You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1391 lines
44KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  23. * the algorithm used
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "common.h"
  30. #include "bitstream.h"
  31. #include "avcodec.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #ifdef WORDS_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. VLC vlc[3];
  69. AVFrame picture;
  70. uint8_t *bitstream_buffer;
  71. unsigned int bitstream_buffer_size;
  72. DSPContext dsp;
  73. }HYuvContext;
  74. static const unsigned char classic_shift_luma[] = {
  75. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  76. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  77. 69,68, 0
  78. };
  79. static const unsigned char classic_shift_chroma[] = {
  80. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  81. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  82. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  83. };
  84. static const unsigned char classic_add_luma[256] = {
  85. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  86. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  87. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  88. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  89. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  90. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  91. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  92. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  93. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  94. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  95. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  96. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  97. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  98. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  99. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  100. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  101. };
  102. static const unsigned char classic_add_chroma[256] = {
  103. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  104. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  105. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  106. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  107. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  108. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  109. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  110. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  111. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  112. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  113. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  114. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  115. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  116. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  117. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  118. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  119. };
  120. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  121. int i;
  122. for(i=0; i<w-1; i++){
  123. acc+= src[i];
  124. dst[i]= acc;
  125. i++;
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. for(; i<w; i++){
  130. acc+= src[i];
  131. dst[i]= acc;
  132. }
  133. return acc;
  134. }
  135. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  136. int i;
  137. uint8_t l, lt;
  138. l= *left;
  139. lt= *left_top;
  140. for(i=0; i<w; i++){
  141. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  142. lt= src1[i];
  143. dst[i]= l;
  144. }
  145. *left= l;
  146. *left_top= lt;
  147. }
  148. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  149. int i;
  150. int r,g,b;
  151. r= *red;
  152. g= *green;
  153. b= *blue;
  154. for(i=0; i<w; i++){
  155. b+= src[4*i+B];
  156. g+= src[4*i+G];
  157. r+= src[4*i+R];
  158. dst[4*i+B]= b;
  159. dst[4*i+G]= g;
  160. dst[4*i+R]= r;
  161. }
  162. *red= r;
  163. *green= g;
  164. *blue= b;
  165. }
  166. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  167. int i;
  168. if(w<32){
  169. for(i=0; i<w; i++){
  170. const int temp= src[i];
  171. dst[i]= temp - left;
  172. left= temp;
  173. }
  174. return left;
  175. }else{
  176. for(i=0; i<16; i++){
  177. const int temp= src[i];
  178. dst[i]= temp - left;
  179. left= temp;
  180. }
  181. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  182. return src[w-1];
  183. }
  184. }
  185. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  186. int i;
  187. int r,g,b;
  188. r= *red;
  189. g= *green;
  190. b= *blue;
  191. for(i=0; i<FFMIN(w,4); i++){
  192. const int rt= src[i*4+R];
  193. const int gt= src[i*4+G];
  194. const int bt= src[i*4+B];
  195. dst[i*4+R]= rt - r;
  196. dst[i*4+G]= gt - g;
  197. dst[i*4+B]= bt - b;
