You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

822 lines
27KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include "avcodec.h"
  21. #include "dsputil.h"
  22. #include "mpegvideo.h"
  23. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  24. #include <assert.h>
  25. #ifndef M_E
  26. #define M_E 2.718281828
  27. #endif
  28. static int init_pass2(MpegEncContext *s);
  29. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  30. void ff_write_pass1_stats(MpegEncContext *s){
  31. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  32. s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
  33. s->frame_qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  34. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count);
  35. }
  36. int ff_rate_control_init(MpegEncContext *s)
  37. {
  38. RateControlContext *rcc= &s->rc_context;
  39. int i;
  40. emms_c();
  41. for(i=0; i<5; i++){
  42. rcc->pred[i].coeff= 7.0;
  43. rcc->pred[i].count= 1.0;
  44. rcc->pred[i].decay= 0.4;
  45. rcc->i_cplx_sum [i]=
  46. rcc->p_cplx_sum [i]=
  47. rcc->mv_bits_sum[i]=
  48. rcc->qscale_sum [i]=
  49. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  50. rcc->last_qscale_for[i]=5;
  51. }
  52. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  53. if(s->flags&CODEC_FLAG_PASS2){
  54. int i;
  55. char *p;
  56. /* find number of pics */
  57. p= s->avctx->stats_in;
  58. for(i=-1; p; i++){
  59. p= strchr(p+1, ';');
  60. }
  61. i+= s->max_b_frames;
  62. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  63. rcc->num_entries= i;
  64. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  65. for(i=0; i<rcc->num_entries; i++){
  66. RateControlEntry *rce= &rcc->entry[i];
  67. rce->pict_type= rce->new_pict_type=P_TYPE;
  68. rce->qscale= rce->new_qscale=2;
  69. rce->misc_bits= s->mb_num + 10;
  70. rce->mb_var_sum= s->mb_num*100;
  71. }
  72. /* read stats */
  73. p= s->avctx->stats_in;
  74. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  75. RateControlEntry *rce;
  76. int picture_number;
  77. int e;
  78. char *next;
  79. next= strchr(p, ';');
  80. if(next){
  81. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  82. next++;
  83. }
  84. e= sscanf(p, " in:%d ", &picture_number);
  85. assert(picture_number >= 0);
  86. assert(picture_number < rcc->num_entries);
  87. rce= &rcc->entry[picture_number];
  88. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  89. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  90. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  91. if(e!=12){
  92. fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
  93. return -1;
  94. }
  95. p= next;
  96. }
  97. if(init_pass2(s) < 0) return -1;
  98. }
  99. if(!(s->flags&CODEC_FLAG_PASS2)){
  100. rcc->short_term_qsum=0.001;
  101. rcc->short_term_qcount=0.001;
  102. rcc->pass1_rc_eq_output_sum= 0.001;
  103. rcc->pass1_wanted_bits=0.001;
  104. /* init stuff with the user specified complexity */
  105. if(s->avctx->rc_initial_cplx){
  106. for(i=0; i<60*30; i++){
  107. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  108. RateControlEntry rce;
  109. double q;
  110. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  111. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  112. else rce.pict_type= P_TYPE;
  113. rce.new_pict_type= rce.pict_type;
  114. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  115. rce.mb_var_sum = s->mb_num;
  116. rce.qscale = 2;
  117. rce.f_code = 2;
  118. rce.b_code = 1;
  119. rce.misc_bits= 1;
  120. if(s->pict_type== I_TYPE){
  121. rce.i_count = s->mb_num;
  122. rce.i_tex_bits= bits;
  123. rce.p_tex_bits= 0;
  124. rce.mv_bits= 0;
  125. }else{
  126. rce.i_count = 0; //FIXME we do know this approx
  127. rce.i_tex_bits= 0;
  128. rce.p_tex_bits= bits*0.9;
  129. rce.mv_bits= bits*0.1;
  130. }
  131. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  132. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  133. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  134. rcc->frame_count[rce.pict_type] ++;
  135. bits= rce.i_tex_bits + rce.p_tex_bits;
  136. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  137. rcc->pass1_wanted_bits+= s->bit_rate/(s->frame_rate / (double)FRAME_RATE_BASE);
  138. }
  139. }
  140. }
  141. return 0;
  142. }
  143. void ff_rate_control_uninit(MpegEncContext *s)
  144. {
  145. RateControlContext *rcc= &s->rc_context;
  146. emms_c();
  147. av_freep(&rcc->entry);
  148. }
  149. static inline double qp2bits(RateControlEntry *rce, double qp){
  150. if(qp<=0.0){
  151. fprintf(stderr, "qp<=0.0\n");
  152. }
  153. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  154. }
  155. static inline double bits2qp(RateControlEntry *rce, double bits){
  156. if(bits<0.9){
