You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3043 lines
83KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", and a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph has a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} functions defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of two forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert @ref{scale} filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Here is a BNF description of the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (possibly quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. It accepts the following parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. Force the output to either unsigned 8-bit or signed 16-bit stereo
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. It accepts the following parameters:
  127. @table @option
  128. @item inputs
  129. The number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. The duration of the longest input. (default)
  135. @item shortest
  136. The duration of the shortest input.
  137. @item first
  138. The duration of the first input.
  139. @end table
  140. @item dropout_transition
  141. The transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. It accepts the following parameters:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item PTS
  157. the presentation timestamp in input
  158. @item E, PI, PHI
  159. These are approximated values for the mathematical constants e
  160. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  161. @item N
  162. The number of audio samples passed through the filter so far, starting at 0.
  163. @item S
  164. The number of audio samples in the current frame.
  165. @item SR
  166. The audio sample rate.
  167. @item STARTPTS
  168. The PTS of the first frame.
  169. @item PREV_INPTS
  170. The previous input PTS.
  171. @item PREV_OUTPTS
  172. The previous output PTS.
  173. @item RTCTIME
  174. The wallclock (RTC) time in microseconds.
  175. @item RTCSTART
  176. The wallclock (RTC) time at the start of the movie in microseconds.
  177. @end table
  178. Some examples:
  179. @example
  180. # Start counting PTS from zero
  181. asetpts=expr=PTS-STARTPTS
  182. # Generate timestamps by counting samples
  183. asetpts=expr=N/SR/TB
  184. # Generate timestamps from a "live source" and rebase onto the current timebase
  185. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  186. @end example
  187. @section asettb
  188. Set the timebase to use for the output frames timestamps.
  189. It is mainly useful for testing timebase configuration.
  190. This filter accepts the following parameters:
  191. @table @option
  192. @item expr
  193. The expression which is evaluated into the output timebase.
  194. @end table
  195. The expression can contain the constants @var{PI}, @var{E}, @var{PHI}, @var{AVTB} (the
  196. default timebase), @var{intb} (the input timebase), and @var{sr} (the sample rate,
  197. audio only).
  198. The default value for the input is @var{intb}.
  199. Some examples:
  200. @example
  201. # Set the timebase to 1/25:
  202. settb=1/25
  203. # Set the timebase to 1/10:
  204. settb=0.1
  205. # Set the timebase to 1001/1000:
  206. settb=1+0.001
  207. # Set the timebase to 2*intb:
  208. settb=2*intb
  209. # Set the default timebase value:
  210. settb=AVTB
  211. # Set the timebase to twice the sample rate:
  212. asettb=sr*2
  213. @end example
  214. @section ashowinfo
  215. Show a line containing various information for each input audio frame.
  216. The input audio is not modified.
  217. The shown line contains a sequence of key/value pairs of the form
  218. @var{key}:@var{value}.
  219. It accepts the following parameters:
  220. @table @option
  221. @item n
  222. The (sequential) number of the input frame, starting from 0.
  223. @item pts
  224. The presentation timestamp of the input frame, in time base units; the time base
  225. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  226. @item pts_time
  227. The presentation timestamp of the input frame in seconds.
  228. @item fmt
  229. The sample format.
  230. @item chlayout
  231. The channel layout.
  232. @item rate
  233. The sample rate for the audio frame.
  234. @item nb_samples
  235. The number of samples (per channel) in the frame.
  236. @item checksum
  237. The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar
  238. audio, the data is treated as if all the planes were concatenated.
  239. @item plane_checksums
  240. A list of Adler-32 checksums for each data plane.
  241. @end table
  242. @section asplit
  243. Split input audio into several identical outputs.
  244. It accepts a single parameter, which specifies the number of outputs. If
  245. unspecified, it defaults to 2.
  246. For example,
  247. @example
  248. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  249. @end example
  250. will create 5 copies of the input audio.
  251. @section asyncts
  252. Synchronize audio data with timestamps by squeezing/stretching it and/or
  253. dropping samples/adding silence when needed.
  254. It accepts the following parameters:
  255. @table @option
  256. @item compensate
  257. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  258. by default. When disabled, time gaps are covered with silence.
  259. @item min_delta
  260. The minimum difference between timestamps and audio data (in seconds) to trigger
  261. adding/dropping samples. The default value is 0.1. If you get an imperfect
  262. sync with this filter, try setting this parameter to 0.
  263. @item max_comp
  264. The maximum compensation in samples per second. Only relevant with compensate=1.
  265. The default value is 500.
  266. @item first_pts
  267. Assume that the first PTS should be this value. The time base is 1 / sample
  268. rate. This allows for padding/trimming at the start of the stream. By default,
  269. no assumption is made about the first frame's expected PTS, so no padding or
  270. trimming is done. For example, this could be set to 0 to pad the beginning with
  271. silence if an audio stream starts after the video stream or to trim any samples
  272. with a negative PTS due to encoder delay.
  273. @end table
  274. @section atrim
  275. Trim the input so that the output contains one continuous subpart of the input.
  276. It accepts the following parameters:
  277. @table @option
  278. @item start
  279. Timestamp (in seconds) of the start of the section to keep. I.e. the audio
  280. sample with the timestamp @var{start} will be the first sample in the output.
  281. @item end
  282. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  283. audio sample immediately preceding the one with the timestamp @var{end} will be
  284. the last sample in the output.
  285. @item start_pts
  286. Same as @var{start}, except this option sets the start timestamp in samples
  287. instead of seconds.
  288. @item end_pts
  289. Same as @var{end}, except this option sets the end timestamp in samples instead
  290. of seconds.
  291. @item duration
  292. The maximum duration of the output in seconds.
  293. @item start_sample
  294. The number of the first sample that should be output.
  295. @item end_sample
  296. The number of the first sample that should be dropped.
  297. @end table
  298. Note that the first two sets of the start/end options and the @option{duration}
  299. option look at the frame timestamp, while the _sample options simply count the
  300. samples that pass through the filter. So start/end_pts and start/end_sample will
  301. give different results when the timestamps are wrong, inexact or do not start at
  302. zero. Also note that this filter does not modify the timestamps. If you wish
  303. to have the output timestamps start at zero, insert the asetpts filter after the
  304. atrim filter.
  305. If multiple start or end options are set, this filter tries to be greedy and
  306. keep all samples that match at least one of the specified constraints. To keep
  307. only the part that matches all the constraints at once, chain multiple atrim
  308. filters.
  309. The defaults are such that all the input is kept. So it is possible to set e.g.
  310. just the end values to keep everything before the specified time.
  311. Examples:
  312. @itemize
  313. @item
  314. Drop everything except the second minute of input:
  315. @example
  316. avconv -i INPUT -af atrim=60:120
  317. @end example
  318. @item
  319. Keep only the first 1000 samples:
  320. @example
  321. avconv -i INPUT -af atrim=end_sample=1000
  322. @end example
  323. @end itemize
  324. @section channelsplit
  325. Split each channel from an input audio stream into a separate output stream.
  326. It accepts the following parameters:
  327. @table @option
  328. @item channel_layout
  329. The channel layout of the input stream. The default is "stereo".
  330. @end table
  331. For example, assuming a stereo input MP3 file,
  332. @example
  333. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  334. @end example
  335. will create an output Matroska file with two audio streams, one containing only
  336. the left channel and the other the right channel.
  337. Split a 5.1 WAV file into per-channel files:
  338. @example
  339. avconv -i in.wav -filter_complex
  340. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  341. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  342. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  343. side_right.wav
  344. @end example
  345. @section channelmap
  346. Remap input channels to new locations.
  347. It accepts the following parameters:
  348. @table @option
  349. @item channel_layout
  350. The channel layout of the output stream.
  351. @item map
  352. Map channels from input to output. The argument is a '|'-separated list of
  353. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  354. @var{in_channel} form. @var{in_channel} can be either the name of the input
  355. channel (e.g. FL for front left) or its index in the input channel layout.
  356. @var{out_channel} is the name of the output channel or its index in the output
  357. channel layout. If @var{out_channel} is not given then it is implicitly an
  358. index, starting with zero and increasing by one for each mapping.
  359. @end table
  360. If no mapping is present, the filter will implicitly map input channels to
  361. output channels, preserving indices.
  362. For example, assuming a 5.1+downmix input MOV file,
  363. @example
  364. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  365. @end example
  366. will create an output WAV file tagged as stereo from the downmix channels of
  367. the input.
  368. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  369. @example
  370. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  371. @end example
  372. @section compand
  373. Compress or expand the audio's dynamic range.
  374. It accepts the following parameters:
  375. @table @option
  376. @item attacks
  377. @item decays
  378. A list of times in seconds for each channel over which the instantaneous level
  379. of the input signal is averaged to determine its volume. @var{attacks} refers to
  380. increase of volume and @var{decays} refers to decrease of volume. For most
  381. situations, the attack time (response to the audio getting louder) should be
  382. shorter than the decay time, because the human ear is more sensitive to sudden
  383. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  384. a typical value for decay is 0.8 seconds.
  385. @item points
  386. A list of points for the transfer function, specified in dB relative to the
  387. maximum possible signal amplitude. Each key points list must be defined using
  388. the following syntax: @code{x0/y0|x1/y1|x2/y2|....}
  389. The input values must be in strictly increasing order but the transfer function
  390. does not have to be monotonically rising. The point @code{0/0} is assumed but
  391. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  392. function are @code{-70/-70|-60/-20}.
  393. @item soft-knee
  394. Set the curve radius in dB for all joints. It defaults to 0.01.
  395. @item gain
  396. Set the additional gain in dB to be applied at all points on the transfer
  397. function. This allows for easy adjustment of the overall gain.
