You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2501 lines
74KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. //#define DEBUG
  20. #include "avcodec.h"
  21. #include "mpegaudio.h"
  22. /*
  23. * TODO:
  24. * - in low precision mode, use more 16 bit multiplies in synth filter
  25. * - test lsf / mpeg25 extensively.
  26. */
  27. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  28. audio decoder */
  29. #ifdef CONFIG_MPEGAUDIO_HP
  30. #define USE_HIGHPRECISION
  31. #endif
  32. #ifdef USE_HIGHPRECISION
  33. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  34. #define WFRAC_BITS 16 /* fractional bits for window */
  35. #else
  36. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  37. #define WFRAC_BITS 14 /* fractional bits for window */
  38. #endif
  39. #define FRAC_ONE (1 << FRAC_BITS)
  40. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  41. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #if FRAC_BITS <= 15
  47. typedef int16_t MPA_INT;
  48. #else
  49. typedef int32_t MPA_INT;
  50. #endif
  51. /****************/
  52. #define HEADER_SIZE 4
  53. #define BACKSTEP_SIZE 512
  54. typedef struct MPADecodeContext {
  55. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  56. int inbuf_index;
  57. uint8_t *inbuf_ptr, *inbuf;
  58. int frame_size;
  59. int free_format_frame_size; /* frame size in case of free format
  60. (zero if currently unknown) */
  61. /* next header (used in free format parsing) */
  62. uint32_t free_format_next_header;
  63. int error_protection;
  64. int layer;
  65. int sample_rate;
  66. int sample_rate_index; /* between 0 and 8 */
  67. int bit_rate;
  68. int old_frame_size;
  69. GetBitContext gb;
  70. int nb_channels;
  71. int mode;
  72. int mode_ext;
  73. int lsf;
  74. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
  75. int synth_buf_offset[MPA_MAX_CHANNELS];
  76. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
  77. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  78. #ifdef DEBUG
  79. int frame_count;
  80. #endif
  81. } MPADecodeContext;
  82. /* layer 3 "granule" */
  83. typedef struct GranuleDef {
  84. uint8_t scfsi;
  85. int part2_3_length;
  86. int big_values;
  87. int global_gain;
  88. int scalefac_compress;
  89. uint8_t block_type;
  90. uint8_t switch_point;
  91. int table_select[3];
  92. int subblock_gain[3];
  93. uint8_t scalefac_scale;
  94. uint8_t count1table_select;
  95. int region_size[3]; /* number of huffman codes in each region */
  96. int preflag;
  97. int short_start, long_end; /* long/short band indexes */
  98. uint8_t scale_factors[40];
  99. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  100. } GranuleDef;
  101. #define MODE_EXT_MS_STEREO 2
  102. #define MODE_EXT_I_STEREO 1
  103. /* layer 3 huffman tables */
  104. typedef struct HuffTable {
  105. int xsize;
  106. const uint8_t *bits;
  107. const uint16_t *codes;
  108. } HuffTable;
  109. #include "mpegaudiodectab.h"
  110. /* vlc structure for decoding layer 3 huffman tables */
  111. static VLC huff_vlc[16];
  112. static uint8_t *huff_code_table[16];
  113. static VLC huff_quad_vlc[2];
  114. /* computed from band_size_long */
  115. static uint16_t band_index_long[9][23];
  116. /* XXX: free when all decoders are closed */
  117. #define TABLE_4_3_SIZE (8191 + 16)
  118. static int8_t *table_4_3_exp;
  119. #if FRAC_BITS <= 15
  120. static uint16_t *table_4_3_value;
  121. #else
  122. static uint32_t *table_4_3_value;
  123. #endif
  124. /* intensity stereo coef table */
  125. static int32_t is_table[2][16];
  126. static int32_t is_table_lsf[2][2][16];
  127. static int32_t csa_table[8][2];
  128. static int32_t mdct_win[8][36];
  129. /* lower 2 bits: modulo 3, higher bits: shift */
  130. static uint16_t scale_factor_modshift[64];
  131. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  132. static int32_t scale_factor_mult[15][3];
  133. /* mult table for layer 2 group quantization */
  134. #define SCALE_GEN(v) \
  135. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  136. static int32_t scale_factor_mult2[3][3] = {
  137. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  138. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  139. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  140. };
  141. /* 2^(n/4) */
  142. static uint32_t scale_factor_mult3[4] = {
  143. FIXR(1.0),
  144. FIXR(1.18920711500272106671),
  145. FIXR(1.41421356237309504880),
  146. FIXR(1.68179283050742908605),
  147. };
  148. static MPA_INT window[512];
  149. /* layer 1 unscaling */
  150. /* n = number of bits of the mantissa minus 1 */
  151. static inline int l1_unscale(int n, int mant, int scale_factor)
  152. {
  153. int shift, mod;
  154. int64_t val;
  155. shift = scale_factor_modshift[scale_factor];
  156. mod = shift & 3;
  157. shift >>= 2;
  158. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  159. shift += n;
  160. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  161. return (int)((val + (1LL << (shift - 1))) >> shift);
  162. }
  163. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  164. {
  165. int shift, mod, val;
  166. shift = scale_factor_modshift[scale_factor];
  167. mod = shift & 3;
  168. shift >>= 2;
  169. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  170. /* NOTE: at this point, 0 <= shift <= 21 */
  171. if (shift > 0)
  172. val = (val + (1 << (shift - 1))) >> shift;
  173. return val;
  174. }
  175. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  176. static inline int l3_unscale(int value, int exponent)
  177. {
  178. #if FRAC_BITS <= 15
  179. unsigned int m;
  180. #else
  181. uint64_t m;
  182. #endif
  183. int e;
  184. e = table_4_3_exp[value];
  185. e += (exponent >> 2);
  186. e = FRAC_BITS - e;
  187. #if FRAC_BITS <= 15
  188. if (e > 31)
  189. e = 31;
  190. #endif
  191. m = table_4_3_value[value];
  192. #if FRAC_BITS <= 15
  193. m = (m * scale_factor_mult3[exponent & 3]);
  194. m = (m + (1 << (e-1))) >> e;
  195. return m;
  196. #else
  197. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  198. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  199. return m;
  200. #endif
  201. }
  202. /* all integer n^(4/3) computation code */
  203. #define DEV_ORDER 13
  204. #define POW_FRAC_BITS 24
  205. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  206. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  207. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  208. static int dev_4_3_coefs[DEV_ORDER];
  209. static int pow_mult3[3] = {
  210. POW_FIX(1.0),
  211. POW_FIX(1.25992104989487316476),
  212. POW_FIX(1.58740105196819947474),
  213. };
  214. static void int_pow_init(void)
  215. {
  216. int i, a;
  217. a = POW_FIX(1.0);
  218. for(i=0;i<DEV_ORDER;i++) {
  219. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  220. dev_4_3_coefs[i] = a;
  221. }
  222. }
  223. /* return the mantissa and the binary exponent */
  224. static int int_pow(int i, int *exp_ptr)
  225. {
  226. int e, er, eq, j;
  227. int a, a1;
  228. /* renormalize */
  229. a = i;
  230. e = POW_FRAC_BITS;
  231. while (a < (1 << (POW_FRAC_BITS - 1))) {
  232. a = a << 1;
  233. e--;
  234. }
  235. a -= (1 << POW_FRAC_BITS);
  236. a1 = 0;
  237. for(j = DEV_ORDER - 1; j >= 0; j--)
  238. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  239. a = (1 << POW_FRAC_BITS) + a1;
  240. /* exponent compute (exact) */
  241. e = e * 4;
  242. er = e % 3;
  243. eq = e / 3;
  244. a = POW_MULL(a, pow_mult3[er]);
  245. while (a >= 2 * POW_FRAC_ONE) {
  246. a = a >> 1;
  247. eq++;
  248. }
  249. /* convert to float */
  250. while (a < POW_FRAC_ONE) {
  251. a = a << 1;
  252. eq--;
  253. }
  254. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  255. #if POW_FRAC_BITS > FRAC_BITS
  256. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  257. /* correct overflow */
  258. if (a >= 2 * (1 << FRAC_BITS)) {
  259. a = a >> 1;
  260. eq++;
  261. }
  262. #endif
  263. *exp_ptr = eq;
  264. return a;
  265. }
  266. static int decode_init(AVCodecContext * avctx)
  267. {
  268. MPADecodeContext *s = avctx->priv_data;
  269. static int init=0;
  270. int i, j, k;
  271. if(!init) {
  272. /* scale factors table for layer 1/2 */
  273. for(i=0;i<64;i++) {
  274. int shift, mod;
  275. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  276. shift = (i / 3);
  277. mod = i % 3;
  278. scale_factor_modshift[i] = mod | (shift << 2);
  279. }
  280. /* scale factor multiply for layer 1 */
  281. for(i=0;i<15;i++) {
  282. int n, norm;
  283. n = i + 2;
  284. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  285. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  286. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  287. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  288. dprintf("%d: norm=%x s=%x %x %x\n",
