| 
							- # Copyright (c) 2019 Guo Yejun
 - #
 - # This file is part of FFmpeg.
 - #
 - # FFmpeg is free software; you can redistribute it and/or
 - # modify it under the terms of the GNU Lesser General Public
 - # License as published by the Free Software Foundation; either
 - # version 2.1 of the License, or (at your option) any later version.
 - #
 - # FFmpeg is distributed in the hope that it will be useful,
 - # but WITHOUT ANY WARRANTY; without even the implied warranty of
 - # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 - # Lesser General Public License for more details.
 - #
 - # You should have received a copy of the GNU Lesser General Public
 - # License along with FFmpeg; if not, write to the Free Software
 - # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 - # ==============================================================================
 - 
 - import tensorflow as tf
 - import numpy as np
 - import sys, struct
 - 
 - __all__ = ['convert_from_tensorflow']
 - 
 - # as the first step to be compatible with vf_sr, it is not general.
 - # it will be refined step by step.
 - 
 - class TFConverter:
 -     def __init__(self, graph_def, nodes, outfile):
 -         self.graph_def = graph_def
 -         self.nodes = nodes
 -         self.outfile = outfile
 -         self.layer_number = 0
 -         self.output_names = []
 -         self.name_node_dict = {}
 -         self.edges = {}
 -         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'LeakyRelu':4}
 -         self.conv_paddings = {'VALID':2, 'SAME':1}
 -         self.converted_nodes = set()
 -         self.op2code = {'Conv2D':1, 'DepthToSpace':2}
 - 
 - 
 -     def dump_for_tensorboard(self):
 -         graph = tf.get_default_graph()
 -         tf.import_graph_def(self.graph_def, name="")
 -         # tensorboard --logdir=/tmp/graph
 -         tf.summary.FileWriter('/tmp/graph', graph)
 - 
 - 
 -     def get_conv2d_params(self, node):
 -         knode = self.name_node_dict[node.input[1]]
 -         bnode = None
 -         activation = 'None'
 -         next = self.edges[node.name][0]
 -         if next.op == 'BiasAdd':
 -             self.converted_nodes.add(next.name)
 -             bnode = self.name_node_dict[next.input[1]]
 -             next = self.edges[next.name][0]
 -         if next.op in self.conv_activations:
 -             self.converted_nodes.add(next.name)
 -             activation = next.op
 -         return knode, bnode, activation
 - 
 - 
 -     def dump_conv2d_to_file(self, node, f):
 -         assert(node.op == 'Conv2D')
 -         self.layer_number = self.layer_number + 1
 -         self.converted_nodes.add(node.name)
 -         knode, bnode, activation = self.get_conv2d_params(node)
 - 
 -         dilation = node.attr['dilations'].list.i[0]
 -         padding = node.attr['padding'].s
 -         padding = self.conv_paddings[padding.decode("utf-8")]
 - 
 -         ktensor = knode.attr['value'].tensor
 -         filter_height = ktensor.tensor_shape.dim[0].size
 -         filter_width = ktensor.tensor_shape.dim[1].size
 -         in_channels = ktensor.tensor_shape.dim[2].size
 -         out_channels = ktensor.tensor_shape.dim[3].size
 -         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
 -         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
 -         kernel = np.transpose(kernel, [3, 0, 1, 2])
 - 
 -         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f)
 -         kernel.tofile(f)
 - 
 -         btensor = bnode.attr['value'].tensor
 -         if btensor.tensor_shape.dim[0].size == 1:
 -             bias = struct.pack("f", btensor.float_val[0])
 -         else:
 -             bias = btensor.tensor_content
 -         f.write(bias)
 - 
 - 
 -     def dump_depth2space_to_file(self, node, f):
 -         assert(node.op == 'DepthToSpace')
 -         self.layer_number = self.layer_number + 1
 -         block_size = node.attr['block_size'].i
 -         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
 -         self.converted_nodes.add(node.name)
 - 
 - 
 -     def generate_layer_number(self):
 -         # in current hard code implementation, the layer number is the first data written to the native model file
 -         # it is not easy to know it at the beginning time in the general converter, so first do a dry run for compatibility
 -         # will be refined later.
 -         with open('/tmp/tmp.model', 'wb') as f:
 -             self.dump_layers_to_file(f)
 -         self.converted_nodes.clear()
 - 
 - 
 -     def dump_layers_to_file(self, f):
 -         for node in self.nodes:
 -             if node.name in self.converted_nodes:
 -                 continue
 -             if node.op == 'Conv2D':
 -                 self.dump_conv2d_to_file(node, f)
 -             elif node.op == 'DepthToSpace':
 -                 self.dump_depth2space_to_file(node, f)
 - 
 - 
 -     def dump_to_file(self):
 -         self.generate_layer_number()
 -         with open(self.outfile, 'wb') as f:
 -             np.array([self.layer_number], dtype=np.uint32).tofile(f)
 -             self.dump_layers_to_file(f)
 - 
 - 
 -     def generate_name_node_dict(self):
 -         for node in self.nodes:
 -             self.name_node_dict[node.name] = node
 - 
 - 
 -     def generate_output_names(self):
 -         used_names = []
 -         for node in self.nodes:
 -             for input in node.input:
 -                 used_names.append(input)
 - 
 -         for node in self.nodes:
 -             if node.name not in used_names:
 -                 self.output_names.append(node.name)
 - 
 - 
 -     def remove_identity(self):
 -         id_nodes = []
 -         id_dict = {}
 -         for node in self.nodes:
 -             if node.op == 'Identity':
 -                 name = node.name
 -                 input = node.input[0]
 -                 id_nodes.append(node)
 -                 # do not change the output name
 -                 if name in self.output_names:
 -                     self.name_node_dict[input].name = name
 -                     self.name_node_dict[name] = self.name_node_dict[input]
 -                     del self.name_node_dict[input]
 -                 else:
 -                     id_dict[name] = input
 - 
 -         for idnode in id_nodes:
 -             self.nodes.remove(idnode)
 - 
 -         for node in self.nodes:
 -             for i in range(len(node.input)):
 -                 input = node.input[i]
 -                 if input in id_dict:
 -                     node.input[i] = id_dict[input]
 - 
 - 
 -     def generate_edges(self):
 -         for node in self.nodes:
 -             for input in node.input:
 -                 if input in self.edges:
 -                     self.edges[input].append(node)
 -                 else:
 -                     self.edges[input] = [node]
 - 
 - 
 -     def run(self):
 -         self.generate_name_node_dict()
 -         self.generate_output_names()
 -         self.remove_identity()
 -         self.generate_edges()
 - 
 -         #check the graph with tensorboard with human eyes
 -         #self.dump_for_tensorboard()
 - 
 -         self.dump_to_file()
 - 
 - 
 - def convert_from_tensorflow(infile, outfile):
 -     with open(infile, 'rb') as f:
 -         # read the file in .proto format
 -         graph_def = tf.GraphDef()
 -         graph_def.ParseFromString(f.read())
 -         nodes = graph_def.node
 - 
 -     converter = TFConverter(graph_def, nodes, outfile)
 -     converter.run()
 
 
  |