  398. It defaults to 0.
  399. @item volume
  400. Set an initial volume, in dB, to be assumed for each channel when filtering
  401. starts. This permits the user to supply a nominal level initially, so that, for
  402. example, a very large gain is not applied to initial signal levels before the
  403. companding has begun to operate. A typical value for audio which is initially
  404. quiet is -90 dB. It defaults to 0.
  405. @item delay
  406. Set a delay, in seconds. The input audio is analyzed immediately, but audio is
  407. delayed before being fed to the volume adjuster. Specifying a delay
  408. approximately equal to the attack/decay times allows the filter to effectively
  409. operate in predictive rather than reactive mode. It defaults to 0.
  410. @end table
  411. @subsection Examples
  412. @itemize
  413. @item
  414. Make music with both quiet and loud passages suitable for listening to in a
  415. noisy environment:
  416. @example
  417. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  418. @end example
  419. @item
  420. A noise gate for when the noise is at a lower level than the signal:
  421. @example
  422. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  423. @end example
  424. @item
  425. Here is another noise gate, this time for when the noise is at a higher level
  426. than the signal (making it, in some ways, similar to squelch):
  427. @example
  428. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  429. @end example
  430. @end itemize
  431. @section join
  432. Join multiple input streams into one multi-channel stream.
  433. It accepts the following parameters:
  434. @table @option
  435. @item inputs
  436. The number of input streams. It defaults to 2.
  437. @item channel_layout
  438. The desired output channel layout. It defaults to stereo.
  439. @item map
  440. Map channels from inputs to output. The argument is a '|'-separated list of
  441. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  442. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  443. can be either the name of the input channel (e.g. FL for front left) or its
  444. index in the specified input stream. @var{out_channel} is the name of the output
  445. channel.
  446. @end table
  447. The filter will attempt to guess the mappings when they are not specified
  448. explicitly. It does so by first trying to find an unused matching input channel
  449. and if that fails it picks the first unused input channel.
  450. Join 3 inputs (with properly set channel layouts):
  451. @example
  452. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  453. @end example
  454. Build a 5.1 output from 6 single-channel streams:
  455. @example
  456. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  457. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  458. out
  459. @end example
  460. @section resample
  461. Convert the audio sample format, sample rate and channel layout. It is
  462. not meant to be used directly; it is inserted automatically by libavfilter
  463. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  464. conversion.
  465. @section volume
  466. Adjust the input audio volume.
  467. It accepts the following parameters:
  468. @table @option
  469. @item volume
  470. This expresses how the audio volume will be increased or decreased.
  471. Output values are clipped to the maximum value.
  472. The output audio volume is given by the relation:
  473. @example
  474. @var{output_volume} = @var{volume} * @var{input_volume}
  475. @end example
  476. The default value for @var{volume} is 1.0.
  477. @item precision
  478. This parameter represents the mathematical precision.
  479. It determines which input sample formats will be allowed, which affects the
  480. precision of the volume scaling.
  481. @table @option
  482. @item fixed
  483. 8-bit fixed-point; this limits input sample format to U8, S16, and S32.
  484. @item float
  485. 32-bit floating-point; this limits input sample format to FLT. (default)
  486. @item double
  487. 64-bit floating-point; this limits input sample format to DBL.
  488. @end table
  489. @item replaygain
  490. Choose the behaviour on encountering ReplayGain side data in input frames.
  491. @table @option
  492. @item drop
  493. Remove ReplayGain side data, ignoring its contents (the default).
  494. @item ignore
  495. Ignore ReplayGain side data, but leave it in the frame.
  496. @item track
  497. Prefer the track gain, if present.
  498. @item album
  499. Prefer the album gain, if present.
  500. @end table
  501. @item replaygain_preamp
  502. Pre-amplification gain in dB to apply to the selected replaygain gain.
  503. Default value for @var{replaygain_preamp} is 0.0.
  504. @item replaygain_noclip
  505. Prevent clipping by limiting the gain applied.
  506. Default value for @var{replaygain_noclip} is 1.
  507. @end table
  508. @subsection Examples
  509. @itemize
  510. @item
  511. Halve the input audio volume:
  512. @example
  513. volume=volume=0.5
  514. volume=volume=1/2
  515. volume=volume=-6.0206dB
  516. @end example
  517. @item
  518. Increase input audio power by 6 decibels using fixed-point precision:
  519. @example
  520. volume=volume=6dB:precision=fixed
  521. @end example
  522. @end itemize
  523. @c man end AUDIO FILTERS
  524. @chapter Audio Sources
  525. @c man begin AUDIO SOURCES
  526. Below is a description of the currently available audio sources.
  527. @section anullsrc
  528. The null audio source; it never returns audio frames. It is mainly useful as a
  529. template and for use in analysis / debugging tools.
  530. It accepts, as an optional parameter, a string of the form
  531. @var{sample_rate}:@var{channel_layout}.
  532. @var{sample_rate} specifies the sample rate, and defaults to 44100.
  533. @var{channel_layout} specifies the channel layout, and can be either an
  534. integer or a string representing a channel layout. The default value
  535. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  536. Check the channel_layout_map definition in
  537. @file{libavutil/channel_layout.c} for the mapping between strings and
  538. channel layout values.
  539. Some examples:
  540. @example
  541. # Set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO
  542. anullsrc=48000:4
  543. # The same as above
  544. anullsrc=48000:mono
  545. @end example
  546. @section abuffer
  547. Buffer audio frames, and make them available to the filter chain.
  548. This source is not intended to be part of user-supplied graph descriptions; it
  549. is for insertion by calling programs, through the interface defined in
  550. @file{libavfilter/buffersrc.h}.
  551. It accepts the following parameters:
  552. @table @option
  553. @item time_base
  554. The timebase which will be used for timestamps of submitted frames. It must be
  555. either a floating-point number or in @var{numerator}/@var{denominator} form.
  556. @item sample_rate
  557. The audio sample rate.
  558. @item sample_fmt
  559. The name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  560. @item channel_layout
  561. The channel layout of the audio data, in the form that can be accepted by
  562. @code{av_get_channel_layout()}.
  563. @end table
  564. All the parameters need to be explicitly defined.
  565. @c man end AUDIO SOURCES
  566. @chapter Audio Sinks
  567. @c man begin AUDIO SINKS
  568. Below is a description of the currently available audio sinks.
  569. @section anullsink
  570. Null audio sink; do absolutely nothing with the input audio. It is
  571. mainly useful as a template and for use in analysis / debugging
  572. tools.
  573. @section abuffersink
  574. This sink is intended for programmatic use. Frames that arrive on this sink can
  575. be retrieved by the calling program, using the interface defined in
  576. @file{libavfilter/buffersink.h}.
  577. It does not accept any parameters.
  578. @c man end AUDIO SINKS
  579. @chapter Video Filters
  580. @c man begin VIDEO FILTERS
  581. When you configure your Libav build, you can disable any of the
  582. existing filters using --disable-filters.
  583. The configure output will show the video filters included in your
  584. build.
  585. Below is a description of the currently available video filters.
  586. @section blackframe
  587. Detect frames that are (almost) completely black. Can be useful to
  588. detect chapter transitions or commercials. Output lines consist of
  589. the frame number of the detected frame, the percentage of blackness,
  590. the position in the file if known or -1 and the timestamp in seconds.
  591. In order to display the output lines, you need to set the loglevel at
  592. least to the AV_LOG_INFO value.
  593. It accepts the following parameters:
  594. @table @option
  595. @item amount
  596. The percentage of the pixels that have to be below the threshold; it defaults to
  597. 98.
  598. @item threshold
  599. The threshold below which a pixel value is considered black; it defaults to 32.
  600. @end table
  601. @section boxblur
  602. Apply a boxblur algorithm to the input video.
  603. It accepts the following parameters:
  604. @table @option
  605. @item luma_radius
  606. @item luma_power
  607. @item chroma_radius
  608. @item chroma_power
  609. @item alpha_radius
  610. @item alpha_power
  611. @end table
  612. The chroma and alpha parameters are optional. If not specified, they default
  613. to the corresponding values set for @var{luma_radius} and
  614. @var{luma_power}.
  615. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  616. the radius in pixels of the box used for blurring the corresponding
  617. input plane. They are expressions, and can contain the following
  618. constants:
  619. @table @option
  620. @item w, h
  621. The input width and height in pixels.
  622. @item cw, ch
  623. The input chroma image width and height in pixels.
  624. @item hsub, vsub
  625. The horizontal and vertical chroma subsample values. For example, for the
  626. pixel format "yuv422p", @var{hsub} is 2 and @var{vsub} is 1.
  627. @end table
  628. The radius must be a non-negative number, and must not be greater than
  629. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  630. and of @code{min(cw,ch)/2} for the chroma planes.
  631. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  632. how many times the boxblur filter is applied to the corresponding
  633. plane.
  634. Some examples:
  635. @itemize
  636. @item
  637. Apply a boxblur filter with the luma, chroma, and alpha radii
  638. set to 2:
  639. @example
  640. boxblur=luma_radius=2:luma_power=1
  641. @end example
  642. @item
  643. Set the luma radius to 2, and alpha and chroma radius to 0:
  644. @example
  645. boxblur=2:1:0:0:0:0
  646. @end example
  647. @item
  648. Set the luma and chroma radii to a fraction of the video dimension:
  649. @example
  650. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  651. @end example
  652. @end itemize
  653. @section copy
  654. Copy the input source unchanged to the output. This is mainly useful for
  655. testing purposes.
  656. @section crop
  657. Crop the input video to given dimensions.
  658. It accepts the following parameters:
  659. @table @option
  660. @item out_w
  661. The width of the output video.
  662. @item out_h
  663. The height of the output video.
  664. @item x
  665. The horizontal position, in the input video, of the left edge of the output
  666. video.
