. } else {
  2381. pred = a;
  2382. *dir_ptr = 0;//top
  2383. }
  2384. } else if(a_avail) {
  2385. pred = a;
  2386. *dir_ptr = 0;//top
  2387. } else if(c_avail) {
  2388. pred = c;
  2389. *dir_ptr = 1;//left
  2390. } else {
  2391. pred = 0;
  2392. *dir_ptr = 1;//left
  2393. }
  2394. /* update predictor */
  2395. *dc_val_ptr = &dc_val[0];
  2396. return pred;
  2397. }
  2398. /**
  2399. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2400. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2401. * @{
  2402. */
  2403. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2404. {
  2405. int xy, wrap, pred, a, b, c;
  2406. xy = s->block_index[n];
  2407. wrap = s->b8_stride;
  2408. /* B C
  2409. * A X
  2410. */
  2411. a = s->coded_block[xy - 1 ];
  2412. b = s->coded_block[xy - 1 - wrap];
  2413. c = s->coded_block[xy - wrap];
  2414. if (b == c) {
  2415. pred = a;
  2416. } else {
  2417. pred = c;
  2418. }
  2419. /* store value */
  2420. *coded_block_ptr = &s->coded_block[xy];
  2421. return pred;
  2422. }
  2423. /**
  2424. * Decode one AC coefficient
  2425. * @param v The VC1 context
  2426. * @param last Last coefficient
  2427. * @param skip How much zero coefficients to skip
  2428. * @param value Decoded AC coefficient value
  2429. * @see 8.1.3.4
  2430. */
  2431. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2432. {
  2433. GetBitContext *gb = &v->s.gb;
  2434. int index, escape, run = 0, level = 0, lst = 0;
  2435. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2436. if (index != vc1_ac_sizes[codingset] - 1) {
  2437. run = vc1_index_decode_table[codingset][index][0];
  2438. level = vc1_index_decode_table[codingset][index][1];
  2439. lst = index >= vc1_last_decode_table[codingset];
  2440. if(get_bits(gb, 1))
  2441. level = -level;
  2442. } else {
  2443. escape = decode210(gb);
  2444. if (escape != 2) {
  2445. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2446. run = vc1_index_decode_table[codingset][index][0];
  2447. level = vc1_index_decode_table[codingset][index][1];
  2448. lst = index >= vc1_last_decode_table[codingset];
  2449. if(escape == 0) {
  2450. if(lst)
  2451. level += vc1_last_delta_level_table[codingset][run];
  2452. else
  2453. level += vc1_delta_level_table[codingset][run];
  2454. } else {
  2455. if(lst)
  2456. run += vc1_last_delta_run_table[codingset][level] + 1;
  2457. else
  2458. run += vc1_delta_run_table[codingset][level] + 1;
  2459. }
  2460. if(get_bits(gb, 1))
  2461. level = -level;
  2462. } else {
  2463. int sign;
  2464. lst = get_bits(gb, 1);
  2465. if(v->s.esc3_level_length == 0) {
  2466. if(v->pq < 8 || v->dquantfrm) { // table 59
  2467. v->s.esc3_level_length = get_bits(gb, 3);
  2468. if(!v->s.esc3_level_length)
  2469. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2470. } else { //table 60
  2471. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2472. }
  2473. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2474. }
  2475. run = get_bits(gb, v->s.esc3_run_length);
  2476. sign = get_bits(gb, 1);
  2477. level = get_bits(gb, v->s.esc3_level_length);
  2478. if(sign)
  2479. level = -level;
  2480. }
  2481. }
  2482. *last = lst;
  2483. *skip = run;
  2484. *value = level;
  2485. }
  2486. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2487. * @param v VC1Context
  2488. * @param block block to decode
  2489. * @param coded are AC coeffs present or not
  2490. * @param codingset set of VLC to decode data
  2491. */
  2492. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2493. {
  2494. GetBitContext *gb = &v->s.gb;
  2495. MpegEncContext *s = &v->s;
  2496. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2497. int run_diff, i;
  2498. int16_t *dc_val;
  2499. int16_t *ac_val, *ac_val2;
  2500. int dcdiff;
  2501. /* Get DC differential */
  2502. if (n < 4) {
  2503. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2504. } else {
  2505. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2506. }
  2507. if (dcdiff < 0){
  2508. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2509. return -1;
  2510. }
  2511. if (dcdiff)
  2512. {
  2513. if (dcdiff == 119 /* ESC index value */)
  2514. {
  2515. /* TODO: Optimize */
  2516. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2517. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2518. else dcdiff = get_bits(gb, 8);
  2519. }
  2520. else
  2521. {
  2522. if (v->pq == 1)
  2523. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2524. else if (v->pq == 2)
  2525. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2526. }
  2527. if (get_bits(gb, 1))
  2528. dcdiff = -dcdiff;
  2529. }
  2530. /* Prediction */
  2531. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2532. *dc_val = dcdiff;
  2533. /* Store the quantized DC coeff, used for prediction */
  2534. if (n < 4) {
  2535. block[0] = dcdiff * s->y_dc_scale;
  2536. } else {
  2537. block[0] = dcdiff * s->c_dc_scale;
  2538. }
  2539. /* Skip ? */
  2540. run_diff = 0;
  2541. i = 0;
  2542. if (!coded) {
  2543. goto not_coded;
  2544. }
  2545. //AC Decoding
  2546. i = 1;
  2547. {
  2548. int last = 0, skip, value;
  2549. const int8_t *zz_table;
  2550. int scale;
  2551. int k;
  2552. scale = v->pq * 2 + v->halfpq;
  2553. if(v->s.ac_pred) {
  2554. if(!dc_pred_dir)
  2555. zz_table = vc1_horizontal_zz;
  2556. else
  2557. zz_table = vc1_vertical_zz;
  2558. } else
  2559. zz_table = vc1_normal_zz;
  2560. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2561. ac_val2 = ac_val;
  2562. if(dc_pred_dir) //left
  2563. ac_val -= 16;
  2564. else //top
  2565. ac_val -= 16 * s->block_wrap[n];
  2566. while (!last) {
  2567. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2568. i += skip;
  2569. if(i > 63)
  2570. break;
  2571. block[zz_table[i++]] = value;
  2572. }
  2573. /* apply AC prediction if needed */
  2574. if(s->ac_pred) {
  2575. if(dc_pred_dir) { //left
  2576. for(k = 1; k < 8; k++)
  2577. block[k << 3] += ac_val[k];
  2578. } else { //top
  2579. for(k = 1; k < 8; k++)
  2580. block[k] += ac_val[k + 8];
  2581. }
  2582. }
  2583. /* save AC coeffs for further prediction */
  2584. for(k = 1; k < 8; k++) {
  2585. ac_val2[k] = block[k << 3];
  2586. ac_val2[k + 8] = block[k];
  2587. }
  2588. /* scale AC coeffs */
  2589. for(k = 1; k < 64; k++)
  2590. if(block[k]) {
  2591. block[k] *= scale;
  2592. if(!v->pquantizer)
  2593. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2594. }
  2595. if(s->ac_pred) i = 63;
  2596. }
  2597. not_coded:
  2598. if(!coded) {
  2599. int k, scale;
  2600. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2601. ac_val2 = ac_val;
  2602. scale = v->pq * 2 + v->halfpq;
  2603. memset(ac_val2, 0, 16 * 2);
  2604. if(dc_pred_dir) {//left
  2605. ac_val -= 16;
  2606. if(s->ac_pred)
  2607. memcpy(ac_val2, ac_val, 8 * 2);
  2608. } else {//top
  2609. ac_val -= 16 * s->block_wrap[n];
  2610. if(s->ac_pred)
  2611. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2612. }
  2613. /* apply AC prediction if needed */
  2614. if(s->ac_pred) {
  2615. if(dc_pred_dir) { //left
  2616. for(k = 1; k < 8; k++) {
  2617. block[k << 3] = ac_val[k] * scale;
  2618. if(!v->pquantizer && block[k << 3])
  2619. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2620. }
  2621. } else { //top
  2622. for(k = 1; k < 8; k++) {
  2623. block[k] = ac_val[k + 8] * scale;
  2624. if(!v->pquantizer && block[k])
  2625. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2626. }
  2627. }
  2628. i = 63;
  2629. }
  2630. }
  2631. s->block_last_index[n] = i;
  2632. return 0;
  2633. }
  2634. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2635. * @param v VC1Context
