You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1152 lines
37KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. #include "common.h"
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #ifndef INT64_MAX
  27. #define INT64_MAX 9223372036854775807LL
  28. #endif
  29. #define VLC_BITS 11
  30. typedef enum Predictor{
  31. LEFT= 0,
  32. PLANE,
  33. MEDIAN,
  34. } Predictor;
  35. typedef struct HYuvContext{
  36. AVCodecContext *avctx;
  37. Predictor predictor;
  38. GetBitContext gb;
  39. PutBitContext pb;
  40. int interlaced;
  41. int decorrelate;
  42. int bitstream_bpp;
  43. int version;
  44. int yuy2; //use yuy2 instead of 422P
  45. int bgr32; //use bgr32 instead of bgr24
  46. int width, height;
  47. int flags;
  48. int picture_number;
  49. int last_slice_end;
  50. uint8_t __align8 temp[3][2500];
  51. uint64_t stats[3][256];
  52. uint8_t len[3][256];
  53. uint32_t bits[3][256];
  54. VLC vlc[3];
  55. AVFrame picture;
  56. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  57. DSPContext dsp;
  58. }HYuvContext;
  59. static const unsigned char classic_shift_luma[] = {
  60. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  61. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  62. 69,68, 0
  63. };
  64. static const unsigned char classic_shift_chroma[] = {
  65. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  66. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  67. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  68. };
  69. static const unsigned char classic_add_luma[256] = {
  70. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  71. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  72. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  73. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  74. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  75. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  76. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  77. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  78. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  79. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  80. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  81. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  82. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  83. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  84. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  85. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  86. };
  87. static const unsigned char classic_add_chroma[256] = {
  88. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  89. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  90. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  91. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  92. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  93. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  94. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  95. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  96. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  97. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  98. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  99. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  100. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  101. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  102. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  103. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  104. };
  105. static inline void bswap_buf(uint32_t *dst, uint32_t *src, int w){
  106. int i;
  107. for(i=0; i+8<=w; i+=8){
  108. dst[i+0]= bswap_32(src[i+0]);
  109. dst[i+1]= bswap_32(src[i+1]);
  110. dst[i+2]= bswap_32(src[i+2]);
  111. dst[i+3]= bswap_32(src[i+3]);
  112. dst[i+4]= bswap_32(src[i+4]);
  113. dst[i+5]= bswap_32(src[i+5]);
  114. dst[i+6]= bswap_32(src[i+6]);
  115. dst[i+7]= bswap_32(src[i+7]);
  116. }
  117. for(;i<w; i++){
  118. dst[i+0]= bswap_32(src[i+0]);
  119. }
  120. }
  121. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  122. int i;
  123. for(i=0; i<w-1; i++){
  124. acc+= src[i];
  125. dst[i]= acc;
  126. i++;
  127. acc+= src[i];
  128. dst[i]= acc;
  129. }
  130. for(; i<w; i++){
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. return acc;
  135. }
  136. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  137. int i;
  138. uint8_t l, lt;
  139. l= *left;
  140. lt= *left_top;
  141. for(i=0; i<w; i++){
  142. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  143. lt= src1[i];
  144. dst[i]= l;
  145. }
  146. *left= l;
  147. *left_top= lt;
  148. }
  149. //FIXME optimize
  150. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  151. int i;
  152. uint8_t l, lt;
  153. l= *left;
  154. lt= *left_top;
  155. for(i=0; i<w; i++){
  156. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  157. lt= src1[i];