  667. @item y
  668. The vertical position, in the input video, of the top edge of the output video.
  669. @end table
  670. The parameters are expressions containing the following constants:
  671. @table @option
  672. @item E, PI, PHI
  673. These are approximated values for the mathematical constants e
  674. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  675. @item x, y
  676. The computed values for @var{x} and @var{y}. They are evaluated for
  677. each new frame.
  678. @item in_w, in_h
  679. The input width and height.
  680. @item iw, ih
  681. These are the same as @var{in_w} and @var{in_h}.
  682. @item out_w, out_h
  683. The output (cropped) width and height.
  684. @item ow, oh
  685. These are the same as @var{out_w} and @var{out_h}.
  686. @item n
  687. The number of the input frame, starting from 0.
  688. @item t
  689. The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.
  690. @end table
  691. The @var{out_w} and @var{out_h} parameters specify the expressions for
  692. the width and height of the output (cropped) video. They are only
  693. evaluated during the configuration of the filter.
  694. The default value of @var{out_w} is "in_w", and the default value of
  695. @var{out_h} is "in_h".
  696. The expression for @var{out_w} may depend on the value of @var{out_h},
  697. and the expression for @var{out_h} may depend on @var{out_w}, but they
  698. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  699. evaluated after @var{out_w} and @var{out_h}.
  700. The @var{x} and @var{y} parameters specify the expressions for the
  701. position of the top-left corner of the output (non-cropped) area. They
  702. are evaluated for each frame. If the evaluated value is not valid, it
  703. is approximated to the nearest valid value.
  704. The default value of @var{x} is "(in_w-out_w)/2", and the default
  705. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  706. the center of the input image.
  707. The expression for @var{x} may depend on @var{y}, and the expression
  708. for @var{y} may depend on @var{x}.
  709. Some examples:
  710. @example
  711. # Crop the central input area with size 100x100
  712. crop=out_w=100:out_h=100
  713. # Crop the central input area with size 2/3 of the input video
  714. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  715. # Crop the input video central square
  716. crop=out_w=in_h
  717. # Delimit the rectangle with the top-left corner placed at position
  718. # 100:100 and the right-bottom corner corresponding to the right-bottom
  719. # corner of the input image
  720. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  721. # Crop 10 pixels from the left and right borders, and 20 pixels from
  722. # the top and bottom borders
  723. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  724. # Keep only the bottom right quarter of the input image
  725. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  726. # Crop height for getting Greek harmony
  727. "crop=out_w=in_w:out_h=1/PHI*in_w"
  728. # Trembling effect
  729. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  730. # Erratic camera effect depending on timestamp
  731. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  732. # Set x depending on the value of y
  733. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  734. @end example
  735. @section cropdetect
  736. Auto-detect the crop size.
  737. It calculates the necessary cropping parameters and prints the
  738. recommended parameters via the logging system. The detected dimensions
  739. correspond to the non-black area of the input video.
  740. It accepts the following parameters:
  741. @table @option
  742. @item limit
  743. The threshold, an optional parameter between nothing (0) and
  744. everything (255). It defaults to 24.
  745. @item round
  746. The value which the width/height should be divisible by. It defaults to
  747. 16. The offset is automatically adjusted to center the video. Use 2 to
  748. get only even dimensions (needed for 4:2:2 video). 16 is best when
  749. encoding to most video codecs.
  750. @item reset
  751. A counter that determines how many frames cropdetect will reset
  752. the previously detected largest video area after. It will then start over
  753. and detect the current optimal crop area. It defaults to 0.
  754. This can be useful when channel logos distort the video area. 0
  755. indicates 'never reset', and returns the largest area encountered during
  756. playback.
  757. @end table
  758. @section delogo
  759. Suppress a TV station logo by a simple interpolation of the surrounding
  760. pixels. Just set a rectangle covering the logo and watch it disappear
  761. (and sometimes something even uglier appear - your mileage may vary).
  762. It accepts the following parameters:
  763. @table @option
  764. @item x, y
  765. Specify the top left corner coordinates of the logo. They must be
  766. specified.
  767. @item w, h
  768. Specify the width and height of the logo to clear. They must be
  769. specified.
  770. @item band, t
  771. Specify the thickness of the fuzzy edge of the rectangle (added to
  772. @var{w} and @var{h}). The default value is 4.
  773. @item show
  774. When set to 1, a green rectangle is drawn on the screen to simplify
  775. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  776. @var{band} is set to 4. The default value is 0.
  777. @end table
  778. An example:
  779. @itemize
  780. @item
  781. Set a rectangle covering the area with top left corner coordinates 0,0
  782. and size 100x77, and a band of size 10:
  783. @example
  784. delogo=x=0:y=0:w=100:h=77:band=10
  785. @end example
  786. @end itemize
  787. @section drawbox
  788. Draw a colored box on the input image.
  789. It accepts the following parameters:
  790. @table @option
  791. @item x, y
  792. Specify the top left corner coordinates of the box. It defaults to 0.
  793. @item width, height
  794. Specify the width and height of the box; if 0 they are interpreted as
  795. the input width and height. It defaults to 0.
  796. @item color
  797. Specify the color of the box to write. It can be the name of a color
  798. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  799. @end table
  800. Some examples:
  801. @example
  802. # Draw a black box around the edge of the input image
  803. drawbox
  804. # Draw a box with color red and an opacity of 50%
  805. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  806. @end example
  807. @section drawtext
  808. Draw a text string or text from a specified file on top of a video, using the
  809. libfreetype library.
  810. To enable compilation of this filter, you need to configure Libav with
  811. @code{--enable-libfreetype}.
  812. The filter also recognizes strftime() sequences in the provided text
  813. and expands them accordingly. Check the documentation of strftime().
  814. It accepts the following parameters:
  815. @table @option
  816. @item fontfile
  817. The font file to be used for drawing text. The path must be included.
  818. This parameter is mandatory.
  819. @item text
  820. The text string to be drawn. The text must be a sequence of UTF-8
  821. encoded characters.
  822. This parameter is mandatory if no file is specified with the parameter
  823. @var{textfile}.
  824. @item textfile
  825. A text file containing text to be drawn. The text must be a sequence
  826. of UTF-8 encoded characters.
  827. This parameter is mandatory if no text string is specified with the
  828. parameter @var{text}.
  829. If both text and textfile are specified, an error is thrown.
  830. @item x, y
  831. The offsets where text will be drawn within the video frame.
  832. It is relative to the top/left border of the output image.
  833. They accept expressions similar to the @ref{overlay} filter:
  834. @table @option
  835. @item x, y
  836. The computed values for @var{x} and @var{y}. They are evaluated for
  837. each new frame.
  838. @item main_w, main_h
  839. The main input width and height.
  840. @item W, H
  841. These are the same as @var{main_w} and @var{main_h}.
  842. @item text_w, text_h
  843. The rendered text's width and height.
  844. @item w, h
  845. These are the same as @var{text_w} and @var{text_h}.
  846. @item n
  847. The number of frames processed, starting from 0.
  848. @item t
  849. The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.
  850. @end table
  851. The default value of @var{x} and @var{y} is 0.
  852. @item fontsize
  853. The font size to be used for drawing text.
  854. The default value of @var{fontsize} is 16.
  855. @item fontcolor
  856. The color to be used for drawing fonts.
  857. It is either a string (e.g. "red"), or in 0xRRGGBB[AA] format
  858. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  859. The default value of @var{fontcolor} is "black".
  860. @item boxcolor
  861. The color to be used for drawing box around text.
  862. It is either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  863. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  864. The default value of @var{boxcolor} is "white".
  865. @item box
  866. Used to draw a box around text using the background color.
  867. The value must be either 1 (enable) or 0 (disable).
  868. The default value of @var{box} is 0.
  869. @item shadowx, shadowy
  870. The x and y offsets for the text shadow position with respect to the
  871. position of the text. They can be either positive or negative
  872. values. The default value for both is "0".
  873. @item shadowcolor
  874. The color to be used for drawing a shadow behind the drawn text. It
  875. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  876. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  877. The default value of @var{shadowcolor} is "black".
  878. @item ft_load_flags
  879. The flags to be used for loading the fonts.
  880. The flags map the corresponding flags supported by libfreetype, and are
  881. a combination of the following values:
  882. @table @var
  883. @item default
  884. @item no_scale
  885. @item no_hinting
  886. @item render
  887. @item no_bitmap
  888. @item vertical_layout
  889. @item force_autohint
  890. @item crop_bitmap
  891. @item pedantic
  892. @item ignore_global_advance_width
  893. @item no_recurse
  894. @item ignore_transform
  895. @item monochrome
  896. @item linear_design
  897. @item no_autohint
  898. @item end table
  899. @end table
  900. Default value is "render".
  901. For more information consult the documentation for the FT_LOAD_*
  902. libfreetype flags.
  903. @item tabsize
  904. The size in number of spaces to use for rendering the tab.
  905. Default value is 4.
  906. @item fix_bounds
  907. If true, check and fix text coords to avoid clipping.
  908. @end table
  909. For example the command:
  910. @example
  911. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  912. @end example
  913. will draw "Test Text" with font FreeSerif, using the default values
  914. for the optional parameters.
  915. The command:
  916. @example
  917. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  918. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  919. @end example
  920. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  921. and y=50 (counting from the top-left corner of the screen), text is
  922. yellow with a red box around it. Both the text and the box have an
  923. opacity of 20%.
  924. Note that the double quotes are not necessary if spaces are not used
  925. within the parameter list.
  926. For more information about libfreetype, check:
  927. @url{http://www.freetype.org/}.
  928. @section fade
  929. Apply a fade-in/out effect to the input video.
  930. It accepts the following parameters:
  931. @table @option
  932. @item type
  933. The effect type can be either "in" for a fade-in, or "out" for a fade-out
  934. effect.