  198. r = rt;
  199. g = gt;
  200. b = bt;
  201. }
  202. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  203. *red= src[(w-1)*4+R];
  204. *green= src[(w-1)*4+G];
  205. *blue= src[(w-1)*4+B];
  206. }
  207. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  208. int i, val, repeat;
  209. for(i=0; i<256;){
  210. repeat= get_bits(gb, 3);
  211. val = get_bits(gb, 5);
  212. if(repeat==0)
  213. repeat= get_bits(gb, 8);
  214. //printf("%d %d\n", val, repeat);
  215. while (repeat--)
  216. dst[i++] = val;
  217. }
  218. }
  219. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  220. int len, index;
  221. uint32_t bits=0;
  222. for(len=32; len>0; len--){
  223. for(index=0; index<256; index++){
  224. if(len_table[index]==len)
  225. dst[index]= bits++;
  226. }
  227. if(bits & 1){
  228. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  229. return -1;
  230. }
  231. bits >>= 1;
  232. }
  233. return 0;
  234. }
  235. #ifdef CONFIG_ENCODERS
  236. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  237. uint64_t counts[2*size];
  238. int up[2*size];
  239. int offset, i, next;
  240. for(offset=1; ; offset<<=1){
  241. for(i=0; i<size; i++){
  242. counts[i]= stats[i] + offset - 1;
  243. }
  244. for(next=size; next<size*2; next++){
  245. uint64_t min1, min2;
  246. int min1_i, min2_i;
  247. min1=min2= INT64_MAX;
  248. min1_i= min2_i=-1;
  249. for(i=0; i<next; i++){
  250. if(min2 > counts[i]){
  251. if(min1 > counts[i]){
  252. min2= min1;
  253. min2_i= min1_i;
  254. min1= counts[i];
  255. min1_i= i;
  256. }else{
  257. min2= counts[i];
  258. min2_i= i;
  259. }
  260. }
  261. }
  262. if(min2==INT64_MAX) break;
  263. counts[next]= min1 + min2;
  264. counts[min1_i]=
  265. counts[min2_i]= INT64_MAX;
  266. up[min1_i]=
  267. up[min2_i]= next;
  268. up[next]= -1;
  269. }
  270. for(i=0; i<size; i++){
  271. int len;
  272. int index=i;
  273. for(len=0; up[index] != -1; len++)
  274. index= up[index];
  275. if(len >= 32) break;
  276. dst[i]= len;
  277. }
  278. if(i==size) break;
  279. }
  280. }
  281. #endif /* CONFIG_ENCODERS */
  282. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  283. GetBitContext gb;
  284. int i;
  285. init_get_bits(&gb, src, length*8);
  286. for(i=0; i<3; i++){
  287. read_len_table(s->len[i], &gb);
  288. if(generate_bits_table(s->bits[i], s->len[i])<0){
  289. return -1;
  290. }
  291. #if 0
  292. for(j=0; j<256; j++){
  293. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  294. }
  295. #endif
  296. free_vlc(&s->vlc[i]);
  297. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  298. }
  299. return (get_bits_count(&gb)+7)/8;
  300. }
  301. static int read_old_huffman_tables(HYuvContext *s){
  302. #if 1
  303. GetBitContext gb;
  304. int i;
  305. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  306. read_len_table(s->len[0], &gb);
  307. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  308. read_len_table(s->len[1], &gb);
  309. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  310. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  311. if(s->bitstream_bpp >= 24){
  312. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  313. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  314. }
  315. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  316. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  317. for(i=0; i<3; i++){
  318. free_vlc(&s->vlc[i]);
  319. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  320. }
  321. return 0;
  322. #else
  323. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  324. return -1;
  325. #endif
  326. }
  327. static void alloc_temp(HYuvContext *s){
  328. int i;
  329. if(s->bitstream_bpp<24){
  330. for(i=0; i<3; i++){
  331. s->temp[i]= av_malloc(s->width + 16);
  332. }
  333. }else{
  334. for(i=0; i<2; i++){
  335. s->temp[i]= av_malloc(4*s->width + 16);
  336. }
  337. }
  338. }
  339. static int common_init(AVCodecContext *avctx){
  340. HYuvContext *s = avctx->priv_data;
  341. s->avctx= avctx;
  342. s->flags= avctx->flags;
  343. dsputil_init(&s->dsp, avctx);
  344. s->width= avctx->width;
  345. s->height= avctx->height;
  346. assert(s->width>0 && s->height>0);
  347. return 0;
  348. }
  349. #ifdef CONFIG_DECODERS
  350. static int decode_init(AVCodecContext *avctx)
  351. {
  352. HYuvContext *s = avctx->priv_data;
  353. common_init(avctx);
  354. memset(s->vlc, 0, 3*sizeof(VLC));
  355. avctx->coded_frame= &s->picture;
  356. s->interlaced= s->height > 288;
  357. s->bgr32=1;
  358. //if(avctx->extradata)
  359. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  360. if(avctx->extradata_size){
  361. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  362. s->version=1; // do such files exist at all?