  158. l= src2[i];
  159. dst[i]= l - pred;
  160. }
  161. *left= l;
  162. *left_top= lt;
  163. }
  164. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  165. int i;
  166. int r,g,b;
  167. r= *red;
  168. g= *green;
  169. b= *blue;
  170. for(i=0; i<w; i++){
  171. b+= src[4*i+0];
  172. g+= src[4*i+1];
  173. r+= src[4*i+2];
  174. dst[4*i+0]= b;
  175. dst[4*i+1]= g;
  176. dst[4*i+2]= r;
  177. }
  178. *red= r;
  179. *green= g;
  180. *blue= b;
  181. }
  182. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  183. int i;
  184. if(w<32){
  185. for(i=0; i<w; i++){
  186. const int temp= src[i];
  187. dst[i]= temp - left;
  188. left= temp;
  189. }
  190. return left;
  191. }else{
  192. for(i=0; i<16; i++){
  193. const int temp= src[i];
  194. dst[i]= temp - left;
  195. left= temp;
  196. }
  197. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  198. return src[w-1];
  199. }
  200. }
  201. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  202. int i, val, repeat;
  203. for(i=0; i<256;){
  204. repeat= get_bits(gb, 3);
  205. val = get_bits(gb, 5);
  206. if(repeat==0)
  207. repeat= get_bits(gb, 8);
  208. //printf("%d %d\n", val, repeat);
  209. while (repeat--)
  210. dst[i++] = val;
  211. }
  212. }
  213. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  214. int len, index;
  215. uint32_t bits=0;
  216. for(len=32; len>0; len--){
  217. int bit= 1<<(32-len);
  218. for(index=0; index<256; index++){
  219. if(len_table[index]==len){
  220. if(bits & (bit-1)){
  221. fprintf(stderr, "Error generating huffman table\n");
  222. return -1;
  223. }
  224. dst[index]= bits>>(32-len);
  225. bits+= bit;
  226. }
  227. }
  228. }
  229. return 0;
  230. }
  231. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  232. uint64_t counts[2*size];
  233. int up[2*size];
  234. int offset, i, next;
  235. for(offset=1; ; offset<<=1){
  236. for(i=0; i<size; i++){
  237. counts[i]= stats[i] + offset - 1;
  238. }
  239. for(next=size; next<size*2; next++){
  240. uint64_t min1, min2;
  241. int min1_i, min2_i;
  242. min1=min2= INT64_MAX;
  243. min1_i= min2_i=-1;
  244. for(i=0; i<next; i++){
  245. if(min2 > counts[i]){
  246. if(min1 > counts[i]){
  247. min2= min1;
  248. min2_i= min1_i;
  249. min1= counts[i];
  250. min1_i= i;
  251. }else{
  252. min2= counts[i];
  253. min2_i= i;
  254. }
  255. }
  256. }
  257. if(min2==INT64_MAX) break;
  258. counts[next]= min1 + min2;
  259. counts[min1_i]=
  260. counts[min2_i]= INT64_MAX;
  261. up[min1_i]=
  262. up[min2_i]= next;
  263. up[next]= -1;
  264. }
  265. for(i=0; i<size; i++){
  266. int len;
  267. int index=i;
  268. for(len=0; up[index] != -1; len++)
  269. index= up[index];
  270. if(len > 32) break;
  271. dst[i]= len;
  272. }
  273. if(i==size) break;
  274. }
  275. }
  276. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  277. GetBitContext gb;
  278. int i;
  279. init_get_bits(&gb, src, length*8);
  280. for(i=0; i<3; i++){
  281. read_len_table(s->len[i], &gb);
  282. if(generate_bits_table(s->bits[i], s->len[i])<0){
  283. return -1;
  284. }
  285. #if 0
  286. for(j=0; j<256; j++){
  287. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  288. }
  289. #endif
  290. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  291. }
  292. return 0;
  293. }
  294. static int read_old_huffman_tables(HYuvContext *s){
  295. #if 1
  296. GetBitContext gb;
  297. int i;
  298. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  299. read_len_table(s->len[0], &gb);
  300. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  301. read_len_table(s->len[1], &gb);
  302. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  303. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  304. if(s->bitstream_bpp >= 24){
  305. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  306. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  307. }
  308. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  309. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  310. for(i=0; i<3; i++)
  311. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  312. return 0;
  313. #else
  314. fprintf(stderr, "v1 huffyuv is not supported \n");
  315. return -1;
  316. #endif
  317. }
  318. static int decode_init(AVCodecContext *avctx)
  319. {
  320. HYuvContext *s = avctx->priv_data;
  321. int width, height;
  322. s->avctx= avctx;
  323. s->flags= avctx->flags;
  324. dsputil_init(&s->dsp, avctx);
  325. width= s->width= avctx->width;
  326. height= s->height= avctx->height;
  327. avctx->coded_frame= &s->picture;
  328. s->bgr32=1;
  329. assert(width && height);
  330. //if(avctx->extradata)
  331. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  332. if(avctx->extradata_size){
  333. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  334. s->version=1; // do such files exist at all?