  935. @item start_frame
  936. The number of the frame to start applying the fade effect at.
  937. @item nb_frames
  938. The number of frames that the fade effect lasts. At the end of the
  939. fade-in effect, the output video will have the same intensity as the input video.
  940. At the end of the fade-out transition, the output video will be completely black.
  941. @end table
  942. Some examples:
  943. @example
  944. # Fade in the first 30 frames of video
  945. fade=type=in:nb_frames=30
  946. # Fade out the last 45 frames of a 200-frame video
  947. fade=type=out:start_frame=155:nb_frames=45
  948. # Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video
  949. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  950. # Make the first 5 frames black, then fade in from frame 5-24
  951. fade=type=in:start_frame=5:nb_frames=20
  952. @end example
  953. @section fieldorder
  954. Transform the field order of the input video.
  955. It accepts the following parameters:
  956. @table @option
  957. @item order
  958. The output field order. Valid values are @var{tff} for top field first or @var{bff}
  959. for bottom field first.
  960. @end table
  961. The default value is "tff".
  962. The transformation is done by shifting the picture content up or down
  963. by one line, and filling the remaining line with appropriate picture content.
  964. This method is consistent with most broadcast field order converters.
  965. If the input video is not flagged as being interlaced, or it is already
  966. flagged as being of the required output field order, then this filter does
  967. not alter the incoming video.
  968. It is very useful when converting to or from PAL DV material,
  969. which is bottom field first.
  970. For example:
  971. @example
  972. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  973. @end example
  974. @section fifo
  975. Buffer input images and send them when they are requested.
  976. It is mainly useful when auto-inserted by the libavfilter
  977. framework.
  978. It does not take parameters.
  979. @section format
  980. Convert the input video to one of the specified pixel formats.
  981. Libavfilter will try to pick one that is suitable as input to
  982. the next filter.
  983. It accepts the following parameters:
  984. @table @option
  985. @item pix_fmts
  986. A '|'-separated list of pixel format names, such as
  987. "pix_fmts=yuv420p|monow|rgb24".
  988. @end table
  989. Some examples:
  990. @example
  991. # Convert the input video to the "yuv420p" format
  992. format=pix_fmts=yuv420p
  993. # Convert the input video to any of the formats in the list
  994. format=pix_fmts=yuv420p|yuv444p|yuv410p
  995. @end example
  996. @anchor{fps}
  997. @section fps
  998. Convert the video to specified constant framerate by duplicating or dropping
  999. frames as necessary.
  1000. It accepts the following parameters:
  1001. @table @option
  1002. @item fps
  1003. The desired output framerate.
  1004. @item start_time
  1005. Assume the first PTS should be the given value, in seconds. This allows for
  1006. padding/trimming at the start of stream. By default, no assumption is made
  1007. about the first frame's expected PTS, so no padding or trimming is done.
  1008. For example, this could be set to 0 to pad the beginning with duplicates of
  1009. the first frame if a video stream starts after the audio stream or to trim any
  1010. frames with a negative PTS.
  1011. @end table
  1012. @section framepack
  1013. Pack two different video streams into a stereoscopic video, setting proper
  1014. metadata on supported codecs. The two views should have the same size and
  1015. framerate and processing will stop when the shorter video ends. Please note
  1016. that you may conveniently adjust view properties with the @ref{scale} and
  1017. @ref{fps} filters.
  1018. It accepts the following parameters:
  1019. @table @option
  1020. @item format
  1021. The desired packing format. Supported values are:
  1022. @table @option
  1023. @item sbs
  1024. The views are next to each other (default).
  1025. @item tab
  1026. The views are on top of each other.
  1027. @item lines
  1028. The views are packed by line.
  1029. @item columns
  1030. The views are packed by column.
  1031. @item frameseq
  1032. The views are temporally interleaved.
  1033. @end table
  1034. @end table
  1035. Some examples:
  1036. @example
  1037. # Convert left and right views into a frame-sequential video
  1038. avconv -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  1039. # Convert views into a side-by-side video with the same output resolution as the input
  1040. avconv -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  1041. @end example
  1042. @anchor{frei0r}
  1043. @section frei0r
  1044. Apply a frei0r effect to the input video.
  1045. To enable the compilation of this filter, you need to install the frei0r
  1046. header and configure Libav with --enable-frei0r.
  1047. It accepts the following parameters:
  1048. @table @option
  1049. @item filter_name
  1050. The name of the frei0r effect to load. If the environment variable
  1051. @env{FREI0R_PATH} is defined, the frei0r effect is searched for in each of the
  1052. directories specified by the colon-separated list in @env{FREIOR_PATH}.
  1053. Otherwise, the standard frei0r paths are searched, in this order:
  1054. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1055. @file{/usr/lib/frei0r-1/}.
  1056. @item filter_params
  1057. A '|'-separated list of parameters to pass to the frei0r effect.
  1058. @end table
  1059. A frei0r effect parameter can be a boolean (its value is either
  1060. "y" or "n"), a double, a color (specified as
  1061. @var{R}/@var{G}/@var{B}, where @var{R}, @var{G}, and @var{B} are floating point
  1062. numbers between 0.0 and 1.0, inclusive) or by an @code{av_parse_color()} color
  1063. description), a position (specified as @var{X}/@var{Y}, where
  1064. @var{X} and @var{Y} are floating point numbers) and/or a string.
  1065. The number and types of parameters depend on the loaded effect. If an
  1066. effect parameter is not specified, the default value is set.
  1067. Some examples:
  1068. @example
  1069. # Apply the distort0r effect, setting the first two double parameters
  1070. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  1071. # Apply the colordistance effect, taking a color as the first parameter
  1072. frei0r=colordistance:0.2/0.3/0.4
  1073. frei0r=colordistance:violet
  1074. frei0r=colordistance:0x112233
  1075. # Apply the perspective effect, specifying the top left and top right
  1076. # image positions
  1077. frei0r=perspective:0.2/0.2|0.8/0.2
  1078. @end example
  1079. For more information, see
  1080. @url{http://piksel.org/frei0r}
  1081. @section gradfun
  1082. Fix the banding artifacts that are sometimes introduced into nearly flat
  1083. regions by truncation to 8bit colordepth.
  1084. Interpolate the gradients that should go where the bands are, and
  1085. dither them.
  1086. It is designed for playback only. Do not use it prior to
  1087. lossy compression, because compression tends to lose the dither and
  1088. bring back the bands.
  1089. It accepts the following parameters:
  1090. @table @option
  1091. @item strength
  1092. The maximum amount by which the filter will change any one pixel. This is also
  1093. the threshold for detecting nearly flat regions. Acceptable values range from
  1094. .51 to 64; the default value is 1.2. Out-of-range values will be clipped to the
  1095. valid range.
  1096. @item radius
  1097. The neighborhood to fit the gradient to. A larger radius makes for smoother
  1098. gradients, but also prevents the filter from modifying the pixels near detailed
  1099. regions. Acceptable values are 8-32; the default value is 16. Out-of-range
  1100. values will be clipped to the valid range.
  1101. @end table
  1102. @example
  1103. # Default parameters
  1104. gradfun=strength=1.2:radius=16
  1105. # Omitting the radius
  1106. gradfun=1.2
  1107. @end example
  1108. @section hflip
  1109. Flip the input video horizontally.
  1110. For example, to horizontally flip the input video with @command{avconv}:
  1111. @example
  1112. avconv -i in.avi -vf "hflip" out.avi
  1113. @end example
  1114. @section hqdn3d
  1115. This is a high precision/quality 3d denoise filter. It aims to reduce
  1116. image noise, producing smooth images and making still images really
  1117. still. It should enhance compressibility.
  1118. It accepts the following optional parameters:
  1119. @table @option
  1120. @item luma_spatial
  1121. A non-negative floating point number which specifies spatial luma strength.
  1122. It defaults to 4.0.
  1123. @item chroma_spatial
  1124. A non-negative floating point number which specifies spatial chroma strength.
  1125. It defaults to 3.0*@var{luma_spatial}/4.0.
  1126. @item luma_tmp
  1127. A floating point number which specifies luma temporal strength. It defaults to
  1128. 6.0*@var{luma_spatial}/4.0.
  1129. @item chroma_tmp
  1130. A floating point number which specifies chroma temporal strength. It defaults to
  1131. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}.
  1132. @end table
  1133. @section interlace
  1134. Simple interlacing filter from progressive contents. This interleaves upper (or
  1135. lower) lines from odd frames with lower (or upper) lines from even frames,
  1136. halving the frame rate and preserving image height. A vertical lowpass filter
  1137. is always applied in order to avoid twitter effects and reduce moiré patterns.
  1138. @example
  1139. Original Original New Frame
  1140. Frame 'j' Frame 'j+1' (tff)
  1141. ========== =========== ==================
  1142. Line 0 --------------------> Frame 'j' Line 0
  1143. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1144. Line 2 ---------------------> Frame 'j' Line 2
  1145. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1146. ... ... ...
  1147. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1148. @end example
  1149. It accepts the following optional parameters:
  1150. @table @option
  1151. @item scan
  1152. This determines whether the interlaced frame is taken from the even
  1153. (tff - default) or odd (bff) lines of the progressive frame.
  1154. @end table
  1155. @section lut, lutrgb, lutyuv
  1156. Compute a look-up table for binding each pixel component input value
  1157. to an output value, and apply it to the input video.
  1158. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1159. to an RGB input video.
  1160. These filters accept the following parameters:
  1161. @table @option
  1162. @item @var{c0} (first pixel component)
  1163. @item @var{c1} (second pixel component)
  1164. @item @var{c2} (third pixel component)
  1165. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1166. @item @var{r} (red component)
  1167. @item @var{g} (green component)
  1168. @item @var{b} (blue component)
  1169. @item @var{a} (alpha component)
  1170. @item @var{y} (Y/luminance component)
  1171. @item @var{u} (U/Cb component)
  1172. @item @var{v} (V/Cr component)
  1173. @end table
  1174. Each of them specifies the expression to use for computing the lookup table for
  1175. the corresponding pixel component values.