  2636. * @param block block to decode
  2637. * @param coded are AC coeffs present or not
  2638. * @param codingset set of VLC to decode data
  2639. */
  2640. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2641. {
  2642. GetBitContext *gb = &v->s.gb;
  2643. MpegEncContext *s = &v->s;
  2644. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2645. int run_diff, i;
  2646. int16_t *dc_val;
  2647. int16_t *ac_val, *ac_val2;
  2648. int dcdiff;
  2649. int a_avail = v->a_avail, c_avail = v->c_avail;
  2650. int use_pred = s->ac_pred;
  2651. int scale;
  2652. int q1, q2 = 0;
  2653. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2654. /* Get DC differential */
  2655. if (n < 4) {
  2656. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2657. } else {
  2658. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2659. }
  2660. if (dcdiff < 0){
  2661. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2662. return -1;
  2663. }
  2664. if (dcdiff)
  2665. {
  2666. if (dcdiff == 119 /* ESC index value */)
  2667. {
  2668. /* TODO: Optimize */
  2669. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2670. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2671. else dcdiff = get_bits(gb, 8);
  2672. }
  2673. else
  2674. {
  2675. if (mquant == 1)
  2676. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2677. else if (mquant == 2)
  2678. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2679. }
  2680. if (get_bits(gb, 1))
  2681. dcdiff = -dcdiff;
  2682. }
  2683. /* Prediction */
  2684. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2685. *dc_val = dcdiff;
  2686. /* Store the quantized DC coeff, used for prediction */
  2687. if (n < 4) {
  2688. block[0] = dcdiff * s->y_dc_scale;
  2689. } else {
  2690. block[0] = dcdiff * s->c_dc_scale;
  2691. }
  2692. /* Skip ? */
  2693. run_diff = 0;
  2694. i = 0;
  2695. //AC Decoding
  2696. i = 1;
  2697. /* check if AC is needed at all and adjust direction if needed */
  2698. if(!a_avail) dc_pred_dir = 1;
  2699. if(!c_avail) dc_pred_dir = 0;
  2700. if(!a_avail && !c_avail) use_pred = 0;
  2701. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2702. ac_val2 = ac_val;
  2703. scale = mquant * 2 + v->halfpq;
  2704. if(dc_pred_dir) //left
  2705. ac_val -= 16;
  2706. else //top
  2707. ac_val -= 16 * s->block_wrap[n];
  2708. q1 = s->current_picture.qscale_table[mb_pos];
  2709. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2710. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2711. if(dc_pred_dir && n==1) q2 = q1;
  2712. if(!dc_pred_dir && n==2) q2 = q1;
  2713. if(n==3) q2 = q1;
  2714. if(coded) {
  2715. int last = 0, skip, value;
  2716. const int8_t *zz_table;
  2717. int k;
  2718. if(v->s.ac_pred) {
  2719. if(!dc_pred_dir)
  2720. zz_table = vc1_horizontal_zz;
  2721. else
  2722. zz_table = vc1_vertical_zz;
  2723. } else
  2724. zz_table = vc1_normal_zz;
  2725. while (!last) {
  2726. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2727. i += skip;
  2728. if(i > 63)
  2729. break;
  2730. block[zz_table[i++]] = value;
  2731. }
  2732. /* apply AC prediction if needed */
  2733. if(use_pred) {
  2734. /* scale predictors if needed*/
  2735. if(q2 && q1!=q2) {
  2736. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2737. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2738. if(dc_pred_dir) { //left
  2739. for(k = 1; k < 8; k++)
  2740. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2741. } else { //top
  2742. for(k = 1; k < 8; k++)
  2743. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2744. }
  2745. } else {
  2746. if(dc_pred_dir) { //left
  2747. for(k = 1; k < 8; k++)
  2748. block[k << 3] += ac_val[k];
  2749. } else { //top
  2750. for(k = 1; k < 8; k++)
  2751. block[k] += ac_val[k + 8];
  2752. }
  2753. }
  2754. }
  2755. /* save AC coeffs for further prediction */
  2756. for(k = 1; k < 8; k++) {
  2757. ac_val2[k] = block[k << 3];
  2758. ac_val2[k + 8] = block[k];
  2759. }
  2760. /* scale AC coeffs */
  2761. for(k = 1; k < 64; k++)
  2762. if(block[k]) {
  2763. block[k] *= scale;
  2764. if(!v->pquantizer)
  2765. block[k] += (block[k] < 0) ? -mquant : mquant;
  2766. }
  2767. if(use_pred) i = 63;
  2768. } else { // no AC coeffs
  2769. int k;
  2770. memset(ac_val2, 0, 16 * 2);
  2771. if(dc_pred_dir) {//left
  2772. if(use_pred) {
  2773. memcpy(ac_val2, ac_val, 8 * 2);
  2774. if(q2 && q1!=q2) {
  2775. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2776. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2777. for(k = 1; k < 8; k++)
  2778. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2779. }
  2780. }
  2781. } else {//top
  2782. if(use_pred) {
  2783. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2784. if(q2 && q1!=q2) {
  2785. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2786. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2787. for(k = 1; k < 8; k++)
  2788. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2789. }
  2790. }
  2791. }
  2792. /* apply AC prediction if needed */
  2793. if(use_pred) {
  2794. if(dc_pred_dir) { //left
  2795. for(k = 1; k < 8; k++) {
  2796. block[k << 3] = ac_val2[k] * scale;
  2797. if(!v->pquantizer && block[k << 3])
  2798. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2799. }
  2800. } else { //top
  2801. for(k = 1; k < 8; k++) {
  2802. block[k] = ac_val2[k + 8] * scale;
  2803. if(!v->pquantizer && block[k])
  2804. block[k] += (block[k] < 0) ? -mquant : mquant;
  2805. }
  2806. }
  2807. i = 63;
  2808. }
  2809. }
  2810. s->block_last_index[n] = i;
  2811. return 0;
  2812. }
  2813. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2814. * @param v VC1Context
  2815. * @param block block to decode
  2816. * @param coded are AC coeffs present or not
  2817. * @param mquant block quantizer
  2818. * @param codingset set of VLC to decode data
  2819. */
  2820. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2821. {
  2822. GetBitContext *gb = &v->s.gb;
  2823. MpegEncContext *s = &v->s;
  2824. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2825. int run_diff, i;
  2826. int16_t *dc_val;
  2827. int16_t *ac_val, *ac_val2;
  2828. int dcdiff;
  2829. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2830. int a_avail = v->a_avail, c_avail = v->c_avail;
  2831. int use_pred = s->ac_pred;
  2832. int scale;
  2833. int q1, q2 = 0;
  2834. /* XXX: Guard against dumb values of mquant */
  2835. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2836. /* Set DC scale - y and c use the same */
  2837. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2838. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2839. /* Get DC differential */
  2840. if (n < 4) {
  2841. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2842. } else {
  2843. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2844. }
  2845. if (dcdiff < 0){
  2846. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2847. return -1;
  2848. }
  2849. if (dcdiff)
  2850. {
  2851. if (dcdiff == 119 /* ESC index value */)
  2852. {
  2853. /* TODO: Optimize */
  2854. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2855. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2856. else dcdiff = get_bits(gb, 8);
  2857. }
  2858. else
  2859. {
  2860. if (mquant == 1)
  2861. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2862. else if (mquant == 2)
  2863. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2864. }
  2865. if (get_bits(gb, 1))
  2866. dcdiff = -dcdiff;
  2867. }
  2868. /* Prediction */
  2869. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2870. *dc_val = dcdiff;