  363. else
  364. s->version=2;
  365. }else
  366. s->version=0;
  367. if(s->version==2){
  368. int method, interlace;
  369. method= ((uint8_t*)avctx->extradata)[0];
  370. s->decorrelate= method&64 ? 1 : 0;
  371. s->predictor= method&63;
  372. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  373. if(s->bitstream_bpp==0)
  374. s->bitstream_bpp= avctx->bits_per_sample&~7;
  375. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  376. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  377. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  378. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  379. return -1;
  380. }else{
  381. switch(avctx->bits_per_sample&7){
  382. case 1:
  383. s->predictor= LEFT;
  384. s->decorrelate= 0;
  385. break;
  386. case 2:
  387. s->predictor= LEFT;
  388. s->decorrelate= 1;
  389. break;
  390. case 3:
  391. s->predictor= PLANE;
  392. s->decorrelate= avctx->bits_per_sample >= 24;
  393. break;
  394. case 4:
  395. s->predictor= MEDIAN;
  396. s->decorrelate= 0;
  397. break;
  398. default:
  399. s->predictor= LEFT; //OLD
  400. s->decorrelate= 0;
  401. break;
  402. }
  403. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  404. s->context= 0;
  405. if(read_old_huffman_tables(s) < 0)
  406. return -1;
  407. }
  408. switch(s->bitstream_bpp){
  409. case 12:
  410. avctx->pix_fmt = PIX_FMT_YUV420P;
  411. break;
  412. case 16:
  413. if(s->yuy2){
  414. avctx->pix_fmt = PIX_FMT_YUYV422;
  415. }else{
  416. avctx->pix_fmt = PIX_FMT_YUV422P;
  417. }
  418. break;
  419. case 24:
  420. case 32:
  421. if(s->bgr32){
  422. avctx->pix_fmt = PIX_FMT_RGB32;
  423. }else{
  424. avctx->pix_fmt = PIX_FMT_BGR24;
  425. }
  426. break;
  427. default:
  428. assert(0);
  429. }
  430. alloc_temp(s);
  431. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  432. return 0;
  433. }
  434. #endif
  435. #ifdef CONFIG_ENCODERS
  436. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  437. int i;
  438. int index= 0;
  439. for(i=0; i<256;){
  440. int val= len[i];
  441. int repeat=0;
  442. for(; i<256 && len[i]==val && repeat<255; i++)
  443. repeat++;
  444. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  445. if(repeat>7){
  446. buf[index++]= val;
  447. buf[index++]= repeat;
  448. }else{
  449. buf[index++]= val | (repeat<<5);
  450. }
  451. }
  452. return index;
  453. }
  454. static int encode_init(AVCodecContext *avctx)
  455. {
  456. HYuvContext *s = avctx->priv_data;
  457. int i, j;
  458. common_init(avctx);
  459. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  460. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  461. s->version=2;
  462. avctx->coded_frame= &s->picture;
  463. switch(avctx->pix_fmt){
  464. case PIX_FMT_YUV420P:
  465. s->bitstream_bpp= 12;
  466. break;
  467. case PIX_FMT_YUV422P:
  468. s->bitstream_bpp= 16;
  469. break;
  470. case PIX_FMT_RGB32:
  471. s->bitstream_bpp= 24;
  472. break;
  473. default:
  474. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  475. return -1;
  476. }
  477. avctx->bits_per_sample= s->bitstream_bpp;
  478. s->decorrelate= s->bitstream_bpp >= 24;
  479. s->predictor= avctx->prediction_method;
  480. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  481. if(avctx->context_model==1){
  482. s->context= avctx->context_model;
  483. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  484. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  485. return -1;
  486. }
  487. }else s->context= 0;
  488. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  489. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  490. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  491. return -1;
  492. }
  493. if(avctx->context_model){
  494. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  495. return -1;
  496. }
  497. if(s->interlaced != ( s->height > 288 ))
  498. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  499. }
  500. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  501. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  502. return -1;
  503. }
  504. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  505. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  506. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  507. if(s->context)
  508. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  509. ((uint8_t*)avctx->extradata)[3]= 0;
  510. s->avctx->extradata_size= 4;
  511. if(avctx->stats_in){
  512. char *p= avctx->stats_in;
  513. for(i=0; i<3; i++)
  514. for(j=0; j<256; j++)
  515. s->stats[i][j]= 1;