  1176. The exact component associated to each of the @var{c*} options depends on the
  1177. format in input.
  1178. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1179. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1180. The expressions can contain the following constants and functions:
  1181. @table @option
  1182. @item E, PI, PHI
  1183. These are approximated values for the mathematical constants e
  1184. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1185. @item w, h
  1186. The input width and height.
  1187. @item val
  1188. The input value for the pixel component.
  1189. @item clipval
  1190. The input value, clipped to the @var{minval}-@var{maxval} range.
  1191. @item maxval
  1192. The maximum value for the pixel component.
  1193. @item minval
  1194. The minimum value for the pixel component.
  1195. @item negval
  1196. The negated value for the pixel component value, clipped to the
  1197. @var{minval}-@var{maxval} range; it corresponds to the expression
  1198. "maxval-clipval+minval".
  1199. @item clip(val)
  1200. The computed value in @var{val}, clipped to the
  1201. @var{minval}-@var{maxval} range.
  1202. @item gammaval(gamma)
  1203. The computed gamma correction value of the pixel component value,
  1204. clipped to the @var{minval}-@var{maxval} range. It corresponds to the
  1205. expression
  1206. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1207. @end table
  1208. All expressions default to "val".
  1209. Some examples:
  1210. @example
  1211. # Negate input video
  1212. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1213. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1214. # The above is the same as
  1215. lutrgb="r=negval:g=negval:b=negval"
  1216. lutyuv="y=negval:u=negval:v=negval"
  1217. # Negate luminance
  1218. lutyuv=negval
  1219. # Remove chroma components, turning the video into a graytone image
  1220. lutyuv="u=128:v=128"
  1221. # Apply a luma burning effect
  1222. lutyuv="y=2*val"
  1223. # Remove green and blue components
  1224. lutrgb="g=0:b=0"
  1225. # Set a constant alpha channel value on input
  1226. format=rgba,lutrgb=a="maxval-minval/2"
  1227. # Correct luminance gamma by a factor of 0.5
  1228. lutyuv=y=gammaval(0.5)
  1229. @end example
  1230. @section negate
  1231. Negate input video.
  1232. It accepts an integer in input; if non-zero it negates the
  1233. alpha component (if available). The default value in input is 0.
  1234. @section noformat
  1235. Force libavfilter not to use any of the specified pixel formats for the
  1236. input to the next filter.
  1237. It accepts the following parameters:
  1238. @table @option
  1239. @item pix_fmts
  1240. A '|'-separated list of pixel format names, such as
  1241. apix_fmts=yuv420p|monow|rgb24".
  1242. @end table
  1243. Some examples:
  1244. @example
  1245. # Force libavfilter to use a format different from "yuv420p" for the
  1246. # input to the vflip filter
  1247. noformat=pix_fmts=yuv420p,vflip
  1248. # Convert the input video to any of the formats not contained in the list
  1249. noformat=yuv420p|yuv444p|yuv410p
  1250. @end example
  1251. @section null
  1252. Pass the video source unchanged to the output.
  1253. @section ocv
  1254. Apply a video transform using libopencv.
  1255. To enable this filter, install the libopencv library and headers and
  1256. configure Libav with --enable-libopencv.
  1257. It accepts the following parameters:
  1258. @table @option
  1259. @item filter_name
  1260. The name of the libopencv filter to apply.
  1261. @item filter_params
  1262. The parameters to pass to the libopencv filter. If not specified, the default
  1263. values are assumed.
  1264. @end table
  1265. Refer to the official libopencv documentation for more precise
  1266. information:
  1267. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1268. Several libopencv filters are supported; see the following subsections.
  1269. @anchor{dilate}
  1270. @subsection dilate
  1271. Dilate an image by using a specific structuring element.
  1272. It corresponds to the libopencv function @code{cvDilate}.
  1273. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1274. @var{struct_el} represents a structuring element, and has the syntax:
  1275. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1276. @var{cols} and @var{rows} represent the number of columns and rows of
  1277. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1278. point, and @var{shape} the shape for the structuring element. @var{shape}
  1279. must be "rect", "cross", "ellipse", or "custom".
  1280. If the value for @var{shape} is "custom", it must be followed by a
  1281. string of the form "=@var{filename}". The file with name
  1282. @var{filename} is assumed to represent a binary image, with each
  1283. printable character corresponding to a bright pixel. When a custom
  1284. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1285. or columns and rows of the read file are assumed instead.
  1286. The default value for @var{struct_el} is "3x3+0x0/rect".
  1287. @var{nb_iterations} specifies the number of times the transform is
  1288. applied to the image, and defaults to 1.
  1289. Some examples:
  1290. @example
  1291. # Use the default values
  1292. ocv=dilate
  1293. # Dilate using a structuring element with a 5x5 cross, iterating two times
  1294. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1295. # Read the shape from the file diamond.shape, iterating two times.
  1296. # The file diamond.shape may contain a pattern of characters like this
  1297. # *
  1298. # ***
  1299. # *****
  1300. # ***
  1301. # *
  1302. # The specified columns and rows are ignored
  1303. # but the anchor point coordinates are not
  1304. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1305. @end example
  1306. @subsection erode
  1307. Erode an image by using a specific structuring element.
  1308. It corresponds to the libopencv function @code{cvErode}.
  1309. It accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1310. with the same syntax and semantics as the @ref{dilate} filter.
  1311. @subsection smooth
  1312. Smooth the input video.
  1313. The filter takes the following parameters:
  1314. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1315. @var{type} is the type of smooth filter to apply, and must be one of
  1316. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1317. or "bilateral". The default value is "gaussian".
  1318. The meaning of @var{param1}, @var{param2}, @var{param3}, and @var{param4}
  1319. depend on the smooth type. @var{param1} and
  1320. @var{param2} accept integer positive values or 0. @var{param3} and
  1321. @var{param4} accept floating point values.
  1322. The default value for @var{param1} is 3. The default value for the
  1323. other parameters is 0.
  1324. These parameters correspond to the parameters assigned to the
  1325. libopencv function @code{cvSmooth}.
  1326. @anchor{overlay}
  1327. @section overlay
  1328. Overlay one video on top of another.
  1329. It takes two inputs and has one output. The first input is the "main"
  1330. video on which the second input is overlayed.
  1331. It accepts the following parameters:
  1332. @table @option
  1333. @item x
  1334. The horizontal position of the left edge of the overlaid video on the main video.
  1335. @item y
  1336. The vertical position of the top edge of the overlaid video on the main video.
  1337. @end table
  1338. The parameters are expressions containing the following parameters:
  1339. @table @option
  1340. @item main_w, main_h
  1341. The main input width and height.
  1342. @item W, H
  1343. These are the same as @var{main_w} and @var{main_h}.
  1344. @item overlay_w, overlay_h
  1345. The overlay input width and height.
  1346. @item w, h
  1347. These are the same as @var{overlay_w} and @var{overlay_h}.
  1348. @item eof_action
  1349. The action to take when EOF is encountered on the secondary input; it accepts
  1350. one of the following values:
  1351. @table @option
  1352. @item repeat
  1353. Repeat the last frame (the default).
  1354. @item endall
  1355. End both streams.
  1356. @item pass
  1357. Pass the main input through.
  1358. @end table
  1359. @end table
  1360. Be aware that frames are taken from each input video in timestamp
  1361. order, hence, if their initial timestamps differ, it is a a good idea
  1362. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1363. have them begin in the same zero timestamp, as the example for
  1364. the @var{movie} filter does.
  1365. Some examples:
  1366. @example
  1367. # Draw the overlay at 10 pixels from the bottom right
  1368. # corner of the main video
  1369. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1370. # Insert a transparent PNG logo in the bottom left corner of the input
  1371. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1372. # Insert 2 different transparent PNG logos (second logo on bottom
  1373. # right corner)
  1374. avconv -i input -i logo1 -i logo2 -filter_complex
  1375. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1376. # Add a transparent color layer on top of the main video;
  1377. # WxH specifies the size of the main input to the overlay filter
  1378. color=red@.3:WxH [over]; [in][over] overlay [out]
  1379. # Mask 10-20 seconds of a video by applying the delogo filter to a section
  1380. avconv -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  1381. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  1382. masked.avi
  1383. @end example
  1384. You can chain together more overlays but the efficiency of such
  1385. approach is yet to be tested.
  1386. @section pad
  1387. Add paddings to the input image, and place the original input at the
  1388. provided @var{x}, @var{y} coordinates.
  1389. It accepts the following parameters:
  1390. @table @option
  1391. @item width, height
  1392. Specify the size of the output image with the paddings added. If the
  1393. value for @var{width} or @var{height} is 0, the corresponding input size
  1394. is used for the output.
  1395. The @var{width} expression can reference the value set by the
  1396. @var{height} expression, and vice versa.
  1397. The default value of @var{width} and @var{height} is 0.
  1398. @item x, y
  1399. Specify the offsets to place the input image at within the padded area,
  1400. with respect to the top/left border of the output image.
  1401. The @var{x} expression can reference the value set by the @var{y}
  1402. expression, and vice versa.
  1403. The default value of @var{x} and @var{y} is 0.
  1404. @item color
  1405. Specify the color of the padded area. It can be the name of a color
  1406. (case insensitive match) or an 0xRRGGBB[AA] sequence.
  1407. The default value of @var{color} is "black".
  1408. @end table
  1409. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1410. expressions containing the following constants:
  1411. @table @option
  1412. @item E, PI, PHI
  1413. These are approximated values for the mathematical constants e
  1414. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1415. @item in_w, in_h
  1416. The input video width and height.
  1417. @item iw, ih
  1418. These are the same as @var{in_w} and @var{in_h}.
  1419. @item out_w, out_h
  1420. The output width and height (the size of the padded area), as
  1421. specified by the @var{width} and @var{height} expressions.