  2871. /* Store the quantized DC coeff, used for prediction */
  2872. if (n < 4) {
  2873. block[0] = dcdiff * s->y_dc_scale;
  2874. } else {
  2875. block[0] = dcdiff * s->c_dc_scale;
  2876. }
  2877. /* Skip ? */
  2878. run_diff = 0;
  2879. i = 0;
  2880. //AC Decoding
  2881. i = 1;
  2882. /* check if AC is needed at all and adjust direction if needed */
  2883. if(!a_avail) dc_pred_dir = 1;
  2884. if(!c_avail) dc_pred_dir = 0;
  2885. if(!a_avail && !c_avail) use_pred = 0;
  2886. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2887. ac_val2 = ac_val;
  2888. scale = mquant * 2 + v->halfpq;
  2889. if(dc_pred_dir) //left
  2890. ac_val -= 16;
  2891. else //top
  2892. ac_val -= 16 * s->block_wrap[n];
  2893. q1 = s->current_picture.qscale_table[mb_pos];
  2894. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2895. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2896. if(dc_pred_dir && n==1) q2 = q1;
  2897. if(!dc_pred_dir && n==2) q2 = q1;
  2898. if(n==3) q2 = q1;
  2899. if(coded) {
  2900. int last = 0, skip, value;
  2901. const int8_t *zz_table;
  2902. int k;
  2903. zz_table = vc1_simple_progressive_8x8_zz;
  2904. while (!last) {
  2905. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2906. i += skip;
  2907. if(i > 63)
  2908. break;
  2909. block[zz_table[i++]] = value;
  2910. }
  2911. /* apply AC prediction if needed */
  2912. if(use_pred) {
  2913. /* scale predictors if needed*/
  2914. if(q2 && q1!=q2) {
  2915. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2916. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2917. if(dc_pred_dir) { //left
  2918. for(k = 1; k < 8; k++)
  2919. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2920. } else { //top
  2921. for(k = 1; k < 8; k++)
  2922. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2923. }
  2924. } else {
  2925. if(dc_pred_dir) { //left
  2926. for(k = 1; k < 8; k++)
  2927. block[k << 3] += ac_val[k];
  2928. } else { //top
  2929. for(k = 1; k < 8; k++)
  2930. block[k] += ac_val[k + 8];
  2931. }
  2932. }
  2933. }
  2934. /* save AC coeffs for further prediction */
  2935. for(k = 1; k < 8; k++) {
  2936. ac_val2[k] = block[k << 3];
  2937. ac_val2[k + 8] = block[k];
  2938. }
  2939. /* scale AC coeffs */
  2940. for(k = 1; k < 64; k++)
  2941. if(block[k]) {
  2942. block[k] *= scale;
  2943. if(!v->pquantizer)
  2944. block[k] += (block[k] < 0) ? -mquant : mquant;
  2945. }
  2946. if(use_pred) i = 63;
  2947. } else { // no AC coeffs
  2948. int k;
  2949. memset(ac_val2, 0, 16 * 2);
  2950. if(dc_pred_dir) {//left
  2951. if(use_pred) {
  2952. memcpy(ac_val2, ac_val, 8 * 2);
  2953. if(q2 && q1!=q2) {
  2954. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2955. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2956. for(k = 1; k < 8; k++)
  2957. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2958. }
  2959. }
  2960. } else {//top
  2961. if(use_pred) {
  2962. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2963. if(q2 && q1!=q2) {
  2964. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2965. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2966. for(k = 1; k < 8; k++)
  2967. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2968. }
  2969. }
  2970. }
  2971. /* apply AC prediction if needed */
  2972. if(use_pred) {
  2973. if(dc_pred_dir) { //left
  2974. for(k = 1; k < 8; k++) {
  2975. block[k << 3] = ac_val2[k] * scale;
  2976. if(!v->pquantizer && block[k << 3])
  2977. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2978. }
  2979. } else { //top
  2980. for(k = 1; k < 8; k++) {
  2981. block[k] = ac_val2[k + 8] * scale;
  2982. if(!v->pquantizer && block[k])
  2983. block[k] += (block[k] < 0) ? -mquant : mquant;
  2984. }
  2985. }
  2986. i = 63;
  2987. }
  2988. }
  2989. s->block_last_index[n] = i;
  2990. return 0;
  2991. }
  2992. /** Decode P block
  2993. */
  2994. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2995. {
  2996. MpegEncContext *s = &v->s;
  2997. GetBitContext *gb = &s->gb;
  2998. int i, j;
  2999. int subblkpat = 0;
  3000. int scale, off, idx, last, skip, value;
  3001. int ttblk = ttmb & 7;
  3002. if(ttmb == -1) {
  3003. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  3004. }
  3005. if(ttblk == TT_4X4) {
  3006. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  3007. }
  3008. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  3009. subblkpat = decode012(gb);
  3010. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  3011. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  3012. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  3013. }
  3014. scale = 2 * mquant + v->halfpq;
  3015. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  3016. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  3017. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  3018. ttblk = TT_8X4;
  3019. }
  3020. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  3021. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  3022. ttblk = TT_4X8;
  3023. }
  3024. switch(ttblk) {
  3025. case TT_8X8:
  3026. i = 0;
  3027. last = 0;
  3028. while (!last) {
  3029. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3030. i += skip;
  3031. if(i > 63)
  3032. break;
  3033. idx = vc1_simple_progressive_8x8_zz[i++];
  3034. block[idx] = value * scale;
  3035. if(!v->pquantizer)
  3036. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3037. }
  3038. s->dsp.vc1_inv_trans_8x8(block);
  3039. break;
  3040. case TT_4X4:
  3041. for(j = 0; j < 4; j++) {
  3042. last = subblkpat & (1 << (3 - j));
  3043. i = 0;
  3044. off = (j & 1) * 4 + (j & 2) * 16;
  3045. while (!last) {
  3046. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3047. i += skip;
  3048. if(i > 15)
  3049. break;
  3050. idx = vc1_simple_progressive_4x4_zz[i++];
  3051. block[idx + off] = value * scale;
  3052. if(!v->pquantizer)
  3053. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3054. }
  3055. if(!(subblkpat & (1 << (3 - j))))
  3056. s->dsp.vc1_inv_trans_4x4(block, j);
  3057. }
  3058. break;
  3059. case TT_8X4:
  3060. for(j = 0; j < 2; j++) {
  3061. last = subblkpat & (1 << (1 - j));
  3062. i = 0;
  3063. off = j * 32;
  3064. while (!last) {
  3065. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3066. i += skip;
  3067. if(i > 31)
  3068. break;
  3069. if(v->profile < PROFILE_ADVANCED)
  3070. idx = vc1_simple_progressive_8x4_zz[i++];
  3071. else
  3072. idx = vc1_adv_progressive_8x4_zz[i++];
  3073. block[idx + off] = value * scale;
  3074. if(!v->pquantizer)
  3075. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3076. }
  3077. if(!(subblkpat & (1 << (1 - j))))
  3078. s->dsp.vc1_inv_trans_8x4(block, j);
  3079. }
  3080. break;
  3081. case TT_4X8:
  3082. for(j = 0; j < 2; j++) {
  3083. last = subblkpat & (1 << (1 - j));
  3084. i = 0;
  3085. off = j * 4;
  3086. while (!last) {
  3087. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3088. i += skip;
  3089. if(i > 31)
  3090. break;
  3091. if(v->profile < PROFILE_ADVANCED)
  3092. idx = vc1_simple_progressive_4x8_zz[i++];
  3093. else
  3094. idx = vc1_adv_progressive_4x8_zz[i++];
  3095. block[idx + off] = value * scale;
  3096. if(!v->pquantizer)
  3097. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3098. }
  3099. if(!(subblkpat & (1 << (1 - j))))
  3100. s->dsp.vc1_inv_trans_4x8(block, j);
  3101. }
  3102. break;
  3103. }
  3104. return 0;
  3105. }
  3106. /** Decode one P-frame MB (in Simple/Main profile)
  3107. */
  3108. static int vc1_decode_p_mb(VC1Context *v)
  3109. {
  3110. MpegEncContext *s = &v->s;
  3111. GetBitContext *gb = &s->gb;