  289. i, norm,
  290. scale_factor_mult[i][0],
  291. scale_factor_mult[i][1],
  292. scale_factor_mult[i][2]);
  293. }
  294. /* window */
  295. /* max = 18760, max sum over all 16 coefs : 44736 */
  296. for(i=0;i<257;i++) {
  297. int v;
  298. v = mpa_enwindow[i];
  299. #if WFRAC_BITS < 16
  300. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  301. #endif
  302. window[i] = v;
  303. if ((i & 63) != 0)
  304. v = -v;
  305. if (i != 0)
  306. window[512 - i] = v;
  307. }
  308. /* huffman decode tables */
  309. huff_code_table[0] = NULL;
  310. for(i=1;i<16;i++) {
  311. const HuffTable *h = &mpa_huff_tables[i];
  312. int xsize, x, y;
  313. unsigned int n;
  314. uint8_t *code_table;
  315. xsize = h->xsize;
  316. n = xsize * xsize;
  317. /* XXX: fail test */
  318. init_vlc(&huff_vlc[i], 8, n,
  319. h->bits, 1, 1, h->codes, 2, 2);
  320. code_table = av_mallocz(n);
  321. j = 0;
  322. for(x=0;x<xsize;x++) {
  323. for(y=0;y<xsize;y++)
  324. code_table[j++] = (x << 4) | y;
  325. }
  326. huff_code_table[i] = code_table;
  327. }
  328. for(i=0;i<2;i++) {
  329. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  330. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  331. }
  332. for(i=0;i<9;i++) {
  333. k = 0;
  334. for(j=0;j<22;j++) {
  335. band_index_long[i][j] = k;
  336. k += band_size_long[i][j];
  337. }
  338. band_index_long[i][22] = k;
  339. }
  340. /* compute n ^ (4/3) and store it in mantissa/exp format */
  341. if (!av_mallocz_static(&table_4_3_exp,
  342. TABLE_4_3_SIZE * sizeof(table_4_3_exp[0])))
  343. return -1;
  344. if (!av_mallocz_static(&table_4_3_value,
  345. TABLE_4_3_SIZE * sizeof(table_4_3_value[0])))
  346. return -1;
  347. int_pow_init();
  348. for(i=1;i<TABLE_4_3_SIZE;i++) {
  349. int e, m;
  350. m = int_pow(i, &e);
  351. #if 0
  352. /* test code */
  353. {
  354. double f, fm;
  355. int e1, m1;
  356. f = pow((double)i, 4.0 / 3.0);
  357. fm = frexp(f, &e1);
  358. m1 = FIXR(2 * fm);
  359. #if FRAC_BITS <= 15
  360. if ((unsigned short)m1 != m1) {
  361. m1 = m1 >> 1;
  362. e1++;
  363. }
  364. #endif
  365. e1--;
  366. if (m != m1 || e != e1) {
  367. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  368. i, m, m1, e, e1);
  369. }
  370. }
  371. #endif
  372. /* normalized to FRAC_BITS */
  373. table_4_3_value[i] = m;
  374. table_4_3_exp[i] = e;
  375. }
  376. for(i=0;i<7;i++) {
  377. float f;
  378. int v;
  379. if (i != 6) {
  380. f = tan((double)i * M_PI / 12.0);
  381. v = FIXR(f / (1.0 + f));
  382. } else {
  383. v = FIXR(1.0);
  384. }
  385. is_table[0][i] = v;
  386. is_table[1][6 - i] = v;
  387. }
  388. /* invalid values */
  389. for(i=7;i<16;i++)
  390. is_table[0][i] = is_table[1][i] = 0.0;
  391. for(i=0;i<16;i++) {
  392. double f;
  393. int e, k;
  394. for(j=0;j<2;j++) {
  395. e = -(j + 1) * ((i + 1) >> 1);
  396. f = pow(2.0, e / 4.0);
  397. k = i & 1;
  398. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  399. is_table_lsf[j][k][i] = FIXR(1.0);
  400. dprintf("is_table_lsf %d %d: %x %x\n",
  401. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  402. }
  403. }
  404. for(i=0;i<8;i++) {
  405. float ci, cs, ca;
  406. ci = ci_table[i];
  407. cs = 1.0 / sqrt(1.0 + ci * ci);
  408. ca = cs * ci;
  409. csa_table[i][0] = FIX(cs);
  410. csa_table[i][1] = FIX(ca);
  411. }
  412. /* compute mdct windows */
  413. for(i=0;i<36;i++) {
  414. int v;
  415. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  416. mdct_win[0][i] = v;
  417. mdct_win[1][i] = v;
  418. mdct_win[3][i] = v;
  419. }
  420. for(i=0;i<6;i++) {
  421. mdct_win[1][18 + i] = FIXR(1.0);
  422. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  423. mdct_win[1][30 + i] = FIXR(0.0);
  424. mdct_win[3][i] = FIXR(0.0);
  425. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  426. mdct_win[3][12 + i] = FIXR(1.0);
  427. }
  428. for(i=0;i<12;i++)
  429. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  430. /* NOTE: we do frequency inversion adter the MDCT by changing
  431. the sign of the right window coefs */
  432. for(j=0;j<4;j++) {
  433. for(i=0;i<36;i+=2) {
  434. mdct_win[j + 4][i] = mdct_win[j][i];
  435. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  436. }
  437. }
  438. #if defined(DEBUG)
  439. for(j=0;j<8;j++) {
  440. printf("win%d=\n", j);
  441. for(i=0;i<36;i++)
  442. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  443. printf("\n");
  444. }
  445. #endif
  446. init = 1;
  447. }
  448. s->inbuf_index = 0;
  449. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  450. s->inbuf_ptr = s->inbuf;
  451. #ifdef DEBUG
  452. s->frame_count = 0;
  453. #endif
  454. return 0;
  455. }
  456. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  457. /* cos(i*pi/64) */
  458. #define COS0_0 FIXR(0.50060299823519630134)
  459. #define COS0_1 FIXR(0.50547095989754365998)
  460. #define COS0_2 FIXR(0.51544730992262454697)
  461. #define COS0_3 FIXR(0.53104259108978417447)
  462. #define COS0_4 FIXR(0.55310389603444452782)
  463. #define COS0_5 FIXR(0.58293496820613387367)
  464. #define COS0_6 FIXR(0.62250412303566481615)
  465. #define COS0_7 FIXR(0.67480834145500574602)
  466. #define COS0_8 FIXR(0.74453627100229844977)
  467. #define COS0_9 FIXR(0.83934964541552703873)
  468. #define COS0_10 FIXR(0.97256823786196069369)
  469. #define COS0_11 FIXR(1.16943993343288495515)
  470. #define COS0_12 FIXR(1.48416461631416627724)
  471. #define COS0_13 FIXR(2.05778100995341155085)
  472. #define COS0_14 FIXR(3.40760841846871878570)
  473. #define COS0_15 FIXR(10.19000812354805681150)
  474. #define COS1_0 FIXR(0.50241928618815570551)
  475. #define COS1_1 FIXR(0.52249861493968888062)
  476. #define COS1_2 FIXR(0.56694403481635770368)
  477. #define COS1_3 FIXR(0.64682178335999012954)
  478. #define COS1_4 FIXR(0.78815462345125022473)
  479. #define COS1_5 FIXR(1.06067768599034747134)
  480. #define COS1_6 FIXR(1.72244709823833392782)
  481. #define COS1_7 FIXR(5.10114861868916385802)
  482. #define COS2_0 FIXR(0.50979557910415916894)
  483. #define COS2_1 FIXR(0.60134488693504528054)
  484. #define COS2_2 FIXR(0.89997622313641570463)
  485. #define COS2_3 FIXR(2.56291544774150617881)
  486. #define COS3_0 FIXR(0.54119610014619698439)
  487. #define COS3_1 FIXR(1.30656296487637652785)
  488. #define COS4_0 FIXR(0.70710678118654752439)
  489. /* butterfly operator */
  490. #define BF(a, b, c)\
  491. {\
  492. tmp0 = tab[a] + tab[b];\
  493. tmp1 = tab[a] - tab[b];\
  494. tab[a] = tmp0;\
  495. tab[b] = MULL(tmp1, c);\
  496. }
  497. #define BF1(a, b, c, d)\
  498. {\
  499. BF(a, b, COS4_0);\
  500. BF(c, d, -COS4_0);\
  501. tab[c] += tab[d];\
  502. }
  503. #define BF2(a, b, c, d)\
  504. {\
  505. BF(a, b, COS4_0);\
  506. BF(c, d, -COS4_0);\
  507. tab[c] += tab[d];\
  508. tab[a] += tab[c];\
  509. tab[c] += tab[b];\
  510. tab[b] += tab[d];\
  511. }
  512. #define ADD(a, b) tab[a] += tab[b]
  513. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  514. static void dct32(int32_t *out, int32_t *tab)
  515. {
  516. int tmp0, tmp1;
  517. /* pass 1 */
  518. BF(0, 31, COS0_0);
  519. BF(1, 30, COS0_1);
  520. BF(2, 29, COS0_2);
  521. BF(3, 28, COS0_3);
  522. BF(4, 27, COS0_4);
  523. BF(5, 26, COS0_5);
  524. BF(6, 25, COS0_6);
  525. BF(7, 24, COS0_7);
  526. BF(8, 23, COS0_8);
  527. BF(9, 22, COS0_9);
  528. BF(10, 21, COS0_10);
  529. BF(11, 20, COS0_11);
  530. BF(12, 19, COS0_12);
  531. BF(13, 18, COS0_13);
  532. BF(14, 17, COS0_14);
  533. BF(15, 16, COS0_15);
  534. /* pass 2 */
  535. BF(0, 15, COS1_0);
  536. BF(1, 14, COS1_1);
  537. BF(2, 13, COS1_2);
  538. BF(3, 12, COS1_3);
  539. BF(4, 11, COS1_4);
  540. BF(5, 10, COS1_5);
  541. BF(6, 9, COS1_6);
  542. BF(7, 8, COS1_7);
  543. BF(16, 31, -COS1_0);
  544. BF(17, 30, -COS1_1);
  545. BF(18, 29, -COS1_2);
  546. BF(19, 28, -COS1_3);
  547. BF(20, 27, -COS1_4);
  548. BF(21, 26, -COS1_5);
  549. BF(22, 25, -COS1_6);
  550. BF(23, 24, -COS1_7);
  551. /* pass 3 */
  552. BF(0, 7, COS2_0);
  553. BF(1, 6, COS2_1);
  554. BF(2, 5, COS2_2);
  555. BF(3, 4, COS2_3);
  556. BF(8, 15, -COS2_0);
  557. BF(9, 14, -COS2_1);
  558. BF(10, 13, -COS2_2);
  559. BF(11, 12, -COS2_3);
  560. BF(16, 23, COS2_0);
  561. BF(17, 22, COS2_1);
  562. BF(18, 21, COS2_2);
  563. BF(19, 20, COS2_3);
  564. BF(24, 31, -COS2_0);
  565. BF(25, 30, -COS2_1);
  566. BF(26, 29, -COS2_2);
  567. BF(27, 28, -COS2_3);
  568. /* pass 4 */
  569. BF(0, 3, COS3_0);
  570. BF(1, 2, COS3_1);
  571. BF(4, 7, -COS3_0);
  572. BF(5, 6, -COS3_1);
  573. BF(8, 11, COS3_0);
  574. BF(9, 10, COS3_1);
  575. BF(12, 15, -COS3_0);
  576. BF(13, 14, -COS3_1);
  577. BF(16, 19, COS3_0);
  578. BF(17, 18, COS3_1);
  579. BF(20, 23, -COS3_0);
  580. BF(21, 22, -COS3_1);
  581. BF(24, 27, COS3_0);