  1422. @item ow, oh
  1423. These are the same as @var{out_w} and @var{out_h}.
  1424. @item x, y
  1425. The x and y offsets as specified by the @var{x} and @var{y}
  1426. expressions, or NAN if not yet specified.
  1427. @item a
  1428. The input display aspect ratio, same as @var{iw} / @var{ih}.
  1429. @item hsub, vsub
  1430. The horizontal and vertical chroma subsample values. For example for the
  1431. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1432. @end table
  1433. Some examples:
  1434. @example
  1435. # Add paddings with the color "violet" to the input video. The output video
  1436. # size is 640x480, and the top-left corner of the input video is placed at
  1437. # column 0, row 40
  1438. pad=width=640:height=480:x=0:y=40:color=violet
  1439. # Pad the input to get an output with dimensions increased by 3/2,
  1440. # and put the input video at the center of the padded area
  1441. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1442. # Pad the input to get a squared output with size equal to the maximum
  1443. # value between the input width and height, and put the input video at
  1444. # the center of the padded area
  1445. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1446. # Pad the input to get a final w/h ratio of 16:9
  1447. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1448. # Double the output size and put the input video in the bottom-right
  1449. # corner of the output padded area
  1450. pad="2*iw:2*ih:ow-iw:oh-ih"
  1451. @end example
  1452. @section pixdesctest
  1453. Pixel format descriptor test filter, mainly useful for internal
  1454. testing. The output video should be equal to the input video.
  1455. For example:
  1456. @example
  1457. format=monow, pixdesctest
  1458. @end example
  1459. can be used to test the monowhite pixel format descriptor definition.
  1460. @anchor{scale}
  1461. @section scale
  1462. Scale the input video and/or convert the image format.
  1463. It accepts the following parameters:
  1464. @table @option
  1465. @item w
  1466. The output video width.
  1467. @item h
  1468. The output video height.
  1469. @end table
  1470. The parameters @var{w} and @var{h} are expressions containing
  1471. the following constants:
  1472. @table @option
  1473. @item E, PI, PHI
  1474. These are approximated values for the mathematical constants e
  1475. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1476. @item in_w, in_h
  1477. The input width and height.
  1478. @item iw, ih
  1479. These are the same as @var{in_w} and @var{in_h}.
  1480. @item out_w, out_h
  1481. The output (cropped) width and height.
  1482. @item ow, oh
  1483. These are the same as @var{out_w} and @var{out_h}.
  1484. @item a
  1485. This is the same as @var{iw} / @var{ih}.
  1486. @item sar
  1487. input sample aspect ratio
  1488. @item dar
  1489. The input display aspect ratio; it is the same as
  1490. (@var{iw} / @var{ih}) * @var{sar}.
  1491. @item hsub, vsub
  1492. The horizontal and vertical chroma subsample values. For example, for the
  1493. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1494. @end table
  1495. If the input image format is different from the format requested by
  1496. the next filter, the scale filter will convert the input to the
  1497. requested format.
  1498. If the value for @var{w} or @var{h} is 0, the respective input
  1499. size is used for the output.
  1500. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1501. respective output size, a value that maintains the aspect ratio of the input
  1502. image.
  1503. The default value of @var{w} and @var{h} is 0.
  1504. Some examples:
  1505. @example
  1506. # Scale the input video to a size of 200x100
  1507. scale=w=200:h=100
  1508. # Scale the input to 2x
  1509. scale=w=2*iw:h=2*ih
  1510. # The above is the same as
  1511. scale=2*in_w:2*in_h
  1512. # Scale the input to half the original size
  1513. scale=w=iw/2:h=ih/2
  1514. # Increase the width, and set the height to the same size
  1515. scale=3/2*iw:ow
  1516. # Seek Greek harmony
  1517. scale=iw:1/PHI*iw
  1518. scale=ih*PHI:ih
  1519. # Increase the height, and set the width to 3/2 of the height
  1520. scale=w=3/2*oh:h=3/5*ih
  1521. # Increase the size, making the size a multiple of the chroma
  1522. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1523. # Increase the width to a maximum of 500 pixels,
  1524. # keeping the same aspect ratio as the input
  1525. scale=w='min(500\, iw*3/2):h=-1'
  1526. @end example
  1527. @section select
  1528. Select frames to pass in output.
  1529. It accepts the following parameters:
  1530. @table @option
  1531. @item expr
  1532. An expression, which is evaluated for each input frame. If the expression is
  1533. evaluated to a non-zero value, the frame is selected and passed to the output,
  1534. otherwise it is discarded.
  1535. @end table
  1536. The expression can contain the following constants:
  1537. @table @option
  1538. @item E, PI, PHI
  1539. These are approximated values for the mathematical constants e
  1540. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1541. @item n
  1542. The (sequential) number of the filtered frame, starting from 0.
  1543. @item selected_n
  1544. The (sequential) number of the selected frame, starting from 0.
  1545. @item prev_selected_n
  1546. The sequential number of the last selected frame. It's NAN if undefined.
  1547. @item TB
  1548. The timebase of the input timestamps.
  1549. @item pts
  1550. The PTS (Presentation TimeStamp) of the filtered video frame,
  1551. expressed in @var{TB} units. It's NAN if undefined.
  1552. @item t
  1553. The PTS of the filtered video frame,
  1554. expressed in seconds. It's NAN if undefined.
  1555. @item prev_pts
  1556. The PTS of the previously filtered video frame. It's NAN if undefined.
  1557. @item prev_selected_pts
  1558. The PTS of the last previously filtered video frame. It's NAN if undefined.
  1559. @item prev_selected_t
  1560. The PTS of the last previously selected video frame. It's NAN if undefined.
  1561. @item start_pts
  1562. The PTS of the first video frame in the video. It's NAN if undefined.
  1563. @item start_t
  1564. The time of the first video frame in the video. It's NAN if undefined.
  1565. @item pict_type
  1566. The type of the filtered frame. It can assume one of the following
  1567. values:
  1568. @table @option
  1569. @item I
  1570. @item P
  1571. @item B
  1572. @item S
  1573. @item SI
  1574. @item SP
  1575. @item BI
  1576. @end table
  1577. @item interlace_type
  1578. The frame interlace type. It can assume one of the following values:
  1579. @table @option
  1580. @item PROGRESSIVE
  1581. The frame is progressive (not interlaced).
  1582. @item TOPFIRST
  1583. The frame is top-field-first.
  1584. @item BOTTOMFIRST
  1585. The frame is bottom-field-first.
  1586. @end table
  1587. @item key
  1588. This is 1 if the filtered frame is a key-frame, 0 otherwise.
  1589. @end table
  1590. The default value of the select expression is "1".
  1591. Some examples:
  1592. @example
  1593. # Select all the frames in input
  1594. select
  1595. # The above is the same as
  1596. select=expr=1
  1597. # Skip all frames
  1598. select=expr=0
  1599. # Select only I-frames
  1600. select='expr=eq(pict_type\,I)'
  1601. # Select one frame per 100
  1602. select='not(mod(n\,100))'
  1603. # Select only frames contained in the 10-20 time interval
  1604. select='gte(t\,10)*lte(t\,20)'
  1605. # Select only I frames contained in the 10-20 time interval
  1606. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1607. # Select frames with a minimum distance of 10 seconds
  1608. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1609. @end example
  1610. @anchor{setdar}
  1611. @section setdar
  1612. Set the Display Aspect Ratio for the filter output video.
  1613. This is done by changing the specified Sample (aka Pixel) Aspect
  1614. Ratio, according to the following equation:
  1615. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1616. Keep in mind that this filter does not modify the pixel dimensions of
  1617. the video frame. Also, the display aspect ratio set by this filter may
  1618. be changed by later filters in the filterchain, e.g. in case of
  1619. scaling or if another "setdar" or a "setsar" filter is applied.
  1620. It accepts the following parameters:
  1621. @table @option
  1622. @item dar
  1623. The output display aspect ratio.
  1624. @end table
  1625. The parameter @var{dar} is an expression containing
  1626. the following constants:
  1627. @table @option
  1628. @item E, PI, PHI
  1629. These are approximated values for the mathematical constants e
  1630. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1631. @item w, h
  1632. The input width and height.
  1633. @item a
  1634. This is the same as @var{w} / @var{h}.
  1635. @item sar
  1636. The input sample aspect ratio.
  1637. @item dar
  1638. The input display aspect ratio. It is the same as
  1639. (@var{w} / @var{h}) * @var{sar}.