  3112. int i, j;
  3113. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3114. int cbp; /* cbp decoding stuff */
  3115. int mqdiff, mquant; /* MB quantization */
  3116. int ttmb = v->ttfrm; /* MB Transform type */
  3117. int status;
  3118. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3119. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3120. int mb_has_coeffs = 1; /* last_flag */
  3121. int dmv_x, dmv_y; /* Differential MV components */
  3122. int index, index1; /* LUT indices */
  3123. int val, sign; /* temp values */
  3124. int first_block = 1;
  3125. int dst_idx, off;
  3126. int skipped, fourmv;
  3127. mquant = v->pq; /* Loosy initialization */
  3128. if (v->mv_type_is_raw)
  3129. fourmv = get_bits1(gb);
  3130. else
  3131. fourmv = v->mv_type_mb_plane[mb_pos];
  3132. if (v->skip_is_raw)
  3133. skipped = get_bits1(gb);
  3134. else
  3135. skipped = v->s.mbskip_table[mb_pos];
  3136. s->dsp.clear_blocks(s->block[0]);
  3137. if (!fourmv) /* 1MV mode */
  3138. {
  3139. if (!skipped)
  3140. {
  3141. GET_MVDATA(dmv_x, dmv_y);
  3142. if (s->mb_intra) {
  3143. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3144. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3145. }
  3146. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3147. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3148. /* FIXME Set DC val for inter block ? */
  3149. if (s->mb_intra && !mb_has_coeffs)
  3150. {
  3151. GET_MQUANT();
  3152. s->ac_pred = get_bits(gb, 1);
  3153. cbp = 0;
  3154. }
  3155. else if (mb_has_coeffs)
  3156. {
  3157. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3158. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3159. GET_MQUANT();
  3160. }
  3161. else
  3162. {
  3163. mquant = v->pq;
  3164. cbp = 0;
  3165. }
  3166. s->current_picture.qscale_table[mb_pos] = mquant;
  3167. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3168. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3169. VC1_TTMB_VLC_BITS, 2);
  3170. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3171. dst_idx = 0;
  3172. for (i=0; i<6; i++)
  3173. {
  3174. s->dc_val[0][s->block_index[i]] = 0;
  3175. dst_idx += i >> 2;
  3176. val = ((cbp >> (5 - i)) & 1);
  3177. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3178. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3179. if(s->mb_intra) {
  3180. /* check if prediction blocks A and C are available */
  3181. v->a_avail = v->c_avail = 0;
  3182. if(i == 2 || i == 3 || !s->first_slice_line)
  3183. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3184. if(i == 1 || i == 3 || s->mb_x)
  3185. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3186. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3187. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3188. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3189. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3190. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3191. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3192. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3193. if(v->pq >= 9 && v->overlap) {
  3194. if(v->c_avail)
  3195. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3196. if(v->a_avail)
  3197. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3198. }
  3199. } else if(val) {
  3200. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3201. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3202. first_block = 0;
  3203. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3204. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3205. }
  3206. }
  3207. }
  3208. else //Skipped
  3209. {
  3210. s->mb_intra = 0;
  3211. for(i = 0; i < 6; i++) {
  3212. v->mb_type[0][s->block_index[i]] = 0;
  3213. s->dc_val[0][s->block_index[i]] = 0;
  3214. }
  3215. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3216. s->current_picture.qscale_table[mb_pos] = 0;
  3217. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3218. vc1_mc_1mv(v, 0);
  3219. return 0;
  3220. }
  3221. } //1MV mode
  3222. else //4MV mode
  3223. {
  3224. if (!skipped /* unskipped MB */)
  3225. {
  3226. int intra_count = 0, coded_inter = 0;
  3227. int is_intra[6], is_coded[6];
  3228. /* Get CBPCY */
  3229. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3230. for (i=0; i<6; i++)
  3231. {
  3232. val = ((cbp >> (5 - i)) & 1);
  3233. s->dc_val[0][s->block_index[i]] = 0;
  3234. s->mb_intra = 0;
  3235. if(i < 4) {
  3236. dmv_x = dmv_y = 0;
  3237. s->mb_intra = 0;
  3238. mb_has_coeffs = 0;
  3239. if(val) {
  3240. GET_MVDATA(dmv_x, dmv_y);
  3241. }
  3242. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3243. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3244. intra_count += s->mb_intra;
  3245. is_intra[i] = s->mb_intra;
  3246. is_coded[i] = mb_has_coeffs;
  3247. }
  3248. if(i&4){
  3249. is_intra[i] = (intra_count >= 3);
  3250. is_coded[i] = val;
  3251. }
  3252. if(i == 4) vc1_mc_4mv_chroma(v);
  3253. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3254. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3255. }
  3256. // if there are no coded blocks then don't do anything more
  3257. if(!intra_count && !coded_inter) return 0;
  3258. dst_idx = 0;
  3259. GET_MQUANT();
  3260. s->current_picture.qscale_table[mb_pos] = mquant;
  3261. /* test if block is intra and has pred */
  3262. {
  3263. int intrapred = 0;
  3264. for(i=0; i<6; i++)
  3265. if(is_intra[i]) {
  3266. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3267. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3268. intrapred = 1;
  3269. break;
  3270. }
  3271. }
  3272. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3273. else s->ac_pred = 0;
  3274. }
  3275. if (!v->ttmbf && coded_inter)
  3276. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3277. for (i=0; i<6; i++)
  3278. {
  3279. dst_idx += i >> 2;
  3280. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3281. s->mb_intra = is_intra[i];
  3282. if (is_intra[i]) {
  3283. /* check if prediction blocks A and C are available */
  3284. v->a_avail = v->c_avail = 0;
  3285. if(i == 2 || i == 3 || !s->first_slice_line)
  3286. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3287. if(i == 1 || i == 3 || s->mb_x)
  3288. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3289. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3290. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3291. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3292. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3293. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3294. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3295. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3296. if(v->pq >= 9 && v->overlap) {
  3297. if(v->c_avail)
  3298. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3299. if(v->a_avail)
  3300. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3301. }
  3302. } else if(is_coded[i]) {
  3303. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3304. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3305. first_block = 0;
  3306. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3307. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3308. }
  3309. }
  3310. return status;
  3311. }
  3312. else //Skipped MB
  3313. {
  3314. s->mb_intra = 0;
  3315. s->current_picture.qscale_table[mb_pos] = 0;
  3316. for (i=0; i<6; i++) {
  3317. v->mb_type[0][s->block_index[i]] = 0;
  3318. s->dc_val[0][s->block_index[i]] = 0;
  3319. }
  3320. for (i=0; i<4; i++)
  3321. {
  3322. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3323. vc1_mc_4mv_luma(v, i);
  3324. }
  3325. vc1_mc_4mv_chroma(v);