  516. for(;;){
  517. for(i=0; i<3; i++){
  518. char *next;
  519. for(j=0; j<256; j++){
  520. s->stats[i][j]+= strtol(p, &next, 0);
  521. if(next==p) return -1;
  522. p=next;
  523. }
  524. }
  525. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  526. }
  527. }else{
  528. for(i=0; i<3; i++)
  529. for(j=0; j<256; j++){
  530. int d= FFMIN(j, 256-j);
  531. s->stats[i][j]= 100000000/(d+1);
  532. }
  533. }
  534. for(i=0; i<3; i++){
  535. generate_len_table(s->len[i], s->stats[i], 256);
  536. if(generate_bits_table(s->bits[i], s->len[i])<0){
  537. return -1;
  538. }
  539. s->avctx->extradata_size+=
  540. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  541. }
  542. if(s->context){
  543. for(i=0; i<3; i++){
  544. int pels = s->width*s->height / (i?40:10);
  545. for(j=0; j<256; j++){
  546. int d= FFMIN(j, 256-j);
  547. s->stats[i][j]= pels/(d+1);
  548. }
  549. }
  550. }else{
  551. for(i=0; i<3; i++)
  552. for(j=0; j<256; j++)
  553. s->stats[i][j]= 0;
  554. }
  555. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  556. alloc_temp(s);
  557. s->picture_number=0;
  558. return 0;
  559. }
  560. #endif /* CONFIG_ENCODERS */
  561. static void decode_422_bitstream(HYuvContext *s, int count){
  562. int i;
  563. count/=2;
  564. for(i=0; i<count; i++){
  565. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  566. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  567. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  568. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  569. }
  570. }
  571. static void decode_gray_bitstream(HYuvContext *s, int count){
  572. int i;
  573. count/=2;
  574. for(i=0; i<count; i++){
  575. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  576. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  577. }
  578. }
  579. #ifdef CONFIG_ENCODERS
  580. static int encode_422_bitstream(HYuvContext *s, int count){
  581. int i;
  582. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  583. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  584. return -1;
  585. }
  586. count/=2;
  587. if(s->flags&CODEC_FLAG_PASS1){
  588. for(i=0; i<count; i++){
  589. s->stats[0][ s->temp[0][2*i ] ]++;
  590. s->stats[1][ s->temp[1][ i ] ]++;
  591. s->stats[0][ s->temp[0][2*i+1] ]++;
  592. s->stats[2][ s->temp[2][ i ] ]++;
  593. }
  594. }
  595. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  596. return 0;
  597. if(s->context){
  598. for(i=0; i<count; i++){
  599. s->stats[0][ s->temp[0][2*i ] ]++;
  600. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  601. s->stats[1][ s->temp[1][ i ] ]++;
  602. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  603. s->stats[0][ s->temp[0][2*i+1] ]++;
  604. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  605. s->stats[2][ s->temp[2][ i ] ]++;
  606. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  607. }
  608. }else{
  609. for(i=0; i<count; i++){
  610. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  611. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  612. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  613. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  614. }
  615. }
  616. return 0;
  617. }
  618. static int encode_gray_bitstream(HYuvContext *s, int count){
  619. int i;
  620. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  621. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  622. return -1;
  623. }
  624. count/=2;
  625. if(s->flags&CODEC_FLAG_PASS1){
  626. for(i=0; i<count; i++){
  627. s->stats[0][ s->temp[0][2*i ] ]++;
  628. s->stats[0][ s->temp[0][2*i+1] ]++;
  629. }
  630. }
  631. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  632. return 0;
  633. if(s->context){
  634. for(i=0; i<count; i++){
  635. s->stats[0][ s->temp[0][2*i ] ]++;
  636. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  637. s->stats[0][ s->temp[0][2*i+1] ]++;
  638. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  639. }
  640. }else{
  641. for(i=0; i<count; i++){
  642. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  643. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  644. }
  645. }
  646. return 0;
  647. }
  648. #endif /* CONFIG_ENCODERS */
  649. static void decode_bgr_bitstream(HYuvContext *s, int count){
  650. int i;
  651. if(s->decorrelate){
  652. if(s->bitstream_bpp==24){
  653. for(i=0; i<count; i++){
  654. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  655. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  656. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  657. }