  582. BF(25, 26, COS3_1);
  583. BF(28, 31, -COS3_0);
  584. BF(29, 30, -COS3_1);
  585. /* pass 5 */
  586. BF1(0, 1, 2, 3);
  587. BF2(4, 5, 6, 7);
  588. BF1(8, 9, 10, 11);
  589. BF2(12, 13, 14, 15);
  590. BF1(16, 17, 18, 19);
  591. BF2(20, 21, 22, 23);
  592. BF1(24, 25, 26, 27);
  593. BF2(28, 29, 30, 31);
  594. /* pass 6 */
  595. ADD( 8, 12);
  596. ADD(12, 10);
  597. ADD(10, 14);
  598. ADD(14, 9);
  599. ADD( 9, 13);
  600. ADD(13, 11);
  601. ADD(11, 15);
  602. out[ 0] = tab[0];
  603. out[16] = tab[1];
  604. out[ 8] = tab[2];
  605. out[24] = tab[3];
  606. out[ 4] = tab[4];
  607. out[20] = tab[5];
  608. out[12] = tab[6];
  609. out[28] = tab[7];
  610. out[ 2] = tab[8];
  611. out[18] = tab[9];
  612. out[10] = tab[10];
  613. out[26] = tab[11];
  614. out[ 6] = tab[12];
  615. out[22] = tab[13];
  616. out[14] = tab[14];
  617. out[30] = tab[15];
  618. ADD(24, 28);
  619. ADD(28, 26);
  620. ADD(26, 30);
  621. ADD(30, 25);
  622. ADD(25, 29);
  623. ADD(29, 27);
  624. ADD(27, 31);
  625. out[ 1] = tab[16] + tab[24];
  626. out[17] = tab[17] + tab[25];
  627. out[ 9] = tab[18] + tab[26];
  628. out[25] = tab[19] + tab[27];
  629. out[ 5] = tab[20] + tab[28];
  630. out[21] = tab[21] + tab[29];
  631. out[13] = tab[22] + tab[30];
  632. out[29] = tab[23] + tab[31];
  633. out[ 3] = tab[24] + tab[20];
  634. out[19] = tab[25] + tab[21];
  635. out[11] = tab[26] + tab[22];
  636. out[27] = tab[27] + tab[23];
  637. out[ 7] = tab[28] + tab[18];
  638. out[23] = tab[29] + tab[19];
  639. out[15] = tab[30] + tab[17];
  640. out[31] = tab[31];
  641. }
  642. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  643. #if FRAC_BITS <= 15
  644. #define OUT_SAMPLE(sum)\
  645. {\
  646. int sum1;\
  647. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
  648. if (sum1 < -32768)\
  649. sum1 = -32768;\
  650. else if (sum1 > 32767)\
  651. sum1 = 32767;\
  652. *samples = sum1;\
  653. samples += incr;\
  654. }
  655. #define SUM8(off, op) \
  656. { \
  657. sum op w[0 * 64 + off] * p[0 * 64];\
  658. sum op w[1 * 64 + off] * p[1 * 64];\
  659. sum op w[2 * 64 + off] * p[2 * 64];\
  660. sum op w[3 * 64 + off] * p[3 * 64];\
  661. sum op w[4 * 64 + off] * p[4 * 64];\
  662. sum op w[5 * 64 + off] * p[5 * 64];\
  663. sum op w[6 * 64 + off] * p[6 * 64];\
  664. sum op w[7 * 64 + off] * p[7 * 64];\
  665. }
  666. #else
  667. #define OUT_SAMPLE(sum)\
  668. {\
  669. int sum1;\
  670. sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
  671. if (sum1 < -32768)\
  672. sum1 = -32768;\
  673. else if (sum1 > 32767)\
  674. sum1 = 32767;\
  675. *samples = sum1;\
  676. samples += incr;\
  677. }
  678. #define SUM8(off, op) \
  679. { \
  680. sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
  681. sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
  682. sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
  683. sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
  684. sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
  685. sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
  686. sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
  687. sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
  688. }
  689. #endif
  690. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  691. 32 samples. */
  692. /* XXX: optimize by avoiding ring buffer usage */
  693. static void synth_filter(MPADecodeContext *s1,
  694. int ch, int16_t *samples, int incr,
  695. int32_t sb_samples[SBLIMIT])
  696. {
  697. int32_t tmp[32];
  698. register MPA_INT *synth_buf, *p;
  699. register MPA_INT *w;
  700. int j, offset, v;
  701. #if FRAC_BITS <= 15
  702. int sum;
  703. #else
  704. int64_t sum;
  705. #endif
  706. dct32(tmp, sb_samples);
  707. offset = s1->synth_buf_offset[ch];
  708. synth_buf = s1->synth_buf[ch] + offset;
  709. for(j=0;j<32;j++) {
  710. v = tmp[j];
  711. #if FRAC_BITS <= 15
  712. /* NOTE: can cause a loss in precision if very high amplitude
  713. sound */
  714. if (v > 32767)
  715. v = 32767;
  716. else if (v < -32768)
  717. v = -32768;
  718. #endif
  719. synth_buf[j] = v;
  720. }
  721. /* copy to avoid wrap */
  722. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  723. w = window;
  724. for(j=0;j<16;j++) {
  725. sum = 0;
  726. p = synth_buf + 16 + j; /* 0-15 */
  727. SUM8(0, +=);
  728. p = synth_buf + 48 - j; /* 32-47 */
  729. SUM8(32, -=);
  730. OUT_SAMPLE(sum);
  731. w++;
  732. }
  733. p = synth_buf + 32; /* 48 */
  734. sum = 0;
  735. SUM8(32, -=);
  736. OUT_SAMPLE(sum);
  737. w++;
  738. for(j=17;j<32;j++) {
  739. sum = 0;
  740. p = synth_buf + 48 - j; /* 17-31 */
  741. SUM8(0, -=);
  742. p = synth_buf + 16 + j; /* 49-63 */
  743. SUM8(32, -=);
  744. OUT_SAMPLE(sum);
  745. w++;
  746. }
  747. offset = (offset - 32) & 511;
  748. s1->synth_buf_offset[ch] = offset;
  749. }
  750. /* cos(pi*i/24) */
  751. #define C1 FIXR(0.99144486137381041114)
  752. #define C3 FIXR(0.92387953251128675612)
  753. #define C5 FIXR(0.79335334029123516458)
  754. #define C7 FIXR(0.60876142900872063941)
  755. #define C9 FIXR(0.38268343236508977173)
  756. #define C11 FIXR(0.13052619222005159154)
  757. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  758. cases. */
  759. static void imdct12(int *out, int *in)
  760. {
  761. int tmp;
  762. int64_t in1_3, in1_9, in4_3, in4_9;
  763. in1_3 = MUL64(in[1], C3);
  764. in1_9 = MUL64(in[1], C9);
  765. in4_3 = MUL64(in[4], C3);
  766. in4_9 = MUL64(in[4], C9);
  767. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  768. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  769. out[0] = tmp;
  770. out[5] = -tmp;
  771. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  772. MUL64(in[2] + in[5], C3) - in4_9);
  773. out[1] = tmp;
  774. out[4] = -tmp;
  775. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  776. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  777. out[2] = tmp;
  778. out[3] = -tmp;
  779. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  780. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  781. out[6] = tmp;
  782. out[11] = tmp;
  783. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  784. MUL64(in[2] + in[5], C9) + in4_3);
  785. out[7] = tmp;
  786. out[10] = tmp;
  787. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  788. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  789. out[8] = tmp;
  790. out[9] = tmp;
  791. }
  792. #undef C1
  793. #undef C3
  794. #undef C5
  795. #undef C7
  796. #undef C9
  797. #undef C11
  798. /* cos(pi*i/18) */
  799. #define C1 FIXR(0.98480775301220805936)
  800. #define C2 FIXR(0.93969262078590838405)
  801. #define C3 FIXR(0.86602540378443864676)
  802. #define C4 FIXR(0.76604444311897803520)
  803. #define C5 FIXR(0.64278760968653932632)
  804. #define C6 FIXR(0.5)
  805. #define C7 FIXR(0.34202014332566873304)
  806. #define C8 FIXR(0.17364817766693034885)
  807. /* 0.5 / cos(pi*(2*i+1)/36) */
  808. static const int icos36[9] = {
  809. FIXR(0.50190991877167369479),
  810. FIXR(0.51763809020504152469),
  811. FIXR(0.55168895948124587824),
  812. FIXR(0.61038729438072803416),
  813. FIXR(0.70710678118654752439),
  814. FIXR(0.87172339781054900991),
  815. FIXR(1.18310079157624925896),
  816. FIXR(1.93185165257813657349),
  817. FIXR(5.73685662283492756461),
  818. };
  819. static const int icos72[18] = {
  820. /* 0.5 / cos(pi*(2*i+19)/72) */
  821. FIXR(0.74009361646113053152),
  822. FIXR(0.82133981585229078570),
  823. FIXR(0.93057949835178895673),
  824. FIXR(1.08284028510010010928),
  825. FIXR(1.30656296487637652785),
  826. FIXR(1.66275476171152078719),
  827. FIXR(2.31011315767264929558),
  828. FIXR(3.83064878777019433457),
  829. FIXR(11.46279281302667383546),
  830. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  831. FIXR(-0.67817085245462840086),
  832. FIXR(-0.63023620700513223342),
  833. FIXR(-0.59284452371708034528),
  834. FIXR(-0.56369097343317117734),
  835. FIXR(-0.54119610014619698439),
  836. FIXR(-0.52426456257040533932),
  837. FIXR(-0.51213975715725461845),
  838. FIXR(-0.50431448029007636036),
  839. FIXR(-0.50047634258165998492),
  840. };
  841. /* using Lee like decomposition followed by hand coded 9 points DCT */
  842. static void imdct36(int *out, int *in)
  843. {
  844. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  845. int tmp[18], *tmp1, *in1;
  846. int64_t in3_3, in6_6;
  847. for(i=17;i>=1;i--)
  848. in[i] += in[i-1];
  849. for(i=17;i>=3;i-=2)
  850. in[i] += in[i-2];
  851. for(j=0;j<2;j++) {
  852. tmp1 = tmp + j;
  853. in1 = in + j;
  854. in3_3 = MUL64(in1[2*3], C3);
  855. in6_6 = MUL64(in1[2*6], C6);
  856. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  857. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  858. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  859. MUL64(in1[2*4], C4) + in6_6 +