  1640. @item hsub, vsub
  1641. The horizontal and vertical chroma subsample values. For example, for the
  1642. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1643. @end table
  1644. To change the display aspect ratio to 16:9, specify:
  1645. @example
  1646. setdar=dar=16/9
  1647. # The above is equivalent to
  1648. setdar=dar=1.77777
  1649. @end example
  1650. Also see the the @ref{setsar} filter documentation.
  1651. @section setpts
  1652. Change the PTS (presentation timestamp) of the input video frames.
  1653. It accepts the following parameters:
  1654. @table @option
  1655. @item expr
  1656. The expression which is evaluated for each frame to construct its timestamp.
  1657. @end table
  1658. The expression is evaluated through the eval API and can contain the following
  1659. constants:
  1660. @table @option
  1661. @item PTS
  1662. The presentation timestamp in input.
  1663. @item E, PI, PHI
  1664. These are approximated values for the mathematical constants e
  1665. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1666. @item N
  1667. The count of the input frame, starting from 0.
  1668. @item STARTPTS
  1669. The PTS of the first video frame.
  1670. @item INTERLACED
  1671. State whether the current frame is interlaced.
  1672. @item PREV_INPTS
  1673. The previous input PTS.
  1674. @item PREV_OUTPTS
  1675. The previous output PTS.
  1676. @item RTCTIME
  1677. The wallclock (RTC) time in microseconds.
  1678. @item RTCSTART
  1679. The wallclock (RTC) time at the start of the movie in microseconds.
  1680. @item TB
  1681. The timebase of the input timestamps.
  1682. @end table
  1683. Some examples:
  1684. @example
  1685. # Start counting the PTS from zero
  1686. setpts=expr=PTS-STARTPTS
  1687. # Fast motion
  1688. setpts=expr=0.5*PTS
  1689. # Slow motion
  1690. setpts=2.0*PTS
  1691. # Fixed rate 25 fps
  1692. setpts=N/(25*TB)
  1693. # Fixed rate 25 fps with some jitter
  1694. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1695. # Generate timestamps from a "live source" and rebase onto the current timebase
  1696. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1697. @end example
  1698. @anchor{setsar}
  1699. @section setsar
  1700. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1701. Note that as a consequence of the application of this filter, the
  1702. output display aspect ratio will change according to the following
  1703. equation:
  1704. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1705. Keep in mind that the sample aspect ratio set by this filter may be
  1706. changed by later filters in the filterchain, e.g. if another "setsar"
  1707. or a "setdar" filter is applied.
  1708. It accepts the following parameters:
  1709. @table @option
  1710. @item sar
  1711. The output sample aspect ratio.
  1712. @end table
  1713. The parameter @var{sar} is an expression containing
  1714. the following constants:
  1715. @table @option
  1716. @item E, PI, PHI
  1717. These are approximated values for the mathematical constants e
  1718. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1719. @item w, h
  1720. The input width and height.
  1721. @item a
  1722. These are the same as @var{w} / @var{h}.
  1723. @item sar
  1724. The input sample aspect ratio.
  1725. @item dar
  1726. The input display aspect ratio. It is the same as
  1727. (@var{w} / @var{h}) * @var{sar}.
  1728. @item hsub, vsub
  1729. Horizontal and vertical chroma subsample values. For example, for the
  1730. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1731. @end table
  1732. To change the sample aspect ratio to 10:11, specify:
  1733. @example
  1734. setsar=sar=10/11
  1735. @end example
  1736. @section settb
  1737. Set the timebase to use for the output frames timestamps.
  1738. It is mainly useful for testing timebase configuration.
  1739. It accepts the following parameters:
  1740. @table @option
  1741. @item expr
  1742. The expression which is evaluated into the output timebase.
  1743. @end table
  1744. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1745. default timebase), and "intb" (the input timebase).
  1746. The default value for the input is "intb".
  1747. Some examples:
  1748. @example
  1749. # Set the timebase to 1/25
  1750. settb=expr=1/25
  1751. # Set the timebase to 1/10
  1752. settb=expr=0.1
  1753. # Set the timebase to 1001/1000
  1754. settb=1+0.001
  1755. #Set the timebase to 2*intb
  1756. settb=2*intb
  1757. #Set the default timebase value
  1758. settb=AVTB
  1759. @end example
  1760. @section showinfo
  1761. Show a line containing various information for each input video frame.
  1762. The input video is not modified.
  1763. The shown line contains a sequence of key/value pairs of the form
  1764. @var{key}:@var{value}.
  1765. It accepts the following parameters:
  1766. @table @option
  1767. @item n
  1768. The (sequential) number of the input frame, starting from 0.
  1769. @item pts
  1770. The Presentation TimeStamp of the input frame, expressed as a number of
  1771. time base units. The time base unit depends on the filter input pad.
  1772. @item pts_time
  1773. The Presentation TimeStamp of the input frame, expressed as a number of
  1774. seconds.
  1775. @item pos
  1776. The position of the frame in the input stream, or -1 if this information is
  1777. unavailable and/or meaningless (for example in case of synthetic video).
  1778. @item fmt
  1779. The pixel format name.
  1780. @item sar
  1781. The sample aspect ratio of the input frame, expressed in the form
  1782. @var{num}/@var{den}.
  1783. @item s
  1784. The size of the input frame, expressed in the form
  1785. @var{width}x@var{height}.
  1786. @item i
  1787. The type of interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1788. for bottom field first).
  1789. @item iskey
  1790. This is 1 if the frame is a key frame, 0 otherwise.
  1791. @item type
  1792. The picture type of the input frame ("I" for an I-frame, "P" for a
  1793. P-frame, "B" for a B-frame, or "?" for an unknown type).
  1794. Also refer to the documentation of the @code{AVPictureType} enum and of
  1795. the @code{av_get_picture_type_char} function defined in
  1796. @file{libavutil/avutil.h}.
  1797. @item checksum
  1798. The Adler-32 checksum of all the planes of the input frame.
  1799. @item plane_checksum
  1800. The Adler-32 checksum of each plane of the input frame, expressed in the form
  1801. "[@var{c0} @var{c1} @var{c2} @var{c3}]".
  1802. @end table
  1803. @section shuffleplanes
  1804. Reorder and/or duplicate video planes.
  1805. It accepts the following parameters:
  1806. @table @option
  1807. @item map0
  1808. The index of the input plane to be used as the first output plane.
  1809. @item map1
  1810. The index of the input plane to be used as the second output plane.
  1811. @item map2
  1812. The index of the input plane to be used as the third output plane.
  1813. @item map3
  1814. The index of the input plane to be used as the fourth output plane.
  1815. @end table
  1816. The first plane has the index 0. The default is to keep the input unchanged.
  1817. Swap the second and third planes of the input:
  1818. @example
  1819. avconv -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  1820. @end example
  1821. @section split
  1822. Split input video into several identical outputs.
  1823. It accepts a single parameter, which specifies the number of outputs. If
  1824. unspecified, it defaults to 2.
  1825. Create 5 copies of the input video:
  1826. @example
  1827. avconv -i INPUT -filter_complex split=5 OUTPUT
  1828. @end example
  1829. @section transpose
  1830. Transpose rows with columns in the input video and optionally flip it.
  1831. It accepts the following parameters:
  1832. @table @option
  1833. @item dir
  1834. The direction of the transpose.
  1835. @end table
  1836. The direction can assume the following values:
  1837. @table @samp
  1838. @item cclock_flip
  1839. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1840. @example
  1841. L.R L.l
  1842. . . -> . .
  1843. l.r R.r
  1844. @end example
  1845. @item clock
  1846. Rotate by 90 degrees clockwise, that is:
  1847. @example
  1848. L.R l.L
  1849. . . -> . .
  1850. l.r r.R
  1851. @end example
  1852. @item cclock
  1853. Rotate by 90 degrees counterclockwise, that is:
  1854. @example
  1855. L.R R.r
  1856. . . -> . .
  1857. l.r L.l
  1858. @end example
  1859. @item clock_flip
  1860. Rotate by 90 degrees clockwise and vertically flip, that is:
  1861. @example
  1862. L.R r.R
  1863. . . -> . .
  1864. l.r l.L
  1865. @end example
  1866. @end table
  1867. @section trim
  1868. Trim the input so that the output contains one continuous subpart of the input.
  1869. It accepts the following parameters:
  1870. @table @option
  1871. @item start
  1872. The timestamp (in seconds) of the start of the kept section. The frame with the
  1873. timestamp @var{start} will be the first frame in the output.
  1874. @item end
  1875. The timestamp (in seconds) of the first frame that will be dropped. The frame
  1876. immediately preceding the one with the timestamp @var{end} will be the last
  1877. frame in the output.
  1878. @item start_pts
  1879. This is the same as @var{start}, except this option sets the start timestamp
  1880. in timebase units instead of seconds.
  1881. @item end_pts
  1882. This is the same as @var{end}, except this option sets the end timestamp
  1883. in timebase units instead of seconds.
  1884. @item duration
  1885. The maximum duration of the output in seconds.
  1886. @item start_frame
  1887. The number of the first frame that should be passed to the output.
  1888. @item end_frame
  1889. The number of the first frame that should be dropped.
  1890. @end table
  1891. Note that the first two sets of the start/end options and the @option{duration}
  1892. option look at the frame timestamp, while the _frame variants simply count the
  1893. frames that pass through the filter. Also note that this filter does not modify
  1894. the timestamps. If you wish for the output timestamps to start at zero, insert a
  1895. setpts filter after the trim filter.
  1896. If multiple start or end options are set, this filter tries to be greedy and
  1897. keep all the frames that match at least one of the specified constraints. To keep
  1898. only the part that matches all the constraints at once, chain multiple trim
  1899. filters.
  1900. The defaults are such that all the input is kept. So it is possible to set e.g.
  1901. just the end values to keep everything before the specified time.
  1902. Examples:
  1903. @itemize
  1904. @item
  1905. Drop everything except the second minute of input:
  1906. @example
  1907. avconv -i INPUT -vf trim=60:120
  1908. @end example
  1909. @item
  1910. Keep only the first second:
  1911. @example
  1912. avconv -i INPUT -vf trim=duration=1
  1913. @end example
  1914. @end itemize
  1915. @section unsharp
  1916. Sharpen or blur the input video.
  1917. It accepts the following parameters:
  1918. @table @option
  1919. @item luma_msize_x
  1920. Set the luma matrix horizontal size. It must be an integer between 3
  1921. and 13. The default value is 5.
  1922. @item luma_msize_y
  1923. Set the luma matrix vertical size. It must be an integer between 3
  1924. and 13. The default value is 5.
  1925. @item luma_amount
  1926. Set the luma effect strength. It must be a floating point number between -2.0
  1927. and 5.0. The default value is 1.0.
  1928. @item chroma_msize_x
  1929. Set the chroma matrix horizontal size. It must be an integer between 3
  1930. and 13. The default value is 5.