  658. }else{
  659. for(i=0; i<count; i++){
  660. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  661. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  662. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  663. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  664. }
  665. }
  666. }else{
  667. if(s->bitstream_bpp==24){
  668. for(i=0; i<count; i++){
  669. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  670. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  671. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  672. }
  673. }else{
  674. for(i=0; i<count; i++){
  675. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  676. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  677. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  678. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  679. }
  680. }
  681. }
  682. }
  683. static int encode_bgr_bitstream(HYuvContext *s, int count){
  684. int i;
  685. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  686. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  687. return -1;
  688. }
  689. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  690. for(i=0; i<count; i++){
  691. int g= s->temp[0][4*i+G];
  692. int b= (s->temp[0][4*i+B] - g) & 0xff;
  693. int r= (s->temp[0][4*i+R] - g) & 0xff;
  694. s->stats[0][b]++;
  695. s->stats[1][g]++;
  696. s->stats[2][r]++;
  697. }
  698. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  699. for(i=0; i<count; i++){
  700. int g= s->temp[0][4*i+G];
  701. int b= (s->temp[0][4*i+B] - g) & 0xff;
  702. int r= (s->temp[0][4*i+R] - g) & 0xff;
  703. s->stats[0][b]++;
  704. s->stats[1][g]++;
  705. s->stats[2][r]++;
  706. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);
  707. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);
  708. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  709. }
  710. }else{
  711. for(i=0; i<count; i++){
  712. int g= s->temp[0][4*i+G];
  713. int b= (s->temp[0][4*i+B] - g) & 0xff;
  714. int r= (s->temp[0][4*i+R] - g) & 0xff;
  715. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);
  716. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);
  717. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  718. }
  719. }
  720. return 0;
  721. }
  722. #ifdef CONFIG_DECODERS
  723. static void draw_slice(HYuvContext *s, int y){
  724. int h, cy;
  725. int offset[4];
  726. if(s->avctx->draw_horiz_band==NULL)
  727. return;
  728. h= y - s->last_slice_end;
  729. y -= h;
  730. if(s->bitstream_bpp==12){
  731. cy= y>>1;
  732. }else{
  733. cy= y;
  734. }
  735. offset[0] = s->picture.linesize[0]*y;
  736. offset[1] = s->picture.linesize[1]*cy;
  737. offset[2] = s->picture.linesize[2]*cy;
  738. offset[3] = 0;
  739. emms_c();
  740. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  741. s->last_slice_end= y + h;
  742. }
  743. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  744. HYuvContext *s = avctx->priv_data;
  745. const int width= s->width;
  746. const int width2= s->width>>1;
  747. const int height= s->height;
  748. int fake_ystride, fake_ustride, fake_vstride;
  749. AVFrame * const p= &s->picture;
  750. int table_size= 0;
  751. AVFrame *picture = data;
  752. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  753. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  754. if(p->data[0])
  755. avctx->release_buffer(avctx, p);
  756. p->reference= 0;
  757. if(avctx->get_buffer(avctx, p) < 0){
  758. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  759. return -1;
  760. }
  761. if(s->context){
  762. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  763. if(table_size < 0)
  764. return -1;
  765. }
  766. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  767. return -1;
  768. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  769. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  770. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  771. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  772. s->last_slice_end= 0;
  773. if(s->bitstream_bpp<24){
  774. int y, cy;
  775. int lefty, leftu, leftv;
  776. int lefttopy, lefttopu, lefttopv;
  777. if(s->yuy2){
  778. p->data[0][3]= get_bits(&s->gb, 8);
  779. p->data[0][2]= get_bits(&s->gb, 8);
  780. p->data[0][1]= get_bits(&s->gb, 8);
  781. p->data[0][0]= get_bits(&s->gb, 8);
  782. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  783. return -1;
  784. }else{
  785. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  786. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  787. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  788. p->data[0][0]= get_bits(&s->gb, 8);