  335. else
  336. s->version=2;
  337. }else
  338. s->version=0;
  339. if(s->version==2){
  340. int method;
  341. method= ((uint8_t*)avctx->extradata)[0];
  342. s->decorrelate= method&64 ? 1 : 0;
  343. s->predictor= method&63;
  344. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  345. if(s->bitstream_bpp==0)
  346. s->bitstream_bpp= avctx->bits_per_sample&~7;
  347. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  348. return -1;
  349. }else{
  350. switch(avctx->bits_per_sample&7){
  351. case 1:
  352. s->predictor= LEFT;
  353. s->decorrelate= 0;
  354. break;
  355. case 2:
  356. s->predictor= LEFT;
  357. s->decorrelate= 1;
  358. break;
  359. case 3:
  360. s->predictor= PLANE;
  361. s->decorrelate= avctx->bits_per_sample >= 24;
  362. break;
  363. case 4:
  364. s->predictor= MEDIAN;
  365. s->decorrelate= 0;
  366. break;
  367. default:
  368. s->predictor= LEFT; //OLD
  369. s->decorrelate= 0;
  370. break;
  371. }
  372. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  373. if(read_old_huffman_tables(s) < 0)
  374. return -1;
  375. }
  376. s->interlaced= height > 288;
  377. switch(s->bitstream_bpp){
  378. case 12:
  379. avctx->pix_fmt = PIX_FMT_YUV420P;
  380. break;
  381. case 16:
  382. if(s->yuy2){
  383. avctx->pix_fmt = PIX_FMT_YUV422;
  384. }else{
  385. avctx->pix_fmt = PIX_FMT_YUV422P;
  386. }
  387. break;
  388. case 24:
  389. case 32:
  390. if(s->bgr32){
  391. avctx->pix_fmt = PIX_FMT_RGBA32;
  392. }else{
  393. avctx->pix_fmt = PIX_FMT_BGR24;
  394. }
  395. break;
  396. default:
  397. assert(0);
  398. }
  399. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  400. return 0;
  401. }
  402. static void store_table(HYuvContext *s, uint8_t *len){
  403. int i;
  404. int index= s->avctx->extradata_size;
  405. for(i=0; i<256;){
  406. int cur=i;
  407. int val= len[i];
  408. int repeat;
  409. for(; i<256 && len[i]==val; i++);
  410. repeat= i - cur;
  411. if(repeat>7){
  412. ((uint8_t*)s->avctx->extradata)[index++]= val;
  413. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  414. }else{
  415. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  416. }
  417. }
  418. s->avctx->extradata_size= index;
  419. }
  420. static int encode_init(AVCodecContext *avctx)
  421. {
  422. HYuvContext *s = avctx->priv_data;
  423. int i, j, width, height;
  424. s->avctx= avctx;
  425. s->flags= avctx->flags;
  426. dsputil_init(&s->dsp, avctx);
  427. width= s->width= avctx->width;
  428. height= s->height= avctx->height;
  429. assert(width && height);
  430. avctx->extradata= av_mallocz(1024*10);
  431. avctx->stats_out= av_mallocz(1024*10);
  432. s->version=2;
  433. avctx->coded_frame= &s->picture;
  434. switch(avctx->pix_fmt){
  435. case PIX_FMT_YUV420P:
  436. if(avctx->strict_std_compliance>=0){
  437. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  438. return -1;
  439. }
  440. s->bitstream_bpp= 12;
  441. break;
  442. case PIX_FMT_YUV422P:
  443. s->bitstream_bpp= 16;
  444. break;
  445. default:
  446. fprintf(stderr, "format not supported\n");
  447. return -1;
  448. }
  449. avctx->bits_per_sample= s->bitstream_bpp;
  450. s->decorrelate= s->bitstream_bpp >= 24;
  451. s->predictor= avctx->prediction_method;
  452. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  453. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  454. ((uint8_t*)avctx->extradata)[2]=
  455. ((uint8_t*)avctx->extradata)[3]= 0;
  456. s->avctx->extradata_size= 4;
  457. if(avctx->stats_in){
  458. char *p= avctx->stats_in;
  459. for(i=0; i<3; i++)
  460. for(j=0; j<256; j++)
  461. s->stats[i][j]= 1;
  462. for(;;){
  463. for(i=0; i<3; i++){
  464. char *next;
  465. for(j=0; j<256; j++){
  466. s->stats[i][j]+= strtol(p, &next, 0);
  467. if(next==p) return -1;
  468. p=next;
  469. }
  470. }
  471. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  472. }
  473. }else{
  474. for(i=0; i<3; i++)
  475. for(j=0; j<256; j++){
  476. int d= FFMIN(j, 256-j);
  477. s->stats[i][j]= 100000000/(d+1);
  478. }
  479. }
  480. for(i=0; i<3; i++){
  481. generate_len_table(s->len[i], s->stats[i], 256);
  482. if(generate_bits_table(s->bits[i], s->len[i])<0){
  483. return -1;
  484. }
  485. store_table(s, s->len[i]);
  486. }
  487. for(i=0; i<3; i++)
  488. for(j=0; j<256; j++)
  489. s->stats[i][j]= 0;
  490. s->interlaced= height > 288;