  860. MUL64(in1[2*8], C8));
  861. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  862. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  863. in1[2*6] + in1[2*0];
  864. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  865. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  866. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  867. MUL64(in1[2*4], C2) + in6_6 +
  868. MUL64(in1[2*8], C4));
  869. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  870. MUL64(in1[2*5], C1) -
  871. MUL64(in1[2*7], C5));
  872. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  873. MUL64(in1[2*4], C8) + in6_6 -
  874. MUL64(in1[2*8], C2));
  875. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  876. }
  877. i = 0;
  878. for(j=0;j<4;j++) {
  879. t0 = tmp[i];
  880. t1 = tmp[i + 2];
  881. s0 = t1 + t0;
  882. s2 = t1 - t0;
  883. t2 = tmp[i + 1];
  884. t3 = tmp[i + 3];
  885. s1 = MULL(t3 + t2, icos36[j]);
  886. s3 = MULL(t3 - t2, icos36[8 - j]);
  887. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  888. t1 = MULL(s0 - s1, icos72[8 - j]);
  889. out[18 + 9 + j] = t0;
  890. out[18 + 8 - j] = t0;
  891. out[9 + j] = -t1;
  892. out[8 - j] = t1;
  893. t0 = MULL(s2 + s3, icos72[9+j]);
  894. t1 = MULL(s2 - s3, icos72[j]);
  895. out[18 + 9 + (8 - j)] = t0;
  896. out[18 + j] = t0;
  897. out[9 + (8 - j)] = -t1;
  898. out[j] = t1;
  899. i += 4;
  900. }
  901. s0 = tmp[16];
  902. s1 = MULL(tmp[17], icos36[4]);
  903. t0 = MULL(s0 + s1, icos72[9 + 4]);
  904. t1 = MULL(s0 - s1, icos72[4]);
  905. out[18 + 9 + 4] = t0;
  906. out[18 + 8 - 4] = t0;
  907. out[9 + 4] = -t1;
  908. out[8 - 4] = t1;
  909. }
  910. /* fast header check for resync */
  911. static int check_header(uint32_t header)
  912. {
  913. /* header */
  914. if ((header & 0xffe00000) != 0xffe00000)
  915. return -1;
  916. /* layer check */
  917. if (((header >> 17) & 3) == 0)
  918. return -1;
  919. /* bit rate */
  920. if (((header >> 12) & 0xf) == 0xf)
  921. return -1;
  922. /* frequency */
  923. if (((header >> 10) & 3) == 3)
  924. return -1;
  925. return 0;
  926. }
  927. /* header + layer + bitrate + freq + lsf/mpeg25 */
  928. #define SAME_HEADER_MASK \
  929. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  930. /* header decoding. MUST check the header before because no
  931. consistency check is done there. Return 1 if free format found and
  932. that the frame size must be computed externally */
  933. static int decode_header(MPADecodeContext *s, uint32_t header)
  934. {
  935. int sample_rate, frame_size, mpeg25, padding;
  936. int sample_rate_index, bitrate_index;
  937. if (header & (1<<20)) {
  938. s->lsf = (header & (1<<19)) ? 0 : 1;
  939. mpeg25 = 0;
  940. } else {
  941. s->lsf = 1;
  942. mpeg25 = 1;
  943. }
  944. s->layer = 4 - ((header >> 17) & 3);
  945. /* extract frequency */
  946. sample_rate_index = (header >> 10) & 3;
  947. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  948. sample_rate_index += 3 * (s->lsf + mpeg25);
  949. s->sample_rate_index = sample_rate_index;
  950. s->error_protection = ((header >> 16) & 1) ^ 1;
  951. s->sample_rate = sample_rate;
  952. bitrate_index = (header >> 12) & 0xf;
  953. padding = (header >> 9) & 1;
  954. //extension = (header >> 8) & 1;
  955. s->mode = (header >> 6) & 3;
  956. s->mode_ext = (header >> 4) & 3;
  957. //copyright = (header >> 3) & 1;
  958. //original = (header >> 2) & 1;
  959. //emphasis = header & 3;
  960. if (s->mode == MPA_MONO)
  961. s->nb_channels = 1;
  962. else
  963. s->nb_channels = 2;
  964. if (bitrate_index != 0) {
  965. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  966. s->bit_rate = frame_size * 1000;
  967. switch(s->layer) {
  968. case 1:
  969. frame_size = (frame_size * 12000) / sample_rate;
  970. frame_size = (frame_size + padding) * 4;
  971. break;
  972. case 2:
  973. frame_size = (frame_size * 144000) / sample_rate;
  974. frame_size += padding;
  975. break;
  976. default:
  977. case 3:
  978. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  979. frame_size += padding;
  980. break;
  981. }
  982. s->frame_size = frame_size;
  983. } else {
  984. /* if no frame size computed, signal it */
  985. if (!s->free_format_frame_size)
  986. return 1;
  987. /* free format: compute bitrate and real frame size from the
  988. frame size we extracted by reading the bitstream */
  989. s->frame_size = s->free_format_frame_size;
  990. switch(s->layer) {
  991. case 1:
  992. s->frame_size += padding * 4;
  993. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  994. break;
  995. case 2:
  996. s->frame_size += padding;
  997. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  998. break;
  999. default:
  1000. case 3:
  1001. s->frame_size += padding;
  1002. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1003. break;
  1004. }
  1005. }
  1006. #if defined(DEBUG)
  1007. printf("layer%d, %d Hz, %d kbits/s, ",
  1008. s->layer, s->sample_rate, s->bit_rate);
  1009. if (s->nb_channels == 2) {
  1010. if (s->layer == 3) {
  1011. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1012. printf("ms-");
  1013. if (s->mode_ext & MODE_EXT_I_STEREO)
  1014. printf("i-");
  1015. }
  1016. printf("stereo");
  1017. } else {
  1018. printf("mono");
  1019. }
  1020. printf("\n");
  1021. #endif
  1022. return 0;
  1023. }
  1024. /* return the number of decoded frames */
  1025. static int mp_decode_layer1(MPADecodeContext *s)
  1026. {
  1027. int bound, i, v, n, ch, j, mant;
  1028. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1029. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1030. if (s->mode == MPA_JSTEREO)
  1031. bound = (s->mode_ext + 1) * 4;
  1032. else
  1033. bound = SBLIMIT;
  1034. /* allocation bits */
  1035. for(i=0;i<bound;i++) {
  1036. for(ch=0;ch<s->nb_channels;ch++) {
  1037. allocation[ch][i] = get_bits(&s->gb, 4);
  1038. }
  1039. }
  1040. for(i=bound;i<SBLIMIT;i++) {
  1041. allocation[0][i] = get_bits(&s->gb, 4);
  1042. }
  1043. /* scale factors */
  1044. for(i=0;i<bound;i++) {
  1045. for(ch=0;ch<s->nb_channels;ch++) {
  1046. if (allocation[ch][i])
  1047. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1048. }
  1049. }
  1050. for(i=bound;i<SBLIMIT;i++) {
  1051. if (allocation[0][i]) {
  1052. scale_factors[0][i] = get_bits(&s->gb, 6);
  1053. scale_factors[1][i] = get_bits(&s->gb, 6);
  1054. }
  1055. }
  1056. /* compute samples */
  1057. for(j=0;j<12;j++) {
  1058. for(i=0;i<bound;i++) {
  1059. for(ch=0;ch<s->nb_channels;ch++) {
  1060. n = allocation[ch][i];
  1061. if (n) {
  1062. mant = get_bits(&s->gb, n + 1);
  1063. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1064. } else {
  1065. v = 0;
  1066. }
  1067. s->sb_samples[ch][j][i] = v;
  1068. }
  1069. }
  1070. for(i=bound;i<SBLIMIT;i++) {
  1071. n = allocation[0][i];
  1072. if (n) {
  1073. mant = get_bits(&s->gb, n + 1);
  1074. v = l1_unscale(n, mant, scale_factors[0][i]);
  1075. s->sb_samples[0][j][i] = v;
  1076. v = l1_unscale(n, mant, scale_factors[1][i]);
  1077. s->sb_samples[1][j][i] = v;
  1078. } else {
  1079. s->sb_samples[0][j][i] = 0;
  1080. s->sb_samples[1][j][i] = 0;
  1081. }
  1082. }
  1083. }
  1084. return 12;
  1085. }
  1086. /* bitrate is in kb/s */
  1087. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1088. {
  1089. int ch_bitrate, table;
  1090. ch_bitrate = bitrate / nb_channels;
  1091. if (!lsf) {
  1092. if ((freq == 48000 && ch_bitrate >= 56) ||
  1093. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1094. table = 0;
  1095. else if (freq != 48000 && ch_bitrate >= 96)
  1096. table = 1;
  1097. else if (freq != 32000 && ch_bitrate <= 48)
  1098. table = 2;
  1099. else
  1100. table = 3;
  1101. } else {
  1102. table = 4;
  1103. }
  1104. return table;
  1105. }
  1106. static int mp_decode_layer2(MPADecodeContext *s)
  1107. {
  1108. int sblimit; /* number of used subbands */
  1109. const unsigned char *alloc_table;
  1110. int table, bit_alloc_bits, i, j, ch, bound, v;
  1111. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1112. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1113. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1114. int scale, qindex, bits, steps, k, l, m, b;
  1115. /* select decoding table */
  1116. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1117. s->sample_rate, s->lsf);
  1118. sblimit = sblimit_table[table];
  1119. alloc_table = alloc_tables[table];
  1120. if (s->mode == MPA_JSTEREO)
  1121. bound = (s->mode_ext + 1) * 4;
  1122. else
  1123. bound = sblimit;
  1124. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1125. /* parse bit allocation */
  1126. j = 0;
  1127. for(i=0;i<bound;i++) {
  1128. bit_alloc_bits = alloc_table[j];
  1129. for(ch=0;ch<s->nb_channels;ch++) {