  789. switch(s->predictor){
  790. case LEFT:
  791. case PLANE:
  792. decode_422_bitstream(s, width-2);
  793. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  794. if(!(s->flags&CODEC_FLAG_GRAY)){
  795. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  796. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  797. }
  798. for(cy=y=1; y<s->height; y++,cy++){
  799. uint8_t *ydst, *udst, *vdst;
  800. if(s->bitstream_bpp==12){
  801. decode_gray_bitstream(s, width);
  802. ydst= p->data[0] + p->linesize[0]*y;
  803. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  804. if(s->predictor == PLANE){
  805. if(y>s->interlaced)
  806. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  807. }
  808. y++;
  809. if(y>=s->height) break;
  810. }
  811. draw_slice(s, y);
  812. ydst= p->data[0] + p->linesize[0]*y;
  813. udst= p->data[1] + p->linesize[1]*cy;
  814. vdst= p->data[2] + p->linesize[2]*cy;
  815. decode_422_bitstream(s, width);
  816. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  817. if(!(s->flags&CODEC_FLAG_GRAY)){
  818. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  819. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  820. }
  821. if(s->predictor == PLANE){
  822. if(cy>s->interlaced){
  823. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  824. if(!(s->flags&CODEC_FLAG_GRAY)){
  825. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  826. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  827. }
  828. }
  829. }
  830. }
  831. draw_slice(s, height);
  832. break;
  833. case MEDIAN:
  834. /* first line except first 2 pixels is left predicted */
  835. decode_422_bitstream(s, width-2);
  836. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  837. if(!(s->flags&CODEC_FLAG_GRAY)){
  838. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  839. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  840. }
  841. cy=y=1;
  842. /* second line is left predicted for interlaced case */
  843. if(s->interlaced){
  844. decode_422_bitstream(s, width);
  845. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  846. if(!(s->flags&CODEC_FLAG_GRAY)){
  847. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  848. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  849. }
  850. y++; cy++;
  851. }
  852. /* next 4 pixels are left predicted too */
  853. decode_422_bitstream(s, 4);
  854. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  855. if(!(s->flags&CODEC_FLAG_GRAY)){
  856. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  857. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  858. }
  859. /* next line except the first 4 pixels is median predicted */
  860. lefttopy= p->data[0][3];
  861. decode_422_bitstream(s, width-4);
  862. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  863. if(!(s->flags&CODEC_FLAG_GRAY)){
  864. lefttopu= p->data[1][1];
  865. lefttopv= p->data[2][1];
  866. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  867. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  868. }
  869. y++; cy++;
  870. for(; y<height; y++,cy++){
  871. uint8_t *ydst, *udst, *vdst;
  872. if(s->bitstream_bpp==12){
  873. while(2*cy > y){
  874. decode_gray_bitstream(s, width);
  875. ydst= p->data[0] + p->linesize[0]*y;
  876. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  877. y++;
  878. }
  879. if(y>=height) break;
  880. }
  881. draw_slice(s, y);
  882. decode_422_bitstream(s, width);
  883. ydst= p->data[0] + p->linesize[0]*y;
  884. udst= p->data[1] + p->linesize[1]*cy;
  885. vdst= p->data[2] + p->linesize[2]*cy;
  886. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  887. if(!(s->flags&CODEC_FLAG_GRAY)){
  888. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  889. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  890. }
  891. }
  892. draw_slice(s, height);
  893. break;
  894. }
  895. }
  896. }else{
  897. int y;
  898. int leftr, leftg, leftb;
  899. const int last_line= (height-1)*p->linesize[0];
  900. if(s->bitstream_bpp==32){
  901. skip_bits(&s->gb, 8);
  902. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  903. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  904. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  905. }else{
  906. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  907. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  908. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  909. skip_bits(&s->gb, 8);
  910. }