  491. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  492. s->picture_number=0;
  493. return 0;
  494. }
  495. static void decode_422_bitstream(HYuvContext *s, int count){
  496. int i;
  497. count/=2;
  498. for(i=0; i<count; i++){
  499. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  500. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  501. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  502. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  503. }
  504. }
  505. static void decode_gray_bitstream(HYuvContext *s, int count){
  506. int i;
  507. count/=2;
  508. for(i=0; i<count; i++){
  509. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  510. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  511. }
  512. }
  513. static void encode_422_bitstream(HYuvContext *s, int count){
  514. int i;
  515. count/=2;
  516. if(s->flags&CODEC_FLAG_PASS1){
  517. for(i=0; i<count; i++){
  518. s->stats[0][ s->temp[0][2*i ] ]++;
  519. s->stats[1][ s->temp[1][ i ] ]++;
  520. s->stats[0][ s->temp[0][2*i+1] ]++;
  521. s->stats[2][ s->temp[2][ i ] ]++;
  522. }
  523. }else{
  524. for(i=0; i<count; i++){
  525. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  526. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  527. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  528. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  529. }
  530. }
  531. }
  532. static void encode_gray_bitstream(HYuvContext *s, int count){
  533. int i;
  534. count/=2;
  535. if(s->flags&CODEC_FLAG_PASS1){
  536. for(i=0; i<count; i++){
  537. s->stats[0][ s->temp[0][2*i ] ]++;
  538. s->stats[0][ s->temp[0][2*i+1] ]++;
  539. }
  540. }else{
  541. for(i=0; i<count; i++){
  542. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  543. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  544. }
  545. }
  546. }
  547. static void decode_bgr_bitstream(HYuvContext *s, int count){
  548. int i;
  549. if(s->decorrelate){
  550. if(s->bitstream_bpp==24){
  551. for(i=0; i<count; i++){
  552. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  553. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  554. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  555. }
  556. }else{
  557. for(i=0; i<count; i++){
  558. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  559. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  560. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  561. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  562. }
  563. }
  564. }else{
  565. if(s->bitstream_bpp==24){
  566. for(i=0; i<count; i++){
  567. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  568. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  569. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  570. }
  571. }else{
  572. for(i=0; i<count; i++){
  573. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  574. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  575. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  576. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  577. }
  578. }
  579. }
  580. }
  581. static void draw_slice(HYuvContext *s, int y){
  582. int h, cy;
  583. uint8_t *src_ptr[3];
  584. if(s->avctx->draw_horiz_band==NULL)
  585. return;
  586. h= y - s->last_slice_end;
  587. y -= h;
  588. if(s->bitstream_bpp==12){
  589. cy= y>>1;
  590. }else{
  591. cy= y;
  592. }
  593. src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y;
  594. src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy;
  595. src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy;
  596. emms_c();
  597. s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h);
  598. s->last_slice_end= y + h;
  599. }
  600. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  601. HYuvContext *s = avctx->priv_data;
  602. const int width= s->width;
  603. const int width2= s->width>>1;
  604. const int height= s->height;
  605. int fake_ystride, fake_ustride, fake_vstride;
  606. AVFrame * const p= &s->picture;
  607. AVFrame *picture = data;
  608. *data_size = 0;
  609. /* no supplementary picture */
  610. if (buf_size == 0)
  611. return 0;
  612. bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  613. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  614. p->reference= 0;
  615. if(avctx->get_buffer(avctx, p) < 0){
  616. fprintf(stderr, "get_buffer() failed\n");
  617. return -1;