  157. fprintf(stderr, "bits<0.9\n");
  158. }
  159. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  160. }
  161. static void update_rc_buffer(MpegEncContext *s, int frame_size){
  162. RateControlContext *rcc= &s->rc_context;
  163. const double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  164. const double buffer_size= s->avctx->rc_buffer_size;
  165. const double min_rate= s->avctx->rc_min_rate/fps;
  166. const double max_rate= s->avctx->rc_max_rate/fps;
  167. if(buffer_size){
  168. rcc->buffer_index-= frame_size;
  169. if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
  170. rcc->buffer_index+= max_rate;
  171. if(rcc->buffer_index >= buffer_size)
  172. rcc->buffer_index= buffer_size-1;
  173. }else{
  174. rcc->buffer_index+= min_rate;
  175. }
  176. if(rcc->buffer_index < 0)
  177. fprintf(stderr, "rc buffer underflow\n");
  178. if(rcc->buffer_index >= s->avctx->rc_buffer_size)
  179. fprintf(stderr, "rc buffer overflow\n");
  180. }
  181. }
  182. /**
  183. * modifies the bitrate curve from pass1 for one frame
  184. */
  185. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  186. RateControlContext *rcc= &s->rc_context;
  187. double q, bits;
  188. const int pict_type= rce->new_pict_type;
  189. const double mb_num= s->mb_num;
  190. int i;
  191. double const_values[]={
  192. M_PI,
  193. M_E,
  194. rce->i_tex_bits*rce->qscale,
  195. rce->p_tex_bits*rce->qscale,
  196. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  197. rce->mv_bits/mb_num,
  198. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  199. rce->i_count/mb_num,
  200. rce->mc_mb_var_sum/mb_num,
  201. rce->mb_var_sum/mb_num,
  202. rce->pict_type == I_TYPE,
  203. rce->pict_type == P_TYPE,
  204. rce->pict_type == B_TYPE,
  205. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  206. s->qcompress,
  207. /* rcc->last_qscale_for[I_TYPE],
  208. rcc->last_qscale_for[P_TYPE],
  209. rcc->last_qscale_for[B_TYPE],
  210. rcc->next_non_b_qscale,*/
  211. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  212. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  213. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  214. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  215. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  216. 0
  217. };
  218. static const char *const_names[]={
  219. "PI",
  220. "E",
  221. "iTex",
  222. "pTex",
  223. "tex",
  224. "mv",
  225. "fCode",
  226. "iCount",
  227. "mcVar",
  228. "var",
  229. "isI",
  230. "isP",
  231. "isB",
  232. "avgQP",
  233. "qComp",
  234. /* "lastIQP",
  235. "lastPQP",
  236. "lastBQP",
  237. "nextNonBQP",*/
  238. "avgIITex",
  239. "avgPITex",
  240. "avgPPTex",
  241. "avgBPTex",
  242. "avgTex",
  243. NULL
  244. };
  245. static double (*func1[])(void *, double)={
  246. (void *)bits2qp,
  247. (void *)qp2bits,
  248. NULL
  249. };
  250. static const char *func1_names[]={
  251. "bits2qp",
  252. "qp2bits",
  253. NULL
  254. };
  255. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  256. rcc->pass1_rc_eq_output_sum+= bits;
  257. bits*=rate_factor;
  258. if(bits<0.0) bits=0.0;
  259. bits+= 1.0; //avoid 1/0 issues
  260. /* user override */
  261. for(i=0; i<s->avctx->rc_override_count; i++){
  262. RcOverride *rco= s->avctx->rc_override;
  263. if(rco[i].start_frame > frame_num) continue;
  264. if(rco[i].end_frame < frame_num) continue;
  265. if(rco[i].qscale)
  266. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  267. else
  268. bits*= rco[i].quality_factor;
  269. }
  270. q= bits2qp(rce, bits);
  271. /* I/B difference */
  272. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  273. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  274. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  275. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  276. return q;
  277. }
  278. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  279. RateControlContext *rcc= &s->rc_context;
  280. AVCodecContext *a= s->avctx;
  281. const int pict_type= rce->new_pict_type;
  282. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  283. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  284. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  285. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  286. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  287. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  288. /* last qscale / qdiff stuff */
  289. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  290. double last_q= rcc->last_qscale_for[pict_type];
  291. if (q > last_q + a->max_qdiff) q= last_q + a->max_qdiff;
  292. else if(q < last_q - a->max_qdiff) q= last_q - a->max_qdiff;
  293. }
  294. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  295. if(pict_type!=B_TYPE)