  1130. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1131. }
  1132. j += 1 << bit_alloc_bits;
  1133. }
  1134. for(i=bound;i<sblimit;i++) {
  1135. bit_alloc_bits = alloc_table[j];
  1136. v = get_bits(&s->gb, bit_alloc_bits);
  1137. bit_alloc[0][i] = v;
  1138. bit_alloc[1][i] = v;
  1139. j += 1 << bit_alloc_bits;
  1140. }
  1141. #ifdef DEBUG
  1142. {
  1143. for(ch=0;ch<s->nb_channels;ch++) {
  1144. for(i=0;i<sblimit;i++)
  1145. printf(" %d", bit_alloc[ch][i]);
  1146. printf("\n");
  1147. }
  1148. }
  1149. #endif
  1150. /* scale codes */
  1151. for(i=0;i<sblimit;i++) {
  1152. for(ch=0;ch<s->nb_channels;ch++) {
  1153. if (bit_alloc[ch][i])
  1154. scale_code[ch][i] = get_bits(&s->gb, 2);
  1155. }
  1156. }
  1157. /* scale factors */
  1158. for(i=0;i<sblimit;i++) {
  1159. for(ch=0;ch<s->nb_channels;ch++) {
  1160. if (bit_alloc[ch][i]) {
  1161. sf = scale_factors[ch][i];
  1162. switch(scale_code[ch][i]) {
  1163. default:
  1164. case 0:
  1165. sf[0] = get_bits(&s->gb, 6);
  1166. sf[1] = get_bits(&s->gb, 6);
  1167. sf[2] = get_bits(&s->gb, 6);
  1168. break;
  1169. case 2:
  1170. sf[0] = get_bits(&s->gb, 6);
  1171. sf[1] = sf[0];
  1172. sf[2] = sf[0];
  1173. break;
  1174. case 1:
  1175. sf[0] = get_bits(&s->gb, 6);
  1176. sf[2] = get_bits(&s->gb, 6);
  1177. sf[1] = sf[0];
  1178. break;
  1179. case 3:
  1180. sf[0] = get_bits(&s->gb, 6);
  1181. sf[2] = get_bits(&s->gb, 6);
  1182. sf[1] = sf[2];
  1183. break;
  1184. }
  1185. }
  1186. }
  1187. }
  1188. #ifdef DEBUG
  1189. for(ch=0;ch<s->nb_channels;ch++) {
  1190. for(i=0;i<sblimit;i++) {
  1191. if (bit_alloc[ch][i]) {
  1192. sf = scale_factors[ch][i];
  1193. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1194. } else {
  1195. printf(" -");
  1196. }
  1197. }
  1198. printf("\n");
  1199. }
  1200. #endif
  1201. /* samples */
  1202. for(k=0;k<3;k++) {
  1203. for(l=0;l<12;l+=3) {
  1204. j = 0;
  1205. for(i=0;i<bound;i++) {
  1206. bit_alloc_bits = alloc_table[j];
  1207. for(ch=0;ch<s->nb_channels;ch++) {
  1208. b = bit_alloc[ch][i];
  1209. if (b) {
  1210. scale = scale_factors[ch][i][k];
  1211. qindex = alloc_table[j+b];
  1212. bits = quant_bits[qindex];
  1213. if (bits < 0) {
  1214. /* 3 values at the same time */
  1215. v = get_bits(&s->gb, -bits);
  1216. steps = quant_steps[qindex];
  1217. s->sb_samples[ch][k * 12 + l + 0][i] =
  1218. l2_unscale_group(steps, v % steps, scale);
  1219. v = v / steps;
  1220. s->sb_samples[ch][k * 12 + l + 1][i] =
  1221. l2_unscale_group(steps, v % steps, scale);
  1222. v = v / steps;
  1223. s->sb_samples[ch][k * 12 + l + 2][i] =
  1224. l2_unscale_group(steps, v, scale);
  1225. } else {
  1226. for(m=0;m<3;m++) {
  1227. v = get_bits(&s->gb, bits);
  1228. v = l1_unscale(bits - 1, v, scale);
  1229. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1230. }
  1231. }
  1232. } else {
  1233. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1234. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1235. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1236. }
  1237. }
  1238. /* next subband in alloc table */
  1239. j += 1 << bit_alloc_bits;
  1240. }
  1241. /* XXX: find a way to avoid this duplication of code */
  1242. for(i=bound;i<sblimit;i++) {
  1243. bit_alloc_bits = alloc_table[j];
  1244. b = bit_alloc[0][i];
  1245. if (b) {
  1246. int mant, scale0, scale1;
  1247. scale0 = scale_factors[0][i][k];
  1248. scale1 = scale_factors[1][i][k];
  1249. qindex = alloc_table[j+b];
  1250. bits = quant_bits[qindex];
  1251. if (bits < 0) {
  1252. /* 3 values at the same time */
  1253. v = get_bits(&s->gb, -bits);
  1254. steps = quant_steps[qindex];
  1255. mant = v % steps;
  1256. v = v / steps;
  1257. s->sb_samples[0][k * 12 + l + 0][i] =
  1258. l2_unscale_group(steps, mant, scale0);
  1259. s->sb_samples[1][k * 12 + l + 0][i] =
  1260. l2_unscale_group(steps, mant, scale1);
  1261. mant = v % steps;
  1262. v = v / steps;
  1263. s->sb_samples[0][k * 12 + l + 1][i] =
  1264. l2_unscale_group(steps, mant, scale0);
  1265. s->sb_samples[1][k * 12 + l + 1][i] =
  1266. l2_unscale_group(steps, mant, scale1);
  1267. s->sb_samples[0][k * 12 + l + 2][i] =
  1268. l2_unscale_group(steps, v, scale0);
  1269. s->sb_samples[1][k * 12 + l + 2][i] =
  1270. l2_unscale_group(steps, v, scale1);
  1271. } else {
  1272. for(m=0;m<3;m++) {
  1273. mant = get_bits(&s->gb, bits);
  1274. s->sb_samples[0][k * 12 + l + m][i] =
  1275. l1_unscale(bits - 1, mant, scale0);
  1276. s->sb_samples[1][k * 12 + l + m][i] =
  1277. l1_unscale(bits - 1, mant, scale1);
  1278. }
  1279. }
  1280. } else {
  1281. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1282. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1283. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1284. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1285. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1286. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1287. }
  1288. /* next subband in alloc table */
  1289. j += 1 << bit_alloc_bits;
  1290. }
  1291. /* fill remaining samples to zero */
  1292. for(i=sblimit;i<SBLIMIT;i++) {
  1293. for(ch=0;ch<s->nb_channels;ch++) {
  1294. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1295. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1296. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1297. }
  1298. }
  1299. }
  1300. }
  1301. return 3 * 12;
  1302. }
  1303. /*
  1304. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1305. */
  1306. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1307. {
  1308. uint8_t *ptr;
  1309. /* compute current position in stream */
  1310. ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1311. /* copy old data before current one */
  1312. ptr -= backstep;
  1313. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1314. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1315. /* init get bits again */
  1316. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1317. /* prepare next buffer */
  1318. s->inbuf_index ^= 1;
  1319. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1320. s->old_frame_size = s->frame_size;
  1321. }
  1322. static inline void lsf_sf_expand(int *slen,
  1323. int sf, int n1, int n2, int n3)
  1324. {
  1325. if (n3) {
  1326. slen[3] = sf % n3;
  1327. sf /= n3;
  1328. } else {
  1329. slen[3] = 0;
  1330. }
  1331. if (n2) {
  1332. slen[2] = sf % n2;
  1333. sf /= n2;
  1334. } else {
  1335. slen[2] = 0;
  1336. }
  1337. slen[1] = sf % n1;
  1338. sf /= n1;
  1339. slen[0] = sf;
  1340. }
  1341. static void exponents_from_scale_factors(MPADecodeContext *s,
  1342. GranuleDef *g,
  1343. int16_t *exponents)
  1344. {
  1345. const uint8_t *bstab, *pretab;
  1346. int len, i, j, k, l, v0, shift, gain, gains[3];
  1347. int16_t *exp_ptr;
  1348. exp_ptr = exponents;
  1349. gain = g->global_gain - 210;
  1350. shift = g->scalefac_scale + 1;
  1351. bstab = band_size_long[s->sample_rate_index];
  1352. pretab = mpa_pretab[g->preflag];
  1353. for(i=0;i<g->long_end;i++) {
  1354. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1355. len = bstab[i];
  1356. for(j=len;j>0;j--)
  1357. *exp_ptr++ = v0;
  1358. }
  1359. if (g->short_start < 13) {
  1360. bstab = band_size_short[s->sample_rate_index];
  1361. gains[0] = gain - (g->subblock_gain[0] << 3);
  1362. gains[1] = gain - (g->subblock_gain[1] << 3);
  1363. gains[2] = gain - (g->subblock_gain[2] << 3);
  1364. k = g->long_end;
  1365. for(i=g->short_start;i<13;i++) {
  1366. len = bstab[i];
  1367. for(l=0;l<3;l++) {
  1368. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1369. for(j=len;j>0;j--)
  1370. *exp_ptr++ = v0;
  1371. }
  1372. }
  1373. }
  1374. }
  1375. /* handle n = 0 too */
  1376. static inline int get_bitsz(GetBitContext *s, int n)
  1377. {
  1378. if (n == 0)
  1379. return 0;
  1380. else
  1381. return get_bits(s, n);
  1382. }
  1383. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1384. int16_t *exponents, int end_pos)
  1385. {
  1386. int s_index;
  1387. int linbits, code, x, y, l, v, i, j, k, pos;
  1388. GetBitContext last_gb;
  1389. VLC *vlc;
  1390. uint8_t *code_table;
  1391. /* low frequencies (called big values) */
  1392. s_index = 0;
  1393. for(i=0;i<3;i++) {
  1394. j = g->region_size[i];
  1395. if (j == 0)
  1396. continue;
  1397. /* select vlc table */
  1398. k = g->table_select[i];
  1399. l = mpa_huff_data[k][0];
  1400. linbits = mpa_huff_data[k][1];
  1401. vlc = &huff_vlc[l];
  1402. code_table = huff_code_table[l];
  1403. /* read huffcode and compute each couple */
  1404. for(;j>0;j--) {
  1405. if (get_bits_count(&s->gb) >= end_pos)
  1406. break;
  1407. if (code_table) {
  1408. code = get_vlc(&s->gb, vlc);
  1409. if (code < 0)
  1410. return -1;
  1411. y = code_table[code];
  1412. x = y >> 4;