  3326. s->current_picture.qscale_table[mb_pos] = 0;
  3327. return 0;
  3328. }
  3329. }
  3330. /* Should never happen */
  3331. return -1;
  3332. }
  3333. /** Decode one B-frame MB (in Main profile)
  3334. */
  3335. static void vc1_decode_b_mb(VC1Context *v)
  3336. {
  3337. MpegEncContext *s = &v->s;
  3338. GetBitContext *gb = &s->gb;
  3339. int i, j;
  3340. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3341. int cbp = 0; /* cbp decoding stuff */
  3342. int mqdiff, mquant; /* MB quantization */
  3343. int ttmb = v->ttfrm; /* MB Transform type */
  3344. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3345. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3346. int mb_has_coeffs = 0; /* last_flag */
  3347. int index, index1; /* LUT indices */
  3348. int val, sign; /* temp values */
  3349. int first_block = 1;
  3350. int dst_idx, off;
  3351. int skipped, direct;
  3352. int dmv_x[2], dmv_y[2];
  3353. int bmvtype = BMV_TYPE_BACKWARD;
  3354. mquant = v->pq; /* Loosy initialization */
  3355. s->mb_intra = 0;
  3356. if (v->dmb_is_raw)
  3357. direct = get_bits1(gb);
  3358. else
  3359. direct = v->direct_mb_plane[mb_pos];
  3360. if (v->skip_is_raw)
  3361. skipped = get_bits1(gb);
  3362. else
  3363. skipped = v->s.mbskip_table[mb_pos];
  3364. s->dsp.clear_blocks(s->block[0]);
  3365. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3366. for(i = 0; i < 6; i++) {
  3367. v->mb_type[0][s->block_index[i]] = 0;
  3368. s->dc_val[0][s->block_index[i]] = 0;
  3369. }
  3370. s->current_picture.qscale_table[mb_pos] = 0;
  3371. if (!direct) {
  3372. if (!skipped) {
  3373. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3374. dmv_x[1] = dmv_x[0];
  3375. dmv_y[1] = dmv_y[0];
  3376. }
  3377. if(skipped || !s->mb_intra) {
  3378. bmvtype = decode012(gb);
  3379. switch(bmvtype) {
  3380. case 0:
  3381. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3382. break;
  3383. case 1:
  3384. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3385. break;
  3386. case 2:
  3387. bmvtype = BMV_TYPE_INTERPOLATED;
  3388. dmv_x[0] = dmv_y[0] = 0;
  3389. }
  3390. }
  3391. }
  3392. for(i = 0; i < 6; i++)
  3393. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3394. if (skipped) {
  3395. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3396. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3397. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3398. return;
  3399. }
  3400. if (direct) {
  3401. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3402. GET_MQUANT();
  3403. s->mb_intra = 0;
  3404. mb_has_coeffs = 0;
  3405. s->current_picture.qscale_table[mb_pos] = mquant;
  3406. if(!v->ttmbf)
  3407. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3408. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3409. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3410. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3411. } else {
  3412. if(!mb_has_coeffs && !s->mb_intra) {
  3413. /* no coded blocks - effectively skipped */
  3414. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3415. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3416. return;
  3417. }
  3418. if(s->mb_intra && !mb_has_coeffs) {
  3419. GET_MQUANT();
  3420. s->current_picture.qscale_table[mb_pos] = mquant;
  3421. s->ac_pred = get_bits1(gb);
  3422. cbp = 0;
  3423. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3424. } else {
  3425. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3426. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3427. if(!mb_has_coeffs) {
  3428. /* interpolated skipped block */
  3429. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3430. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3431. return;
  3432. }
  3433. }
  3434. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3435. if(!s->mb_intra) {
  3436. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3437. }
  3438. if(s->mb_intra)
  3439. s->ac_pred = get_bits1(gb);
  3440. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3441. GET_MQUANT();
  3442. s->current_picture.qscale_table[mb_pos] = mquant;
  3443. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3444. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3445. }
  3446. }
  3447. dst_idx = 0;
  3448. for (i=0; i<6; i++)
  3449. {
  3450. s->dc_val[0][s->block_index[i]] = 0;
  3451. dst_idx += i >> 2;
  3452. val = ((cbp >> (5 - i)) & 1);
  3453. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3454. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3455. if(s->mb_intra) {
  3456. /* check if prediction blocks A and C are available */
  3457. v->a_avail = v->c_avail = 0;
  3458. if(i == 2 || i == 3 || !s->first_slice_line)
  3459. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3460. if(i == 1 || i == 3 || s->mb_x)
  3461. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3462. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3463. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3464. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3465. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3466. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3467. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3468. } else if(val) {
  3469. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3470. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3471. first_block = 0;
  3472. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3473. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3474. }
  3475. }
  3476. }
  3477. /** Decode blocks of I-frame
  3478. */
  3479. static void vc1_decode_i_blocks(VC1Context *v)
  3480. {
  3481. int k, j;
  3482. MpegEncContext *s = &v->s;
  3483. int cbp, val;
  3484. uint8_t *coded_val;
  3485. int mb_pos;
  3486. /* select codingmode used for VLC tables selection */
  3487. switch(v->y_ac_table_index){
  3488. case 0:
  3489. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3490. break;
  3491. case 1:
  3492. v->codingset = CS_HIGH_MOT_INTRA;
  3493. break;
  3494. case 2:
  3495. v->codingset = CS_MID_RATE_INTRA;
  3496. break;
  3497. }
  3498. switch(v->c_ac_table_index){
  3499. case 0:
  3500. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3501. break;
  3502. case 1:
  3503. v->codingset2 = CS_HIGH_MOT_INTER;
  3504. break;
  3505. case 2:
  3506. v->codingset2 = CS_MID_RATE_INTER;
  3507. break;
  3508. }
  3509. /* Set DC scale - y and c use the same */
  3510. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3511. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3512. //do frame decode
  3513. s->mb_x = s->mb_y = 0;
  3514. s->mb_intra = 1;
  3515. s->first_slice_line = 1;
  3516. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3517. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3518. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3519. ff_init_block_index(s);
  3520. ff_update_block_index(s);
  3521. s->dsp.clear_blocks(s->block[0]);
  3522. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3523. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3524. s->current_picture.qscale_table[mb_pos] = v->pq;
  3525. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3526. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3527. // do actual MB decoding and displaying
  3528. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3529. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3530. for(k = 0; k < 6; k++) {
  3531. val = ((cbp >> (5 - k)) & 1);
  3532. if (k < 4) {
  3533. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3534. val = val ^ pred;
  3535. *coded_val = val;
  3536. }
  3537. cbp |= val << (5 - k);