  296. rcc->last_non_b_pict_type= pict_type;
  297. return q;
  298. }
  299. /**
  300. * gets the qmin & qmax for pict_type
  301. */
  302. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  303. int qmin= s->qmin;
  304. int qmax= s->qmax;
  305. if(pict_type==B_TYPE){
  306. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  307. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  308. }else if(pict_type==I_TYPE){
  309. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  310. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  311. }
  312. if(qmin<1) qmin=1;
  313. if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
  314. if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
  315. if(qmax>31) qmax=31;
  316. if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
  317. *qmin_ret= qmin;
  318. *qmax_ret= qmax;
  319. }
  320. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  321. RateControlContext *rcc= &s->rc_context;
  322. int qmin, qmax;
  323. double bits;
  324. const int pict_type= rce->new_pict_type;
  325. const double buffer_size= s->avctx->rc_buffer_size;
  326. const double min_rate= s->avctx->rc_min_rate;
  327. const double max_rate= s->avctx->rc_max_rate;
  328. get_qminmax(&qmin, &qmax, s, pict_type);
  329. /* modulation */
  330. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  331. q*= s->avctx->rc_qmod_amp;
  332. bits= qp2bits(rce, q);
  333. //printf("q:%f\n", q);
  334. /* buffer overflow/underflow protection */
  335. if(buffer_size){
  336. double expected_size= rcc->buffer_index;
  337. if(min_rate){
  338. double d= 2*(buffer_size - expected_size)/buffer_size;
  339. if(d>1.0) d=1.0;
  340. else if(d<0.0001) d=0.0001;
  341. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  342. q= FFMIN(q, bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*2, 1)));
  343. }
  344. if(max_rate){
  345. double d= 2*expected_size/buffer_size;
  346. if(d>1.0) d=1.0;
  347. else if(d<0.0001) d=0.0001;
  348. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  349. q= FFMAX(q, bits2qp(rce, FFMAX(rcc->buffer_index/2, 1)));
  350. }
  351. }
  352. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  353. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  354. if (q<qmin) q=qmin;
  355. else if(q>qmax) q=qmax;
  356. }else{
  357. double min2= log(qmin);
  358. double max2= log(qmax);
  359. q= log(q);
  360. q= (q - min2)/(max2-min2) - 0.5;
  361. q*= -4.0;
  362. q= 1.0/(1.0 + exp(q));
  363. q= q*(max2-min2) + min2;
  364. q= exp(q);
  365. }
  366. return q;
  367. }
  368. //----------------------------------
  369. // 1 Pass Code
  370. static double predict_size(Predictor *p, double q, double var)
  371. {
  372. return p->coeff*var / (q*p->count);
  373. }
  374. /*
  375. static double predict_qp(Predictor *p, double size, double var)
  376. {
  377. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  378. return p->coeff*var / (size*p->count);
  379. }
  380. */
  381. static void update_predictor(Predictor *p, double q, double var, double size)
  382. {
  383. double new_coeff= size*q / (var + 1);
  384. if(var<10) return;
  385. p->count*= p->decay;
  386. p->coeff*= p->decay;
  387. p->count++;
  388. p->coeff+= new_coeff;
  389. }
  390. static void adaptive_quantization(MpegEncContext *s, double q){
  391. int i;
  392. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  393. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  394. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  395. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  396. const float p_masking = s->avctx->p_masking;
  397. float bits_sum= 0.0;
  398. float cplx_sum= 0.0;
  399. float cplx_tab[s->mb_num];
  400. float bits_tab[s->mb_num];
  401. const int qmin= s->avctx->mb_qmin;
  402. const int qmax= s->avctx->mb_qmax;
  403. Picture * const pic= &s->current_picture;
  404. for(i=0; i<s->mb_num; i++){
  405. float temp_cplx= sqrt(pic->mc_mb_var[i]);
  406. float spat_cplx= sqrt(pic->mb_var[i]);
  407. const int lumi= pic->mb_mean[i];
  408. float bits, cplx, factor;
  409. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  410. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  411. if((s->mb_type[i]&MB_TYPE_INTRA)){//FIXME hq mode
  412. cplx= spat_cplx;
  413. factor= 1.0 + p_masking;
  414. }else{
  415. cplx= temp_cplx;
  416. factor= pow(temp_cplx, - temp_cplx_masking);
  417. }
  418. factor*=pow(spat_cplx, - spatial_cplx_masking);
  419. if(lumi>127)
  420. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  421. else
  422. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  423. if(factor<0.00001) factor= 0.00001;
  424. bits= cplx*factor;
  425. cplx_sum+= cplx;
  426. bits_sum+= bits;
  427. cplx_tab[i]= cplx;
  428. bits_tab[i]= bits;