  1413. y = y & 0x0f;
  1414. } else {
  1415. x = 0;
  1416. y = 0;
  1417. }
  1418. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1419. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1420. if (x) {
  1421. if (x == 15)
  1422. x += get_bitsz(&s->gb, linbits);
  1423. v = l3_unscale(x, exponents[s_index]);
  1424. if (get_bits1(&s->gb))
  1425. v = -v;
  1426. } else {
  1427. v = 0;
  1428. }
  1429. g->sb_hybrid[s_index++] = v;
  1430. if (y) {
  1431. if (y == 15)
  1432. y += get_bitsz(&s->gb, linbits);
  1433. v = l3_unscale(y, exponents[s_index]);
  1434. if (get_bits1(&s->gb))
  1435. v = -v;
  1436. } else {
  1437. v = 0;
  1438. }
  1439. g->sb_hybrid[s_index++] = v;
  1440. }
  1441. }
  1442. /* high frequencies */
  1443. vlc = &huff_quad_vlc[g->count1table_select];
  1444. last_gb.buffer = NULL;
  1445. while (s_index <= 572) {
  1446. pos = get_bits_count(&s->gb);
  1447. if (pos >= end_pos) {
  1448. if (pos > end_pos && last_gb.buffer != NULL) {
  1449. /* some encoders generate an incorrect size for this
  1450. part. We must go back into the data */
  1451. s_index -= 4;
  1452. s->gb = last_gb;
  1453. }
  1454. break;
  1455. }
  1456. last_gb= s->gb;
  1457. code = get_vlc(&s->gb, vlc);
  1458. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1459. if (code < 0)
  1460. return -1;
  1461. for(i=0;i<4;i++) {
  1462. if (code & (8 >> i)) {
  1463. /* non zero value. Could use a hand coded function for
  1464. 'one' value */
  1465. v = l3_unscale(1, exponents[s_index]);
  1466. if(get_bits1(&s->gb))
  1467. v = -v;
  1468. } else {
  1469. v = 0;
  1470. }
  1471. g->sb_hybrid[s_index++] = v;
  1472. }
  1473. }
  1474. while (s_index < 576)
  1475. g->sb_hybrid[s_index++] = 0;
  1476. return 0;
  1477. }
  1478. /* Reorder short blocks from bitstream order to interleaved order. It
  1479. would be faster to do it in parsing, but the code would be far more
  1480. complicated */
  1481. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1482. {
  1483. int i, j, k, len;
  1484. int32_t *ptr, *dst, *ptr1;
  1485. int32_t tmp[576];
  1486. if (g->block_type != 2)
  1487. return;
  1488. if (g->switch_point) {
  1489. if (s->sample_rate_index != 8) {
  1490. ptr = g->sb_hybrid + 36;
  1491. } else {
  1492. ptr = g->sb_hybrid + 48;
  1493. }
  1494. } else {
  1495. ptr = g->sb_hybrid;
  1496. }
  1497. for(i=g->short_start;i<13;i++) {
  1498. len = band_size_short[s->sample_rate_index][i];
  1499. ptr1 = ptr;
  1500. for(k=0;k<3;k++) {
  1501. dst = tmp + k;
  1502. for(j=len;j>0;j--) {
  1503. *dst = *ptr++;
  1504. dst += 3;
  1505. }
  1506. }
  1507. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1508. }
  1509. }
  1510. #define ISQRT2 FIXR(0.70710678118654752440)
  1511. static void compute_stereo(MPADecodeContext *s,
  1512. GranuleDef *g0, GranuleDef *g1)
  1513. {
  1514. int i, j, k, l;
  1515. int32_t v1, v2;
  1516. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1517. int32_t (*is_tab)[16];
  1518. int32_t *tab0, *tab1;
  1519. int non_zero_found_short[3];
  1520. /* intensity stereo */
  1521. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1522. if (!s->lsf) {
  1523. is_tab = is_table;
  1524. sf_max = 7;
  1525. } else {
  1526. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1527. sf_max = 16;
  1528. }
  1529. tab0 = g0->sb_hybrid + 576;
  1530. tab1 = g1->sb_hybrid + 576;
  1531. non_zero_found_short[0] = 0;
  1532. non_zero_found_short[1] = 0;
  1533. non_zero_found_short[2] = 0;
  1534. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1535. for(i = 12;i >= g1->short_start;i--) {
  1536. /* for last band, use previous scale factor */
  1537. if (i != 11)
  1538. k -= 3;
  1539. len = band_size_short[s->sample_rate_index][i];
  1540. for(l=2;l>=0;l--) {
  1541. tab0 -= len;
  1542. tab1 -= len;
  1543. if (!non_zero_found_short[l]) {
  1544. /* test if non zero band. if so, stop doing i-stereo */
  1545. for(j=0;j<len;j++) {
  1546. if (tab1[j] != 0) {
  1547. non_zero_found_short[l] = 1;
  1548. goto found1;
  1549. }
  1550. }
  1551. sf = g1->scale_factors[k + l];
  1552. if (sf >= sf_max)
  1553. goto found1;
  1554. v1 = is_tab[0][sf];
  1555. v2 = is_tab[1][sf];
  1556. for(j=0;j<len;j++) {
  1557. tmp0 = tab0[j];
  1558. tab0[j] = MULL(tmp0, v1);
  1559. tab1[j] = MULL(tmp0, v2);
  1560. }
  1561. } else {
  1562. found1:
  1563. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1564. /* lower part of the spectrum : do ms stereo
  1565. if enabled */
  1566. for(j=0;j<len;j++) {
  1567. tmp0 = tab0[j];
  1568. tmp1 = tab1[j];
  1569. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1570. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1571. }
  1572. }
  1573. }
  1574. }
  1575. }
  1576. non_zero_found = non_zero_found_short[0] |
  1577. non_zero_found_short[1] |
  1578. non_zero_found_short[2];
  1579. for(i = g1->long_end - 1;i >= 0;i--) {
  1580. len = band_size_long[s->sample_rate_index][i];
  1581. tab0 -= len;
  1582. tab1 -= len;
  1583. /* test if non zero band. if so, stop doing i-stereo */
  1584. if (!non_zero_found) {
  1585. for(j=0;j<len;j++) {
  1586. if (tab1[j] != 0) {
  1587. non_zero_found = 1;
  1588. goto found2;
  1589. }
  1590. }
  1591. /* for last band, use previous scale factor */
  1592. k = (i == 21) ? 20 : i;
  1593. sf = g1->scale_factors[k];
  1594. if (sf >= sf_max)
  1595. goto found2;
  1596. v1 = is_tab[0][sf];
  1597. v2 = is_tab[1][sf];
  1598. for(j=0;j<len;j++) {
  1599. tmp0 = tab0[j];
  1600. tab0[j] = MULL(tmp0, v1);
  1601. tab1[j] = MULL(tmp0, v2);
  1602. }
  1603. } else {
  1604. found2:
  1605. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1606. /* lower part of the spectrum : do ms stereo
  1607. if enabled */
  1608. for(j=0;j<len;j++) {
  1609. tmp0 = tab0[j];
  1610. tmp1 = tab1[j];
  1611. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1612. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1613. }
  1614. }
  1615. }
  1616. }
  1617. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1618. /* ms stereo ONLY */
  1619. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1620. global gain */
  1621. tab0 = g0->sb_hybrid;
  1622. tab1 = g1->sb_hybrid;
  1623. for(i=0;i<576;i++) {
  1624. tmp0 = tab0[i];
  1625. tmp1 = tab1[i];
  1626. tab0[i] = tmp0 + tmp1;
  1627. tab1[i] = tmp0 - tmp1;
  1628. }
  1629. }
  1630. }
  1631. static void compute_antialias(MPADecodeContext *s,
  1632. GranuleDef *g)
  1633. {
  1634. int32_t *ptr, *p0, *p1, *csa;
  1635. int n, tmp0, tmp1, i, j;
  1636. /* we antialias only "long" bands */
  1637. if (g->block_type == 2) {
  1638. if (!g->switch_point)
  1639. return;
  1640. /* XXX: check this for 8000Hz case */
  1641. n = 1;
  1642. } else {
  1643. n = SBLIMIT - 1;
  1644. }
  1645. ptr = g->sb_hybrid + 18;
  1646. for(i = n;i > 0;i--) {
  1647. p0 = ptr - 1;
  1648. p1 = ptr;
  1649. csa = &csa_table[0][0];
  1650. for(j=0;j<8;j++) {
  1651. tmp0 = *p0;
  1652. tmp1 = *p1;
  1653. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1654. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1655. p0--;
  1656. p1++;
  1657. csa += 2;
  1658. }
  1659. ptr += 18;
  1660. }
  1661. }
  1662. static void compute_imdct(MPADecodeContext *s,
  1663. GranuleDef *g,
  1664. int32_t *sb_samples,
  1665. int32_t *mdct_buf)
  1666. {
  1667. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1668. int32_t in[6];
  1669. int32_t out[36];
  1670. int32_t out2[12];
  1671. int i, j, k, mdct_long_end, v, sblimit;
  1672. /* find last non zero block */
  1673. ptr = g->sb_hybrid + 576;
  1674. ptr1 = g->sb_hybrid + 2 * 18;
  1675. while (ptr >= ptr1) {
  1676. ptr -= 6;
  1677. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1678. if (v != 0)
  1679. break;
  1680. }
  1681. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1682. if (g->block_type == 2) {
  1683. /* XXX: check for 8000 Hz */
  1684. if (g->switch_point)
  1685. mdct_long_end = 2;
  1686. else
  1687. mdct_long_end = 0;
  1688. } else {
  1689. mdct_long_end = sblimit;
  1690. }
  1691. buf = mdct_buf;
  1692. ptr = g->sb_hybrid;
  1693. for(j=0;j<mdct_long_end;j++) {
  1694. imdct36(out, ptr);
  1695. /* apply window & overlap with previous buffer */
  1696. out_ptr = sb_samples + j;
  1697. /* select window */
  1698. if (g->switch_point && j < 2)
  1699. win1 = mdct_win[0];
  1700. else
  1701. win1 = mdct_win[g->block_type];
  1702. /* select frequency inversion */
  1703. win = win1 + ((4 * 36) & -(j & 1));
  1704. for(i=0;i<18;i++) {
  1705. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1706. buf[i] = MULL(out[i + 18], win[i + 18]);
  1707. out_ptr += SBLIMIT;
  1708. }
  1709. ptr += 18;
  1710. buf += 18;
  1711. }
  1712. for(j=mdct_long_end;j<sblimit;j++) {
  1713. for(i=0;i<6;i++) {
  1714. out[i] = 0;
  1715. out[6 + i] = 0;