  3538. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3539. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3540. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3541. if(v->pq >= 9 && v->overlap) {
  3542. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3543. }
  3544. }
  3545. vc1_put_block(v, s->block);
  3546. if(v->pq >= 9 && v->overlap) {
  3547. if(s->mb_x) {
  3548. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3549. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3550. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3551. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3552. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3553. }
  3554. }
  3555. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3556. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3557. if(!s->first_slice_line) {
  3558. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3559. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3560. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3561. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3562. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3563. }
  3564. }
  3565. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3566. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3567. }
  3568. if(get_bits_count(&s->gb) > v->bits) {
  3569. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3570. return;
  3571. }
  3572. }
  3573. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3574. s->first_slice_line = 0;
  3575. }
  3576. }
  3577. /** Decode blocks of I-frame for advanced profile
  3578. */
  3579. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3580. {
  3581. int k, j;
  3582. MpegEncContext *s = &v->s;
  3583. int cbp, val;
  3584. uint8_t *coded_val;
  3585. int mb_pos;
  3586. int mquant = v->pq;
  3587. int mqdiff;
  3588. int overlap;
  3589. GetBitContext *gb = &s->gb;
  3590. /* select codingmode used for VLC tables selection */
  3591. switch(v->y_ac_table_index){
  3592. case 0:
  3593. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3594. break;
  3595. case 1:
  3596. v->codingset = CS_HIGH_MOT_INTRA;
  3597. break;
  3598. case 2:
  3599. v->codingset = CS_MID_RATE_INTRA;
  3600. break;
  3601. }
  3602. switch(v->c_ac_table_index){
  3603. case 0:
  3604. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3605. break;
  3606. case 1:
  3607. v->codingset2 = CS_HIGH_MOT_INTER;
  3608. break;
  3609. case 2:
  3610. v->codingset2 = CS_MID_RATE_INTER;
  3611. break;
  3612. }
  3613. //do frame decode
  3614. s->mb_x = s->mb_y = 0;
  3615. s->mb_intra = 1;
  3616. s->first_slice_line = 1;
  3617. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3618. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3619. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3620. ff_init_block_index(s);
  3621. ff_update_block_index(s);
  3622. s->dsp.clear_blocks(s->block[0]);
  3623. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3624. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3625. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3626. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3627. // do actual MB decoding and displaying
  3628. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3629. if(v->acpred_is_raw)
  3630. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3631. else
  3632. v->s.ac_pred = v->acpred_plane[mb_pos];
  3633. if(v->condover == CONDOVER_SELECT) {
  3634. if(v->overflg_is_raw)
  3635. overlap = get_bits(&v->s.gb, 1);
  3636. else
  3637. overlap = v->over_flags_plane[mb_pos];
  3638. } else
  3639. overlap = (v->condover == CONDOVER_ALL);
  3640. GET_MQUANT();
  3641. s->current_picture.qscale_table[mb_pos] = mquant;
  3642. /* Set DC scale - y and c use the same */
  3643. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3644. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3645. for(k = 0; k < 6; k++) {
  3646. val = ((cbp >> (5 - k)) & 1);
  3647. if (k < 4) {
  3648. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3649. val = val ^ pred;
  3650. *coded_val = val;
  3651. }
  3652. cbp |= val << (5 - k);
  3653. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3654. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3655. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3656. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3657. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3658. }
  3659. vc1_put_block(v, s->block);
  3660. if(overlap) {
  3661. if(s->mb_x) {
  3662. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3663. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3664. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3665. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3666. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3667. }
  3668. }
  3669. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3670. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3671. if(!s->first_slice_line) {
  3672. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3673. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3674. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3675. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3676. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3677. }
  3678. }
  3679. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3680. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3681. }
  3682. if(get_bits_count(&s->gb) > v->bits) {
  3683. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3684. return;
  3685. }
  3686. }
  3687. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3688. s->first_slice_line = 0;
  3689. }
  3690. }
  3691. static void vc1_decode_p_blocks(VC1Context *v)
  3692. {
  3693. MpegEncContext *s = &v->s;
  3694. /* select codingmode used for VLC tables selection */
  3695. switch(v->c_ac_table_index){
  3696. case 0:
  3697. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3698. break;
  3699. case 1:
  3700. v->codingset = CS_HIGH_MOT_INTRA;
  3701. break;
  3702. case 2:
  3703. v->codingset = CS_MID_RATE_INTRA;
  3704. break;
  3705. }
  3706. switch(v->c_ac_table_index){
  3707. case 0:
  3708. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3709. break;
  3710. case 1:
  3711. v->codingset2 = CS_HIGH_MOT_INTER;
  3712. break;
  3713. case 2:
  3714. v->codingset2 = CS_MID_RATE_INTER;
  3715. break;
  3716. }
  3717. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3718. s->first_slice_line = 1;
  3719. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3720. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3721. ff_init_block_index(s);
  3722. ff_update_block_index(s);
  3723. s->dsp.clear_blocks(s->block[0]);
  3724. vc1_decode_p_mb(v);
  3725. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3726. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3727. return;
  3728. }
  3729. }
  3730. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3731. s->first_slice_line = 0;
  3732. }
  3733. }
  3734. static void vc1_decode_b_blocks(VC1Context *v)
  3735. {
  3736. MpegEncContext *s = &v->s;
  3737. /* select codingmode used for VLC tables selection */
  3738. switch(v->c_ac_table_index){
  3739. case 0:
  3740. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3741. break;
  3742. case 1:
  3743. v->codingset = CS_HIGH_MOT_INTRA;
  3744. break;
  3745. case 2:
  3746. v->codingset = CS_MID_RATE_INTRA;
  3747. break;
  3748. }
  3749. switch(v->c_ac_table_index){
  3750. case 0:
  3751. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3752. break;
  3753. case 1:
  3754. v->codingset2 = CS_HIGH_MOT_INTER;
  3755. break;
  3756. case 2:
  3757. v->codingset2 = CS_MID_RATE_INTER;