  429. }
  430. /* handle qmin/qmax cliping */
  431. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  432. for(i=0; i<s->mb_num; i++){
  433. float newq= q*cplx_tab[i]/bits_tab[i];
  434. newq*= bits_sum/cplx_sum;
  435. if (newq > qmax){
  436. bits_sum -= bits_tab[i];
  437. cplx_sum -= cplx_tab[i]*q/qmax;
  438. }
  439. else if(newq < qmin){
  440. bits_sum -= bits_tab[i];
  441. cplx_sum -= cplx_tab[i]*q/qmin;
  442. }
  443. }
  444. }
  445. for(i=0; i<s->mb_num; i++){
  446. float newq= q*cplx_tab[i]/bits_tab[i];
  447. int intq;
  448. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  449. newq*= bits_sum/cplx_sum;
  450. }
  451. if(i && ABS(pic->qscale_table[i-1] - newq)<0.75)
  452. intq= pic->qscale_table[i-1];
  453. else
  454. intq= (int)(newq + 0.5);
  455. if (intq > qmax) intq= qmax;
  456. else if(intq < qmin) intq= qmin;
  457. //if(i%s->mb_width==0) printf("\n");
  458. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  459. pic->qscale_table[i]= intq;
  460. }
  461. }
  462. float ff_rate_estimate_qscale(MpegEncContext *s)
  463. {
  464. float q;
  465. int qmin, qmax;
  466. float br_compensation;
  467. double diff;
  468. double short_term_q;
  469. double fps;
  470. int picture_number= s->picture_number;
  471. int64_t wanted_bits;
  472. RateControlContext *rcc= &s->rc_context;
  473. RateControlEntry local_rce, *rce;
  474. double bits;
  475. double rate_factor;
  476. int var;
  477. const int pict_type= s->pict_type;
  478. Picture * const pic= &s->current_picture;
  479. emms_c();
  480. get_qminmax(&qmin, &qmax, s, pict_type);
  481. fps= (double)s->frame_rate / FRAME_RATE_BASE;
  482. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  483. /* update predictors */
  484. if(picture_number>2){
  485. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  486. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  487. }
  488. if(s->flags&CODEC_FLAG_PASS2){
  489. assert(picture_number>=0);
  490. assert(picture_number<rcc->num_entries);
  491. rce= &rcc->entry[picture_number];
  492. wanted_bits= rce->expected_bits;
  493. }else{
  494. rce= &local_rce;
  495. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  496. }
  497. diff= s->total_bits - wanted_bits;
  498. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  499. if(br_compensation<=0.0) br_compensation=0.001;
  500. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  501. if(s->flags&CODEC_FLAG_PASS2){
  502. if(pict_type!=I_TYPE)
  503. assert(pict_type == rce->new_pict_type);
  504. q= rce->new_qscale / br_compensation;
  505. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  506. }else{
  507. rce->pict_type=
  508. rce->new_pict_type= pict_type;
  509. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  510. rce->mb_var_sum = pic-> mb_var_sum;
  511. rce->qscale = 2;
  512. rce->f_code = s->f_code;
  513. rce->b_code = s->b_code;
  514. rce->misc_bits= 1;
  515. if(picture_number>0)
  516. update_rc_buffer(s, s->frame_bits);
  517. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  518. if(pict_type== I_TYPE){
  519. rce->i_count = s->mb_num;
  520. rce->i_tex_bits= bits;
  521. rce->p_tex_bits= 0;
  522. rce->mv_bits= 0;
  523. }else{
  524. rce->i_count = 0; //FIXME we do know this approx
  525. rce->i_tex_bits= 0;
  526. rce->p_tex_bits= bits*0.9;
  527. rce->mv_bits= bits*0.1;
  528. }
  529. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  530. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  531. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  532. rcc->frame_count[pict_type] ++;
  533. bits= rce->i_tex_bits + rce->p_tex_bits;
  534. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  535. q= get_qscale(s, rce, rate_factor, picture_number);
  536. assert(q>0.0);
  537. //printf("%f ", q);
  538. q= get_diff_limited_q(s, rce, q);
  539. //printf("%f ", q);
  540. assert(q>0.0);
  541. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  542. rcc->short_term_qsum*=s->qblur;
  543. rcc->short_term_qcount*=s->qblur;
  544. rcc->short_term_qsum+= q;
  545. rcc->short_term_qcount++;
  546. //printf("%f ", q);
  547. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  548. //printf("%f ", q);
  549. }
  550. assert(q>0.0);
  551. q= modify_qscale(s, rce, q, picture_number);
  552. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  553. assert(q>0.0);
  554. }
  555. if(s->avctx->debug&FF_DEBUG_RC){
  556. printf("%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  557. ff_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  558. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  559. );
  560. }
  561. if (q<qmin) q=qmin;
  562. else if(q>qmax) q=qmax;
  563. if(s->adaptive_quant)
  564. adaptive_quantization(s, q);
  565. else