  1931. @item chroma_msize_y
  1932. Set the chroma matrix vertical size. It must be an integer between 3
  1933. and 13. The default value is 5.
  1934. @item chroma_amount
  1935. Set the chroma effect strength. It must be a floating point number between -2.0
  1936. and 5.0. The default value is 0.0.
  1937. @end table
  1938. Negative values for the amount will blur the input video, while positive
  1939. values will sharpen. All parameters are optional and default to the
  1940. equivalent of the string '5:5:1.0:5:5:0.0'.
  1941. @example
  1942. # Strong luma sharpen effect parameters
  1943. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  1944. # A strong blur of both luma and chroma parameters
  1945. unsharp=7:7:-2:7:7:-2
  1946. # Use the default values with @command{avconv}
  1947. ./avconv -i in.avi -vf "unsharp" out.mp4
  1948. @end example
  1949. @section vflip
  1950. Flip the input video vertically.
  1951. @example
  1952. ./avconv -i in.avi -vf "vflip" out.avi
  1953. @end example
  1954. @section yadif
  1955. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1956. filter").
  1957. It accepts the following parameters:
  1958. @table @option
  1959. @item mode
  1960. The interlacing mode to adopt. It accepts one of the following values:
  1961. @table @option
  1962. @item 0
  1963. Output one frame for each frame.
  1964. @item 1
  1965. Output one frame for each field.
  1966. @item 2
  1967. Like 0, but it skips the spatial interlacing check.
  1968. @item 3
  1969. Like 1, but it skips the spatial interlacing check.
  1970. @end table
  1971. The default value is 0.
  1972. @item parity
  1973. The picture field parity assumed for the input interlaced video. It accepts one
  1974. of the following values:
  1975. @table @option
  1976. @item 0
  1977. Assume the top field is first.
  1978. @item 1
  1979. Assume the bottom field is first.
  1980. @item -1
  1981. Enable automatic detection of field parity.
  1982. @end table
  1983. The default value is -1.
  1984. If the interlacing is unknown or the decoder does not export this information,
  1985. top field first will be assumed.
  1986. @item auto
  1987. Whether the deinterlacer should trust the interlaced flag and only deinterlace
  1988. frames marked as interlaced.
  1989. @table @option
  1990. @item 0
  1991. Deinterlace all frames.
  1992. @item 1
  1993. Only deinterlace frames marked as interlaced.
  1994. @end table
  1995. The default value is 0.
  1996. @end table
  1997. @c man end VIDEO FILTERS
  1998. @chapter Video Sources
  1999. @c man begin VIDEO SOURCES
  2000. Below is a description of the currently available video sources.
  2001. @section buffer
  2002. Buffer video frames, and make them available to the filter chain.
  2003. This source is mainly intended for a programmatic use, in particular
  2004. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2005. It accepts the following parameters:
  2006. @table @option
  2007. @item width
  2008. The input video width.
  2009. @item height
  2010. The input video height.
  2011. @item pix_fmt
  2012. The name of the input video pixel format.
  2013. @item time_base
  2014. The time base used for input timestamps.
  2015. @item sar
  2016. The sample (pixel) aspect ratio of the input video.
  2017. @end table
  2018. For example:
  2019. @example
  2020. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  2021. @end example
  2022. will instruct the source to accept video frames with size 320x240 and
  2023. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2024. square pixels (1:1 sample aspect ratio).
  2025. @section color
  2026. Provide an uniformly colored input.
  2027. It accepts the following parameters:
  2028. @table @option
  2029. @item color
  2030. Specify the color of the source. It can be the name of a color (case
  2031. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2032. alpha specifier. The default value is "black".
  2033. @item size
  2034. Specify the size of the sourced video, it may be a string of the form
  2035. @var{width}x@var{height}, or the name of a size abbreviation. The
  2036. default value is "320x240".
  2037. @item framerate
  2038. Specify the frame rate of the sourced video, as the number of frames
  2039. generated per second. It has to be a string in the format
  2040. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2041. number or a valid video frame rate abbreviation. The default value is
  2042. "25".
  2043. @end table
  2044. The following graph description will generate a red source
  2045. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2046. frames per second, which will be overlayed over the source connected
  2047. to the pad with identifier "in":
  2048. @example
  2049. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2050. @end example
  2051. @section movie
  2052. Read a video stream from a movie container.
  2053. Note that this source is a hack that bypasses the standard input path. It can be
  2054. useful in applications that do not support arbitrary filter graphs, but its use
  2055. is discouraged in those that do. It should never be used with
  2056. @command{avconv}; the @option{-filter_complex} option fully replaces it.
  2057. It accepts the following parameters:
  2058. @table @option
  2059. @item filename
  2060. The name of the resource to read (not necessarily a file; it can also be a
  2061. device or a stream accessed through some protocol).
  2062. @item format_name, f
  2063. Specifies the format assumed for the movie to read, and can be either
  2064. the name of a container or an input device. If not specified, the
  2065. format is guessed from @var{movie_name} or by probing.
  2066. @item seek_point, sp
  2067. Specifies the seek point in seconds. The frames will be output
  2068. starting from this seek point. The parameter is evaluated with
  2069. @code{av_strtod}, so the numerical value may be suffixed by an IS
  2070. postfix. The default value is "0".
  2071. @item stream_index, si
  2072. Specifies the index of the video stream to read. If the value is -1,
  2073. the most suitable video stream will be automatically selected. The default
  2074. value is "-1".
  2075. @end table
  2076. It allows overlaying a second video on top of the main input of
  2077. a filtergraph, as shown in this graph:
  2078. @example
  2079. input -----------> deltapts0 --> overlay --> output
  2080. ^
  2081. |
  2082. movie --> scale--> deltapts1 -------+
  2083. @end example
  2084. Some examples:
  2085. @example
  2086. # Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it
  2087. # on top of the input labelled "in"
  2088. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2089. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2090. # Read from a video4linux2 device, and overlay it on top of the input
  2091. # labelled "in"
  2092. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2093. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2094. @end example
  2095. @section nullsrc
  2096. Null video source: never return images. It is mainly useful as a
  2097. template and to be employed in analysis / debugging tools.
  2098. It accepts a string of the form
  2099. @var{width}:@var{height}:@var{timebase} as an optional parameter.
  2100. @var{width} and @var{height} specify the size of the configured
  2101. source. The default values of @var{width} and @var{height} are
  2102. respectively 352 and 288 (corresponding to the CIF size format).
  2103. @var{timebase} specifies an arithmetic expression representing a
  2104. timebase. The expression can contain the constants "PI", "E", "PHI", and
  2105. "AVTB" (the default timebase), and defaults to the value "AVTB".
  2106. @section frei0r_src
  2107. Provide a frei0r source.
  2108. To enable compilation of this filter you need to install the frei0r
  2109. header and configure Libav with --enable-frei0r.
  2110. This source accepts the following parameters:
  2111. @table @option
  2112. @item size
  2113. The size of the video to generate. It may be a string of the form
  2114. @var{width}x@var{height} or a frame size abbreviation.
  2115. @item framerate
  2116. The framerate of the generated video. It may be a string of the form
  2117. @var{num}/@var{den} or a frame rate abbreviation.
  2118. @item filter_name
  2119. The name to the frei0r source to load. For more information regarding frei0r and
  2120. how to set the parameters, read the @ref{frei0r} section in the video filters
  2121. documentation.
  2122. @item filter_params
  2123. A '|'-separated list of parameters to pass to the frei0r source.
  2124. @end table
  2125. An example:
  2126. @example
  2127. # Generate a frei0r partik0l source with size 200x200 and framerate 10
  2128. # which is overlayed on the overlay filter main input
  2129. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  2130. @end example
  2131. @section rgbtestsrc, testsrc
  2132. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2133. detecting RGB vs BGR issues. You should see a red, green and blue
  2134. stripe from top to bottom.
  2135. The @code{testsrc} source generates a test video pattern, showing a
  2136. color pattern, a scrolling gradient and a timestamp. This is mainly
  2137. intended for testing purposes.
  2138. The sources accept the following parameters:
  2139. @table @option
  2140. @item size, s
  2141. Specify the size of the sourced video, it may be a string of the form
  2142. @var{width}x@var{height}, or the name of a size abbreviation. The
  2143. default value is "320x240".
  2144. @item rate, r
  2145. Specify the frame rate of the sourced video, as the number of frames
  2146. generated per second. It has to be a string in the format
  2147. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2148. number or a valid video frame rate abbreviation. The default value is
  2149. "25".
  2150. @item sar
  2151. Set the sample aspect ratio of the sourced video.
  2152. @item duration
  2153. Set the video duration of the sourced video. The accepted syntax is:
  2154. @example
  2155. [-]HH[:MM[:SS[.m...]]]
  2156. [-]S+[.m...]
  2157. @end example
  2158. Also see the the @code{av_parse_time()} function.
  2159. If not specified, or the expressed duration is negative, the video is
  2160. supposed to be generated forever.
  2161. @end table
  2162. For example the following:
  2163. @example
  2164. testsrc=duration=5.3:size=qcif:rate=10
  2165. @end example
  2166. will generate a video with a duration of 5.3 seconds, with size
  2167. 176x144 and a framerate of 10 frames per second.
  2168. @c man end VIDEO SOURCES
  2169. @chapter Video Sinks
  2170. @c man begin VIDEO SINKS
  2171. Below is a description of the currently available video sinks.
  2172. @section buffersink
  2173. Buffer video frames, and make them available to the end of the filter
  2174. graph.
  2175. This sink is intended for programmatic use through the interface defined in
  2176. @file{libavfilter/buffersink.h}.
  2177. @section nullsink
  2178. Null video sink: do absolutely nothing with the input video. It is
  2179. mainly useful as a template and for use in analysis / debugging
  2180. tools.
  2181. @c man end VIDEO SINKS