  3758. break;
  3759. }
  3760. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3761. s->first_slice_line = 1;
  3762. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3763. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3764. ff_init_block_index(s);
  3765. ff_update_block_index(s);
  3766. s->dsp.clear_blocks(s->block[0]);
  3767. vc1_decode_b_mb(v);
  3768. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3769. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3770. return;
  3771. }
  3772. }
  3773. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3774. s->first_slice_line = 0;
  3775. }
  3776. }
  3777. static void vc1_decode_skip_blocks(VC1Context *v)
  3778. {
  3779. MpegEncContext *s = &v->s;
  3780. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3781. s->first_slice_line = 1;
  3782. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3783. s->mb_x = 0;
  3784. ff_init_block_index(s);
  3785. ff_update_block_index(s);
  3786. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3787. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3788. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3789. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3790. s->first_slice_line = 0;
  3791. }
  3792. s->pict_type = P_TYPE;
  3793. }
  3794. static void vc1_decode_blocks(VC1Context *v)
  3795. {
  3796. v->s.esc3_level_length = 0;
  3797. switch(v->s.pict_type) {
  3798. case I_TYPE:
  3799. if(v->profile == PROFILE_ADVANCED)
  3800. vc1_decode_i_blocks_adv(v);
  3801. else
  3802. vc1_decode_i_blocks(v);
  3803. break;
  3804. case P_TYPE:
  3805. if(v->p_frame_skipped)
  3806. vc1_decode_skip_blocks(v);
  3807. else
  3808. vc1_decode_p_blocks(v);
  3809. break;
  3810. case B_TYPE:
  3811. if(v->bi_type){
  3812. if(v->profile == PROFILE_ADVANCED)
  3813. vc1_decode_i_blocks_adv(v);
  3814. else
  3815. vc1_decode_i_blocks(v);
  3816. }else
  3817. vc1_decode_b_blocks(v);
  3818. break;
  3819. }
  3820. }
  3821. #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0)
  3822. /** Find VC-1 marker in buffer
  3823. * @return position where next marker starts or end of buffer if no marker found
  3824. */
  3825. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3826. {
  3827. uint32_t mrk = 0xFFFFFFFF;
  3828. if(end-src < 4) return end;
  3829. while(src < end){
  3830. mrk = (mrk << 8) | *src++;
  3831. if(IS_MARKER(mrk))
  3832. return src-4;
  3833. }
  3834. return end;
  3835. }
  3836. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3837. {
  3838. int dsize = 0, i;
  3839. if(size < 4){
  3840. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3841. return size;
  3842. }
  3843. for(i = 0; i < size; i++, src++) {
  3844. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3845. dst[dsize++] = src[1];
  3846. src++;
  3847. i++;
  3848. } else
  3849. dst[dsize++] = *src;
  3850. }
  3851. return dsize;
  3852. }
  3853. /** Initialize a VC1/WMV3 decoder
  3854. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3855. * @todo TODO: Decypher remaining bits in extra_data
  3856. */
  3857. static int vc1_decode_init(AVCodecContext *avctx)
  3858. {
  3859. VC1Context *v = avctx->priv_data;
  3860. MpegEncContext *s = &v->s;
  3861. GetBitContext gb;
  3862. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3863. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3864. avctx->pix_fmt = PIX_FMT_YUV420P;
  3865. else
  3866. avctx->pix_fmt = PIX_FMT_GRAY8;
  3867. v->s.avctx = avctx;
  3868. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3869. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3870. if(ff_h263_decode_init(avctx) < 0)
  3871. return -1;
  3872. if (vc1_init_common(v) < 0) return -1;
  3873. avctx->coded_width = avctx->width;
  3874. avctx->coded_height = avctx->height;
  3875. if (avctx->codec_id == CODEC_ID_WMV3)
  3876. {
  3877. int count = 0;
  3878. // looks like WMV3 has a sequence header stored in the extradata
  3879. // advanced sequence header may be before the first frame
  3880. // the last byte of the extradata is a version number, 1 for the
  3881. // samples we can decode
  3882. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3883. if (decode_sequence_header(avctx, &gb) < 0)
  3884. return -1;
  3885. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3886. if (count>0)
  3887. {
  3888. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3889. count, get_bits(&gb, count));
  3890. }
  3891. else if (count < 0)
  3892. {
  3893. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3894. }
  3895. } else { // VC1/WVC1
  3896. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3897. uint8_t *next; int size, buf2_size;
  3898. uint8_t *buf2 = NULL;
  3899. int seq_inited = 0, ep_inited = 0;
  3900. if(avctx->extradata_size < 16) {
  3901. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3902. return -1;
  3903. }
  3904. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3905. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3906. next = start;
  3907. for(; next < end; start = next){
  3908. next = find_next_marker(start + 4, end);
  3909. size = next - start - 4;
  3910. if(size <= 0) continue;
  3911. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3912. init_get_bits(&gb, buf2, buf2_size * 8);
  3913. switch(AV_RB32(start)){
  3914. case VC1_CODE_SEQHDR:
  3915. if(decode_sequence_header(avctx, &gb) < 0){
  3916. av_free(buf2);
  3917. return -1;
  3918. }
  3919. seq_inited = 1;
  3920. break;
  3921. case VC1_CODE_ENTRYPOINT:
  3922. if(decode_entry_point(avctx, &gb) < 0){
  3923. av_free(buf2);
  3924. return -1;
  3925. }
  3926. ep_inited = 1;
  3927. break;
  3928. }
  3929. }
  3930. av_free(buf2);
  3931. if(!seq_inited || !ep_inited){
  3932. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3933. return -1;
  3934. }
  3935. }
  3936. avctx->has_b_frames= !!(avctx->max_b_frames);
  3937. s->low_delay = !avctx->has_b_frames;
  3938. s->mb_width = (avctx->coded_width+15)>>4;
  3939. s->mb_height = (avctx->coded_height+15)>>4;
  3940. /* Allocate mb bitplanes */
  3941. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3942. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3943. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3944. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3945. /* allocate block type info in that way so it could be used with s->block_index[] */
  3946. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3947. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3948. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3949. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3950. /* Init coded blocks info */
  3951. if (v->profile == PROFILE_ADVANCED)
  3952. {
  3953. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3954. // return -1;
  3955. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3956. // return -1;
  3957. }
  3958. return 0;
  3959. }
  3960. /** Decode a VC1/WMV3 frame
  3961. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3962. */
  3963. static int vc1_decode_frame(AVCodecContext *avctx,
  3964. void *data, int *data_size,
  3965. uint8_t *buf, int buf_size)
  3966. {
  3967. VC1Context *v = avctx->priv_data;
  3968. MpegEncContext *s = &v->s;
  3969. AVFrame *pict = data;
  3970. uint8_t *buf2 = NULL;
  3971. /* no supplementary picture */
  3972. if (buf_size == 0) {
  3973. /* special case for last picture */
  3974. if (s->low_delay==0 && s->next_picture_ptr) {
  3975. *pict= *(AVFrame*)s->next_picture_ptr;
  3976. s->next_picture_ptr= NULL;
  3977. *data_size = sizeof(AVFrame);
  3978. }
  3979. return 0;
  3980. }