  566. q= (int)(q + 0.5);
  567. rcc->last_qscale= q;
  568. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  569. rcc->last_mb_var_sum= pic->mb_var_sum;
  570. #if 0
  571. {
  572. static int mvsum=0, texsum=0;
  573. mvsum += s->mv_bits;
  574. texsum += s->i_tex_bits + s->p_tex_bits;
  575. printf("%d %d//\n\n", mvsum, texsum);
  576. }
  577. #endif
  578. return q;
  579. }
  580. //----------------------------------------------
  581. // 2-Pass code
  582. static int init_pass2(MpegEncContext *s)
  583. {
  584. RateControlContext *rcc= &s->rc_context;
  585. int i;
  586. double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  587. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  588. double avg_quantizer[5];
  589. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  590. uint64_t available_bits[5];
  591. uint64_t all_const_bits;
  592. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  593. double rate_factor=0;
  594. double step;
  595. //int last_i_frame=-10000000;
  596. const int filter_size= (int)(s->qblur*4) | 1;
  597. double expected_bits;
  598. double *qscale, *blured_qscale;
  599. /* find complexity & const_bits & decide the pict_types */
  600. for(i=0; i<rcc->num_entries; i++){
  601. RateControlEntry *rce= &rcc->entry[i];
  602. rce->new_pict_type= rce->pict_type;
  603. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  604. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  605. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  606. rcc->frame_count[rce->pict_type] ++;
  607. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  608. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  609. }
  610. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  611. if(all_available_bits < all_const_bits){
  612. fprintf(stderr, "requested bitrate is to low\n");
  613. return -1;
  614. }
  615. /* find average quantizers */
  616. avg_quantizer[P_TYPE]=0;
  617. for(step=256*256; step>0.0000001; step*=0.5){
  618. double expected_bits=0;
  619. avg_quantizer[P_TYPE]+= step;
  620. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  621. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  622. expected_bits=
  623. + all_const_bits
  624. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  625. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  626. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  627. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  628. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  629. }
  630. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  631. for(i=0; i<5; i++){
  632. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  633. }
  634. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  635. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  636. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  637. for(step=256*256; step>0.0000001; step*=0.5){
  638. expected_bits=0;
  639. rate_factor+= step;
  640. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  641. /* find qscale */
  642. for(i=0; i<rcc->num_entries; i++){
  643. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  644. }
  645. assert(filter_size%2==1);
  646. /* fixed I/B QP relative to P mode */
  647. for(i=rcc->num_entries-1; i>=0; i--){
  648. RateControlEntry *rce= &rcc->entry[i];
  649. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  650. }
  651. /* smooth curve */
  652. for(i=0; i<rcc->num_entries; i++){
  653. RateControlEntry *rce= &rcc->entry[i];
  654. const int pict_type= rce->new_pict_type;
  655. int j;
  656. double q=0.0, sum=0.0;
  657. for(j=0; j<filter_size; j++){
  658. int index= i+j-filter_size/2;
  659. double d= index-i;
  660. double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
  661. if(index < 0 || index >= rcc->num_entries) continue;
  662. if(pict_type != rcc->entry[index].new_pict_type) continue;
  663. q+= qscale[index] * coeff;
  664. sum+= coeff;
  665. }
  666. blured_qscale[i]= q/sum;
  667. }
  668. /* find expected bits */
  669. for(i=0; i<rcc->num_entries; i++){
  670. RateControlEntry *rce= &rcc->entry[i];
  671. double bits;
  672. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  673. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  674. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  675. update_rc_buffer(s, bits);
  676. rce->expected_bits= expected_bits;
  677. expected_bits += bits;
  678. }
  679. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  680. if(expected_bits > all_available_bits) rate_factor-= step;
  681. }
  682. av_free(qscale);
  683. av_free(blured_qscale);
  684. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  685. fprintf(stderr, "Error: 2pass curve failed to converge\n");
  686. return -1;
  687. }
  688. return 0;
  689. }