  911. if(s->bgr32){
  912. switch(s->predictor){
  913. case LEFT:
  914. case PLANE:
  915. decode_bgr_bitstream(s, width-1);
  916. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  917. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  918. decode_bgr_bitstream(s, width);
  919. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  920. if(s->predictor == PLANE){
  921. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  922. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  923. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  924. }
  925. }
  926. }
  927. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  928. break;
  929. default:
  930. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  931. }
  932. }else{
  933. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  934. return -1;
  935. }
  936. }
  937. emms_c();
  938. *picture= *p;
  939. *data_size = sizeof(AVFrame);
  940. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  941. }
  942. #endif
  943. static int common_end(HYuvContext *s){
  944. int i;
  945. for(i=0; i<3; i++){
  946. av_freep(&s->temp[i]);
  947. }
  948. return 0;
  949. }
  950. #ifdef CONFIG_DECODERS
  951. static int decode_end(AVCodecContext *avctx)
  952. {
  953. HYuvContext *s = avctx->priv_data;
  954. int i;
  955. common_end(s);
  956. av_freep(&s->bitstream_buffer);
  957. for(i=0; i<3; i++){
  958. free_vlc(&s->vlc[i]);
  959. }
  960. return 0;
  961. }
  962. #endif
  963. #ifdef CONFIG_ENCODERS
  964. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  965. HYuvContext *s = avctx->priv_data;
  966. AVFrame *pict = data;
  967. const int width= s->width;
  968. const int width2= s->width>>1;
  969. const int height= s->height;
  970. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  971. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  972. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  973. AVFrame * const p= &s->picture;
  974. int i, j, size=0;
  975. *p = *pict;
  976. p->pict_type= FF_I_TYPE;
  977. p->key_frame= 1;
  978. if(s->context){
  979. for(i=0; i<3; i++){
  980. generate_len_table(s->len[i], s->stats[i], 256);
  981. if(generate_bits_table(s->bits[i], s->len[i])<0)
  982. return -1;
  983. size+= store_table(s, s->len[i], &buf[size]);
  984. }
  985. for(i=0; i<3; i++)
  986. for(j=0; j<256; j++)
  987. s->stats[i][j] >>= 1;
  988. }
  989. init_put_bits(&s->pb, buf+size, buf_size-size);
  990. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  991. int lefty, leftu, leftv, y, cy;
  992. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  993. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  994. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  995. put_bits(&s->pb, 8, p->data[0][0]);
  996. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  997. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  998. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  999. encode_422_bitstream(s, width-2);
  1000. if(s->predictor==MEDIAN){
  1001. int lefttopy, lefttopu, lefttopv;
  1002. cy=y=1;
  1003. if(s->interlaced){
  1004. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1005. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1006. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1007. encode_422_bitstream(s, width);
  1008. y++; cy++;
  1009. }
  1010. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1011. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1012. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1013. encode_422_bitstream(s, 4);
  1014. lefttopy= p->data[0][3];
  1015. lefttopu= p->data[1][1];
  1016. lefttopv= p->data[2][1];
  1017. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1018. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1019. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1020. encode_422_bitstream(s, width-4);
  1021. y++; cy++;
  1022. for(; y<height; y++,cy++){
  1023. uint8_t *ydst, *udst, *vdst;
  1024. if(s->bitstream_bpp==12){
  1025. while(2*cy > y){
  1026. ydst= p->data[0] + p->linesize[0]*y;
  1027. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1028. encode_gray_bitstream(s, width);
  1029. y++;
  1030. }
  1031. if(y>=height) break;
  1032. }
  1033. ydst= p->data[0] + p->linesize[0]*y;
  1034. udst= p->data[1] + p->linesize[1]*cy;
  1035. vdst= p->data[2] + p->linesize[2]*cy;
  1036. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1037. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1038. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1039. encode_422_bitstream(s, width);
  1040. }