  3981. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3982. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3983. int i= ff_find_unused_picture(s, 0);
  3984. s->current_picture_ptr= &s->picture[i];
  3985. }
  3986. //for advanced profile we may need to parse and unescape data
  3987. if (avctx->codec_id == CODEC_ID_VC1) {
  3988. int buf_size2 = 0;
  3989. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3990. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3991. uint8_t *start, *end, *next;
  3992. int size;
  3993. next = buf;
  3994. for(start = buf, end = buf + buf_size; next < end; start = next){
  3995. next = find_next_marker(start + 4, end);
  3996. size = next - start - 4;
  3997. if(size <= 0) continue;
  3998. switch(AV_RB32(start)){
  3999. case VC1_CODE_FRAME:
  4000. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4001. break;
  4002. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  4003. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4004. init_get_bits(&s->gb, buf2, buf_size2*8);
  4005. decode_entry_point(avctx, &s->gb);
  4006. break;
  4007. case VC1_CODE_SLICE:
  4008. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  4009. av_free(buf2);
  4010. return -1;
  4011. }
  4012. }
  4013. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  4014. uint8_t *divider;
  4015. divider = find_next_marker(buf, buf + buf_size);
  4016. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  4017. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  4018. return -1;
  4019. }
  4020. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  4021. // TODO
  4022. av_free(buf2);return -1;
  4023. }else{
  4024. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  4025. }
  4026. init_get_bits(&s->gb, buf2, buf_size2*8);
  4027. } else
  4028. init_get_bits(&s->gb, buf, buf_size*8);
  4029. // do parse frame header
  4030. if(v->profile < PROFILE_ADVANCED) {
  4031. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  4032. av_free(buf2);
  4033. return -1;
  4034. }
  4035. } else {
  4036. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  4037. av_free(buf2);
  4038. return -1;
  4039. }
  4040. }
  4041. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  4042. av_free(buf2);
  4043. return -1;
  4044. }
  4045. // for hurry_up==5
  4046. s->current_picture.pict_type= s->pict_type;
  4047. s->current_picture.key_frame= s->pict_type == I_TYPE;
  4048. /* skip B-frames if we don't have reference frames */
  4049. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  4050. av_free(buf2);
  4051. return -1;//buf_size;
  4052. }
  4053. /* skip b frames if we are in a hurry */
  4054. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  4055. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  4056. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4057. || avctx->skip_frame >= AVDISCARD_ALL) {
  4058. av_free(buf2);
  4059. return buf_size;
  4060. }
  4061. /* skip everything if we are in a hurry>=5 */
  4062. if(avctx->hurry_up>=5) {
  4063. av_free(buf2);
  4064. return -1;//buf_size;
  4065. }
  4066. if(s->next_p_frame_damaged){
  4067. if(s->pict_type==B_TYPE)
  4068. return buf_size;
  4069. else
  4070. s->next_p_frame_damaged=0;
  4071. }
  4072. if(MPV_frame_start(s, avctx) < 0) {
  4073. av_free(buf2);
  4074. return -1;
  4075. }
  4076. ff_er_frame_start(s);
  4077. v->bits = buf_size * 8;
  4078. vc1_decode_blocks(v);
  4079. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4080. // if(get_bits_count(&s->gb) > buf_size * 8)
  4081. // return -1;
  4082. ff_er_frame_end(s);
  4083. MPV_frame_end(s);
  4084. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4085. assert(s->current_picture.pict_type == s->pict_type);
  4086. if (s->pict_type == B_TYPE || s->low_delay) {
  4087. *pict= *(AVFrame*)s->current_picture_ptr;
  4088. } else if (s->last_picture_ptr != NULL) {
  4089. *pict= *(AVFrame*)s->last_picture_ptr;
  4090. }
  4091. if(s->last_picture_ptr || s->low_delay){
  4092. *data_size = sizeof(AVFrame);
  4093. ff_print_debug_info(s, pict);
  4094. }
  4095. /* Return the Picture timestamp as the frame number */
  4096. /* we substract 1 because it is added on utils.c */
  4097. avctx->frame_number = s->picture_number - 1;
  4098. av_free(buf2);
  4099. return buf_size;
  4100. }
  4101. /** Close a VC1/WMV3 decoder
  4102. * @warning Initial try at using MpegEncContext stuff
  4103. */
  4104. static int vc1_decode_end(AVCodecContext *avctx)
  4105. {
  4106. VC1Context *v = avctx->priv_data;
  4107. av_freep(&v->hrd_rate);
  4108. av_freep(&v->hrd_buffer);
  4109. MPV_common_end(&v->s);
  4110. av_freep(&v->mv_type_mb_plane);
  4111. av_freep(&v->direct_mb_plane);
  4112. av_freep(&v->acpred_plane);
  4113. av_freep(&v->over_flags_plane);
  4114. av_freep(&v->mb_type_base);
  4115. return 0;
  4116. }
  4117. AVCodec vc1_decoder = {
  4118. "vc1",
  4119. CODEC_TYPE_VIDEO,
  4120. CODEC_ID_VC1,
  4121. sizeof(VC1Context),
  4122. vc1_decode_init,
  4123. NULL,
  4124. vc1_decode_end,
  4125. vc1_decode_frame,
  4126. CODEC_CAP_DELAY,
  4127. NULL
  4128. };
  4129. AVCodec wmv3_decoder = {
  4130. "wmv3",
  4131. CODEC_TYPE_VIDEO,
  4132. CODEC_ID_WMV3,
  4133. sizeof(VC1Context),
  4134. vc1_decode_init,
  4135. NULL,
  4136. vc1_decode_end,
  4137. vc1_decode_frame,
  4138. CODEC_CAP_DELAY,
  4139. NULL
  4140. };
  4141. #ifdef CONFIG_VC1_PARSER
  4142. /**
  4143. * finds the end of the current frame in the bitstream.
  4144. * @return the position of the first byte of the next frame, or -1
  4145. */
  4146. static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf,
  4147. int buf_size) {
  4148. int pic_found, i;
  4149. uint32_t state;
  4150. pic_found= pc->frame_start_found;
  4151. state= pc->state;
  4152. i=0;
  4153. if(!pic_found){
  4154. for(i=0; i<buf_size; i++){
  4155. state= (state<<8) | buf[i];
  4156. if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){
  4157. i++;
  4158. pic_found=1;
  4159. break;
  4160. }
  4161. }
  4162. }
  4163. if(pic_found){
  4164. /* EOF considered as end of frame */
  4165. if (buf_size == 0)
  4166. return 0;
  4167. for(; i<buf_size; i++){
  4168. state= (state<<8) | buf[i];
  4169. if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){
  4170. pc->frame_start_found=0;
  4171. pc->state=-1;
  4172. return i-3;
  4173. }
  4174. }
  4175. }
  4176. pc->frame_start_found= pic_found;
  4177. pc->state= state;
  4178. return END_NOT_FOUND;
  4179. }
  4180. static int vc1_parse(AVCodecParserContext *s,
  4181. AVCodecContext *avctx,
  4182. uint8_t **poutbuf, int *poutbuf_size,
  4183. const uint8_t *buf, int buf_size)
  4184. {
  4185. ParseContext *pc = s->priv_data;
  4186. int next;
  4187. if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
  4188. next= buf_size;
  4189. }else{
  4190. next= vc1_find_frame_end(pc, buf, buf_size);
  4191. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  4192. *poutbuf = NULL;
  4193. *poutbuf_size = 0;
  4194. return buf_size;
  4195. }
  4196. }
  4197. *poutbuf = (uint8_t *)buf;
  4198. *poutbuf_size = buf_size;
  4199. return next;
  4200. }
  4201. static int vc1_split(AVCodecContext *avctx,
  4202. const uint8_t *buf, int buf_size)
  4203. {
  4204. int i;
  4205. uint32_t state= -1;
  4206. for(i=0; i<buf_size; i++){
  4207. state= (state<<8) | buf[i];
  4208. if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT)
  4209. return i-3;
  4210. }
  4211. return 0;
  4212. }
  4213. AVCodecParser vc1_parser = {
  4214. { CODEC_ID_VC1 },
  4215. sizeof(ParseContext1),
  4216. NULL,
  4217. vc1_parse,
  4218. ff_parse1_close,
  4219. vc1_split,
  4220. };
  4221. #endif /* CONFIG_VC1_PARSER */