  1716. out[30+i] = 0;
  1717. }
  1718. /* select frequency inversion */
  1719. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1720. buf2 = out + 6;
  1721. for(k=0;k<3;k++) {
  1722. /* reorder input for short mdct */
  1723. ptr1 = ptr + k;
  1724. for(i=0;i<6;i++) {
  1725. in[i] = *ptr1;
  1726. ptr1 += 3;
  1727. }
  1728. imdct12(out2, in);
  1729. /* apply 12 point window and do small overlap */
  1730. for(i=0;i<6;i++) {
  1731. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1732. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1733. }
  1734. buf2 += 6;
  1735. }
  1736. /* overlap */
  1737. out_ptr = sb_samples + j;
  1738. for(i=0;i<18;i++) {
  1739. *out_ptr = out[i] + buf[i];
  1740. buf[i] = out[i + 18];
  1741. out_ptr += SBLIMIT;
  1742. }
  1743. ptr += 18;
  1744. buf += 18;
  1745. }
  1746. /* zero bands */
  1747. for(j=sblimit;j<SBLIMIT;j++) {
  1748. /* overlap */
  1749. out_ptr = sb_samples + j;
  1750. for(i=0;i<18;i++) {
  1751. *out_ptr = buf[i];
  1752. buf[i] = 0;
  1753. out_ptr += SBLIMIT;
  1754. }
  1755. buf += 18;
  1756. }
  1757. }
  1758. #if defined(DEBUG)
  1759. void sample_dump(int fnum, int32_t *tab, int n)
  1760. {
  1761. static FILE *files[16], *f;
  1762. char buf[512];
  1763. int i;
  1764. int32_t v;
  1765. f = files[fnum];
  1766. if (!f) {
  1767. sprintf(buf, "/tmp/out%d.%s.pcm",
  1768. fnum,
  1769. #ifdef USE_HIGHPRECISION
  1770. "hp"
  1771. #else
  1772. "lp"
  1773. #endif
  1774. );
  1775. f = fopen(buf, "w");
  1776. if (!f)
  1777. return;
  1778. files[fnum] = f;
  1779. }
  1780. if (fnum == 0) {
  1781. static int pos = 0;
  1782. printf("pos=%d\n", pos);
  1783. for(i=0;i<n;i++) {
  1784. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1785. if ((i % 18) == 17)
  1786. printf("\n");
  1787. }
  1788. pos += n;
  1789. }
  1790. for(i=0;i<n;i++) {
  1791. /* normalize to 23 frac bits */
  1792. v = tab[i] << (23 - FRAC_BITS);
  1793. fwrite(&v, 1, sizeof(int32_t), f);
  1794. }
  1795. }
  1796. #endif
  1797. /* main layer3 decoding function */
  1798. static int mp_decode_layer3(MPADecodeContext *s)
  1799. {
  1800. int nb_granules, main_data_begin, private_bits;
  1801. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1802. GranuleDef granules[2][2], *g;
  1803. int16_t exponents[576];
  1804. /* read side info */
  1805. if (s->lsf) {
  1806. main_data_begin = get_bits(&s->gb, 8);
  1807. if (s->nb_channels == 2)
  1808. private_bits = get_bits(&s->gb, 2);
  1809. else
  1810. private_bits = get_bits(&s->gb, 1);
  1811. nb_granules = 1;
  1812. } else {
  1813. main_data_begin = get_bits(&s->gb, 9);
  1814. if (s->nb_channels == 2)
  1815. private_bits = get_bits(&s->gb, 3);
  1816. else
  1817. private_bits = get_bits(&s->gb, 5);
  1818. nb_granules = 2;
  1819. for(ch=0;ch<s->nb_channels;ch++) {
  1820. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1821. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1822. }
  1823. }
  1824. for(gr=0;gr<nb_granules;gr++) {
  1825. for(ch=0;ch<s->nb_channels;ch++) {
  1826. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1827. g = &granules[ch][gr];
  1828. g->part2_3_length = get_bits(&s->gb, 12);
  1829. g->big_values = get_bits(&s->gb, 9);
  1830. g->global_gain = get_bits(&s->gb, 8);
  1831. /* if MS stereo only is selected, we precompute the
  1832. 1/sqrt(2) renormalization factor */
  1833. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1834. MODE_EXT_MS_STEREO)
  1835. g->global_gain -= 2;
  1836. if (s->lsf)
  1837. g->scalefac_compress = get_bits(&s->gb, 9);
  1838. else
  1839. g->scalefac_compress = get_bits(&s->gb, 4);
  1840. blocksplit_flag = get_bits(&s->gb, 1);
  1841. if (blocksplit_flag) {
  1842. g->block_type = get_bits(&s->gb, 2);
  1843. if (g->block_type == 0)
  1844. return -1;
  1845. g->switch_point = get_bits(&s->gb, 1);
  1846. for(i=0;i<2;i++)
  1847. g->table_select[i] = get_bits(&s->gb, 5);
  1848. for(i=0;i<3;i++)
  1849. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1850. /* compute huffman coded region sizes */
  1851. if (g->block_type == 2)
  1852. g->region_size[0] = (36 / 2);
  1853. else {
  1854. if (s->sample_rate_index <= 2)
  1855. g->region_size[0] = (36 / 2);
  1856. else if (s->sample_rate_index != 8)
  1857. g->region_size[0] = (54 / 2);
  1858. else
  1859. g->region_size[0] = (108 / 2);
  1860. }
  1861. g->region_size[1] = (576 / 2);
  1862. } else {
  1863. int region_address1, region_address2, l;
  1864. g->block_type = 0;
  1865. g->switch_point = 0;
  1866. for(i=0;i<3;i++)
  1867. g->table_select[i] = get_bits(&s->gb, 5);
  1868. /* compute huffman coded region sizes */
  1869. region_address1 = get_bits(&s->gb, 4);
  1870. region_address2 = get_bits(&s->gb, 3);
  1871. dprintf("region1=%d region2=%d\n",
  1872. region_address1, region_address2);
  1873. g->region_size[0] =
  1874. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1875. l = region_address1 + region_address2 + 2;
  1876. /* should not overflow */
  1877. if (l > 22)
  1878. l = 22;
  1879. g->region_size[1] =
  1880. band_index_long[s->sample_rate_index][l] >> 1;
  1881. }
  1882. /* convert region offsets to region sizes and truncate
  1883. size to big_values */
  1884. g->region_size[2] = (576 / 2);
  1885. j = 0;
  1886. for(i=0;i<3;i++) {
  1887. k = g->region_size[i];
  1888. if (k > g->big_values)
  1889. k = g->big_values;
  1890. g->region_size[i] = k - j;
  1891. j = k;
  1892. }
  1893. /* compute band indexes */
  1894. if (g->block_type == 2) {
  1895. if (g->switch_point) {
  1896. /* if switched mode, we handle the 36 first samples as
  1897. long blocks. For 8000Hz, we handle the 48 first
  1898. exponents as long blocks (XXX: check this!) */
  1899. if (s->sample_rate_index <= 2)
  1900. g->long_end = 8;
  1901. else if (s->sample_rate_index != 8)
  1902. g->long_end = 6;
  1903. else
  1904. g->long_end = 4; /* 8000 Hz */
  1905. if (s->sample_rate_index != 8)
  1906. g->short_start = 3;
  1907. else
  1908. g->short_start = 2;
  1909. } else {
  1910. g->long_end = 0;
  1911. g->short_start = 0;
  1912. }
  1913. } else {
  1914. g->short_start = 13;
  1915. g->long_end = 22;
  1916. }
  1917. g->preflag = 0;
  1918. if (!s->lsf)
  1919. g->preflag = get_bits(&s->gb, 1);
  1920. g->scalefac_scale = get_bits(&s->gb, 1);
  1921. g->count1table_select = get_bits(&s->gb, 1);
  1922. dprintf("block_type=%d switch_point=%d\n",
  1923. g->block_type, g->switch_point);
  1924. }
  1925. }
  1926. /* now we get bits from the main_data_begin offset */
  1927. dprintf("seekback: %d\n", main_data_begin);
  1928. seek_to_maindata(s, main_data_begin);
  1929. for(gr=0;gr<nb_granules;gr++) {
  1930. for(ch=0;ch<s->nb_channels;ch++) {
  1931. g = &granules[ch][gr];
  1932. bits_pos = get_bits_count(&s->gb);
  1933. if (!s->lsf) {
  1934. uint8_t *sc;
  1935. int slen, slen1, slen2;
  1936. /* MPEG1 scale factors */
  1937. slen1 = slen_table[0][g->scalefac_compress];
  1938. slen2 = slen_table[1][g->scalefac_compress];
  1939. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  1940. if (g->block_type == 2) {
  1941. n = g->switch_point ? 17 : 18;
  1942. j = 0;
  1943. for(i=0;i<n;i++)
  1944. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  1945. for(i=0;i<18;i++)
  1946. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  1947. for(i=0;i<3;i++)
  1948. g->scale_factors[j++] = 0;
  1949. } else {
  1950. sc = granules[ch][0].scale_factors;
  1951. j = 0;
  1952. for(k=0;k<4;k++) {
  1953. n = (k == 0 ? 6 : 5);
  1954. if ((g->scfsi & (0x8 >> k)) == 0) {
  1955. slen = (k < 2) ? slen1 : slen2;
  1956. for(i=0;i<n;i++)
  1957. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  1958. } else {
  1959. /* simply copy from last granule */
  1960. for(i=0;i<n;i++) {
  1961. g->scale_factors[j] = sc[j];
  1962. j++;
  1963. }
  1964. }
  1965. }
  1966. g->scale_factors[j++] = 0;
  1967. }
  1968. #if defined(DEBUG)
  1969. {
  1970. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  1971. g->scfsi, gr, ch);
  1972. for(i=0;i<j;i++)
  1973. printf(" %d", g->scale_factors[i]);
  1974. printf("\n");
  1975. }
  1976. #endif
  1977. } else {
  1978. int tindex, tindex2, slen[4], sl, sf;
  1979. /* LSF scale factors */
  1980. if (g->block_type == 2) {
  1981. tindex = g->switch_point ? 2 : 1;
  1982. } else {
  1983. tindex = 0;
  1984. }
  1985. sf = g->scalefac_compress;
  1986. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1987. /* intensity stereo case */
  1988. sf >>= 1;
  1989. if (sf < 180) {
  1990. lsf_sf_expand(slen, sf, 6, 6, 0);
  1991. tindex2 = 3;
  1992. } else if (sf < 244) {
  1993. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1994. tindex2 = 4;
  1995. } else {
  1996. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1997. tindex2 = 5;
  1998. }
  1999. } else {