  1041. }else{
  1042. for(cy=y=1; y<height; y++,cy++){
  1043. uint8_t *ydst, *udst, *vdst;
  1044. /* encode a luma only line & y++ */
  1045. if(s->bitstream_bpp==12){
  1046. ydst= p->data[0] + p->linesize[0]*y;
  1047. if(s->predictor == PLANE && s->interlaced < y){
  1048. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1049. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1050. }else{
  1051. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1052. }
  1053. encode_gray_bitstream(s, width);
  1054. y++;
  1055. if(y>=height) break;
  1056. }
  1057. ydst= p->data[0] + p->linesize[0]*y;
  1058. udst= p->data[1] + p->linesize[1]*cy;
  1059. vdst= p->data[2] + p->linesize[2]*cy;
  1060. if(s->predictor == PLANE && s->interlaced < cy){
  1061. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1062. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1063. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1064. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1065. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1066. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1067. }else{
  1068. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1069. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1070. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1071. }
  1072. encode_422_bitstream(s, width);
  1073. }
  1074. }
  1075. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1076. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1077. const int stride = -p->linesize[0];
  1078. const int fake_stride = -fake_ystride;
  1079. int y;
  1080. int leftr, leftg, leftb;
  1081. put_bits(&s->pb, 8, leftr= data[R]);
  1082. put_bits(&s->pb, 8, leftg= data[G]);
  1083. put_bits(&s->pb, 8, leftb= data[B]);
  1084. put_bits(&s->pb, 8, 0);
  1085. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1086. encode_bgr_bitstream(s, width-1);
  1087. for(y=1; y<s->height; y++){
  1088. uint8_t *dst = data + y*stride;
  1089. if(s->predictor == PLANE && s->interlaced < y){
  1090. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1091. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1092. }else{
  1093. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1094. }
  1095. encode_bgr_bitstream(s, width);
  1096. }
  1097. }else{
  1098. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1099. }
  1100. emms_c();
  1101. size+= (put_bits_count(&s->pb)+31)/8;
  1102. size/= 4;
  1103. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1104. int j;
  1105. char *p= avctx->stats_out;
  1106. char *end= p + 1024*30;
  1107. for(i=0; i<3; i++){
  1108. for(j=0; j<256; j++){
  1109. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1110. p+= strlen(p);
  1111. s->stats[i][j]= 0;
  1112. }
  1113. snprintf(p, end-p, "\n");
  1114. p++;
  1115. }
  1116. }
  1117. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1118. flush_put_bits(&s->pb);
  1119. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1120. avctx->stats_out[0] = '\0';
  1121. }
  1122. s->picture_number++;
  1123. return size*4;
  1124. }
  1125. static int encode_end(AVCodecContext *avctx)
  1126. {
  1127. HYuvContext *s = avctx->priv_data;
  1128. common_end(s);
  1129. av_freep(&avctx->extradata);
  1130. av_freep(&avctx->stats_out);
  1131. return 0;
  1132. }
  1133. #endif /* CONFIG_ENCODERS */
  1134. #ifdef CONFIG_DECODERS
  1135. AVCodec huffyuv_decoder = {
  1136. "huffyuv",
  1137. CODEC_TYPE_VIDEO,
  1138. CODEC_ID_HUFFYUV,
  1139. sizeof(HYuvContext),
  1140. decode_init,
  1141. NULL,
  1142. decode_end,
  1143. decode_frame,
  1144. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1145. NULL
  1146. };
  1147. AVCodec ffvhuff_decoder = {
  1148. "ffvhuff",
  1149. CODEC_TYPE_VIDEO,
  1150. CODEC_ID_FFVHUFF,
  1151. sizeof(HYuvContext),
  1152. decode_init,
  1153. NULL,
  1154. decode_end,
  1155. decode_frame,
  1156. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1157. NULL
  1158. };
  1159. #endif
  1160. #ifdef CONFIG_ENCODERS
  1161. AVCodec huffyuv_encoder = {
  1162. "huffyuv",
  1163. CODEC_TYPE_VIDEO,
  1164. CODEC_ID_HUFFYUV,
  1165. sizeof(HYuvContext),
  1166. encode_init,
  1167. encode_frame,
  1168. encode_end,
  1169. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1170. };
  1171. AVCodec ffvhuff_encoder = {
  1172. "ffvhuff",
  1173. CODEC_TYPE_VIDEO,
  1174. CODEC_ID_FFVHUFF,
  1175. sizeof(HYuvContext),
  1176. encode_init,
  1177. encode_frame,
  1178. encode_end,
  1179. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1180. };
  1181. #endif //CONFIG_ENCODERS