  2000. /* normal case */
  2001. if (sf < 400) {
  2002. lsf_sf_expand(slen, sf, 5, 4, 4);
  2003. tindex2 = 0;
  2004. } else if (sf < 500) {
  2005. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2006. tindex2 = 1;
  2007. } else {
  2008. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2009. tindex2 = 2;
  2010. g->preflag = 1;
  2011. }
  2012. }
  2013. j = 0;
  2014. for(k=0;k<4;k++) {
  2015. n = lsf_nsf_table[tindex2][tindex][k];
  2016. sl = slen[k];
  2017. for(i=0;i<n;i++)
  2018. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2019. }
  2020. /* XXX: should compute exact size */
  2021. for(;j<40;j++)
  2022. g->scale_factors[j] = 0;
  2023. #if defined(DEBUG)
  2024. {
  2025. printf("gr=%d ch=%d scale_factors:\n",
  2026. gr, ch);
  2027. for(i=0;i<40;i++)
  2028. printf(" %d", g->scale_factors[i]);
  2029. printf("\n");
  2030. }
  2031. #endif
  2032. }
  2033. exponents_from_scale_factors(s, g, exponents);
  2034. /* read Huffman coded residue */
  2035. if (huffman_decode(s, g, exponents,
  2036. bits_pos + g->part2_3_length) < 0)
  2037. return -1;
  2038. #if defined(DEBUG)
  2039. sample_dump(0, g->sb_hybrid, 576);
  2040. #endif
  2041. /* skip extension bits */
  2042. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2043. if (bits_left < 0) {
  2044. dprintf("bits_left=%d\n", bits_left);
  2045. return -1;
  2046. }
  2047. while (bits_left >= 16) {
  2048. skip_bits(&s->gb, 16);
  2049. bits_left -= 16;
  2050. }
  2051. if (bits_left > 0)
  2052. skip_bits(&s->gb, bits_left);
  2053. } /* ch */
  2054. if (s->nb_channels == 2)
  2055. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2056. for(ch=0;ch<s->nb_channels;ch++) {
  2057. g = &granules[ch][gr];
  2058. reorder_block(s, g);
  2059. #if defined(DEBUG)
  2060. sample_dump(0, g->sb_hybrid, 576);
  2061. #endif
  2062. compute_antialias(s, g);
  2063. #if defined(DEBUG)
  2064. sample_dump(1, g->sb_hybrid, 576);
  2065. #endif
  2066. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2067. #if defined(DEBUG)
  2068. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2069. #endif
  2070. }
  2071. } /* gr */
  2072. return nb_granules * 18;
  2073. }
  2074. static int mp_decode_frame(MPADecodeContext *s,
  2075. short *samples)
  2076. {
  2077. int i, nb_frames, ch;
  2078. short *samples_ptr;
  2079. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2080. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2081. /* skip error protection field */
  2082. if (s->error_protection)
  2083. get_bits(&s->gb, 16);
  2084. dprintf("frame %d:\n", s->frame_count);
  2085. switch(s->layer) {
  2086. case 1:
  2087. nb_frames = mp_decode_layer1(s);
  2088. break;
  2089. case 2:
  2090. nb_frames = mp_decode_layer2(s);
  2091. break;
  2092. case 3:
  2093. default:
  2094. nb_frames = mp_decode_layer3(s);
  2095. break;
  2096. }
  2097. #if defined(DEBUG)
  2098. for(i=0;i<nb_frames;i++) {
  2099. for(ch=0;ch<s->nb_channels;ch++) {
  2100. int j;
  2101. printf("%d-%d:", i, ch);
  2102. for(j=0;j<SBLIMIT;j++)
  2103. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2104. printf("\n");
  2105. }
  2106. }
  2107. #endif
  2108. /* apply the synthesis filter */
  2109. for(ch=0;ch<s->nb_channels;ch++) {
  2110. samples_ptr = samples + ch;
  2111. for(i=0;i<nb_frames;i++) {
  2112. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2113. s->sb_samples[ch][i]);
  2114. samples_ptr += 32 * s->nb_channels;
  2115. }
  2116. }
  2117. #ifdef DEBUG
  2118. s->frame_count++;
  2119. #endif
  2120. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2121. }
  2122. static int decode_frame(AVCodecContext * avctx,
  2123. void *data, int *data_size,
  2124. uint8_t * buf, int buf_size)
  2125. {
  2126. MPADecodeContext *s = avctx->priv_data;
  2127. uint32_t header;
  2128. uint8_t *buf_ptr;
  2129. int len, out_size;
  2130. short *out_samples = data;
  2131. *data_size = 0;
  2132. buf_ptr = buf;
  2133. while (buf_size > 0) {
  2134. len = s->inbuf_ptr - s->inbuf;
  2135. if (s->frame_size == 0) {
  2136. /* special case for next header for first frame in free
  2137. format case (XXX: find a simpler method) */
  2138. if (s->free_format_next_header != 0) {
  2139. s->inbuf[0] = s->free_format_next_header >> 24;
  2140. s->inbuf[1] = s->free_format_next_header >> 16;
  2141. s->inbuf[2] = s->free_format_next_header >> 8;
  2142. s->inbuf[3] = s->free_format_next_header;
  2143. s->inbuf_ptr = s->inbuf + 4;
  2144. s->free_format_next_header = 0;
  2145. goto got_header;
  2146. }
  2147. /* no header seen : find one. We need at least HEADER_SIZE
  2148. bytes to parse it */
  2149. len = HEADER_SIZE - len;
  2150. if (len > buf_size)
  2151. len = buf_size;
  2152. if (len > 0) {
  2153. memcpy(s->inbuf_ptr, buf_ptr, len);
  2154. buf_ptr += len;
  2155. buf_size -= len;
  2156. s->inbuf_ptr += len;
  2157. }
  2158. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2159. got_header:
  2160. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2161. (s->inbuf[2] << 8) | s->inbuf[3];
  2162. if (check_header(header) < 0) {
  2163. /* no sync found : move by one byte (inefficient, but simple!) */
  2164. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2165. s->inbuf_ptr--;
  2166. dprintf("skip %x\n", header);
  2167. /* reset free format frame size to give a chance
  2168. to get a new bitrate */
  2169. s->free_format_frame_size = 0;
  2170. } else {
  2171. if (decode_header(s, header) == 1) {
  2172. /* free format: prepare to compute frame size */
  2173. s->frame_size = -1;
  2174. }
  2175. /* update codec info */
  2176. avctx->sample_rate = s->sample_rate;
  2177. avctx->channels = s->nb_channels;
  2178. avctx->bit_rate = s->bit_rate;
  2179. avctx->frame_size = s->frame_size;
  2180. }
  2181. }
  2182. } else if (s->frame_size == -1) {
  2183. /* free format : find next sync to compute frame size */
  2184. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2185. if (len > buf_size)
  2186. len = buf_size;
  2187. if (len == 0) {
  2188. /* frame too long: resync */
  2189. s->frame_size = 0;
  2190. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2191. s->inbuf_ptr--;
  2192. } else {
  2193. uint8_t *p, *pend;
  2194. uint32_t header1;
  2195. int padding;
  2196. memcpy(s->inbuf_ptr, buf_ptr, len);
  2197. /* check for header */
  2198. p = s->inbuf_ptr - 3;
  2199. pend = s->inbuf_ptr + len - 4;
  2200. while (p <= pend) {
  2201. header = (p[0] << 24) | (p[1] << 16) |
  2202. (p[2] << 8) | p[3];
  2203. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2204. (s->inbuf[2] << 8) | s->inbuf[3];
  2205. /* check with high probability that we have a
  2206. valid header */
  2207. if ((header & SAME_HEADER_MASK) ==
  2208. (header1 & SAME_HEADER_MASK)) {
  2209. /* header found: update pointers */
  2210. len = (p + 4) - s->inbuf_ptr;
  2211. buf_ptr += len;
  2212. buf_size -= len;
  2213. s->inbuf_ptr = p;
  2214. /* compute frame size */
  2215. s->free_format_next_header = header;
  2216. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2217. padding = (header1 >> 9) & 1;
  2218. if (s->layer == 1)
  2219. s->free_format_frame_size -= padding * 4;
  2220. else
  2221. s->free_format_frame_size -= padding;
  2222. dprintf("free frame size=%d padding=%d\n",
  2223. s->free_format_frame_size, padding);
  2224. decode_header(s, header1);
  2225. goto next_data;
  2226. }
  2227. p++;
  2228. }
  2229. /* not found: simply increase pointers */
  2230. buf_ptr += len;
  2231. s->inbuf_ptr += len;
  2232. buf_size -= len;
  2233. }
  2234. } else if (len < s->frame_size) {
  2235. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2236. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2237. len = s->frame_size - len;
  2238. if (len > buf_size)
  2239. len = buf_size;
  2240. memcpy(s->inbuf_ptr, buf_ptr, len);
  2241. buf_ptr += len;
  2242. s->inbuf_ptr += len;
  2243. buf_size -= len;
  2244. } else {
  2245. out_size = mp_decode_frame(s, out_samples);
  2246. s->inbuf_ptr = s->inbuf;
  2247. s->frame_size = 0;
  2248. *data_size = out_size;
  2249. break;
  2250. }
  2251. next_data:
  2252. ;
  2253. }
  2254. return buf_ptr - buf;
  2255. }
  2256. AVCodec mp2_decoder =
  2257. {
  2258. "mp2",
  2259. CODEC_TYPE_AUDIO,
  2260. CODEC_ID_MP2,
  2261. sizeof(MPADecodeContext),
  2262. decode_init,
  2263. NULL,
  2264. NULL,
  2265. decode_frame,
  2266. };
  2267. AVCodec mp3_decoder =
  2268. {
  2269. "mp3",
  2270. CODEC_TYPE_AUDIO,
  2271. CODEC_ID_MP3LAME,
  2272. sizeof(MPADecodeContext),
  2273. decode_init,
  2274. NULL,
  2275. NULL,
  2276. decode_frame,
  2277. };
  2278. #undef C1
  2279. #undef C2
  2280. #undef C3
  2281. #undef C4
  2282. #undef C5
  2283. #undef C6
  2284. #undef C7
  2285. #undef C8
  2286. #undef FRAC_BITS
  2287. #undef HEADER_SIZE