  618. }
  619. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  620. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  621. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  622. s->last_slice_end= 0;
  623. if(s->bitstream_bpp<24){
  624. int y, cy;
  625. int lefty, leftu, leftv;
  626. int lefttopy, lefttopu, lefttopv;
  627. if(s->yuy2){
  628. p->data[0][3]= get_bits(&s->gb, 8);
  629. p->data[0][2]= get_bits(&s->gb, 8);
  630. p->data[0][1]= get_bits(&s->gb, 8);
  631. p->data[0][0]= get_bits(&s->gb, 8);
  632. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  633. return -1;
  634. }else{
  635. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  636. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  637. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  638. p->data[0][0]= get_bits(&s->gb, 8);
  639. switch(s->predictor){
  640. case LEFT:
  641. case PLANE:
  642. decode_422_bitstream(s, width-2);
  643. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  644. if(!(s->flags&CODEC_FLAG_GRAY)){
  645. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  646. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  647. }
  648. for(cy=y=1; y<s->height; y++,cy++){
  649. uint8_t *ydst, *udst, *vdst;
  650. if(s->bitstream_bpp==12){
  651. decode_gray_bitstream(s, width);
  652. ydst= p->data[0] + p->linesize[0]*y;
  653. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  654. if(s->predictor == PLANE){
  655. if(y>s->interlaced)
  656. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  657. }
  658. y++;
  659. if(y>=s->height) break;
  660. }
  661. draw_slice(s, y);
  662. ydst= p->data[0] + p->linesize[0]*y;
  663. udst= p->data[1] + p->linesize[1]*cy;
  664. vdst= p->data[2] + p->linesize[2]*cy;
  665. decode_422_bitstream(s, width);
  666. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  667. if(!(s->flags&CODEC_FLAG_GRAY)){
  668. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  669. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  670. }
  671. if(s->predictor == PLANE){
  672. if(cy>s->interlaced){
  673. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  674. if(!(s->flags&CODEC_FLAG_GRAY)){
  675. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  676. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  677. }
  678. }
  679. }
  680. }
  681. draw_slice(s, height);
  682. break;
  683. case MEDIAN:
  684. /* first line except first 2 pixels is left predicted */
  685. decode_422_bitstream(s, width-2);
  686. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  687. if(!(s->flags&CODEC_FLAG_GRAY)){
  688. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  689. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  690. }
  691. cy=y=1;
  692. /* second line is left predicted for interlaced case */
  693. if(s->interlaced){
  694. decode_422_bitstream(s, width);
  695. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  696. if(!(s->flags&CODEC_FLAG_GRAY)){
  697. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  698. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  699. }
  700. y++; cy++;
  701. }
  702. /* next 4 pixels are left predicted too */
  703. decode_422_bitstream(s, 4);
  704. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  705. if(!(s->flags&CODEC_FLAG_GRAY)){
  706. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  707. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  708. }
  709. /* next line except the first 4 pixels is median predicted */
  710. lefttopy= p->data[0][3];
  711. decode_422_bitstream(s, width-4);
  712. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  713. if(!(s->flags&CODEC_FLAG_GRAY)){
  714. lefttopu= p->data[1][1];
  715. lefttopv= p->data[2][1];
  716. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  717. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  718. }
  719. y++; cy++;
  720. for(; y<height; y++,cy++){
  721. uint8_t *ydst, *udst, *vdst;
  722. if(s->bitstream_bpp==12){
  723. while(2*cy > y){
  724. decode_gray_bitstream(s, width);
  725. ydst= p->data[0] + p->linesize[0]*y;
  726. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  727. y++;
  728. }
  729. if(y>=height) break;
  730. }
  731. draw_slice(s, y);
  732. decode_422_bitstream(s, width);
  733. ydst= p->data[0] + p->linesize[0]*y;
  734. udst= p->data[1] + p->linesize[1]*cy;
  735. vdst= p->data[2] + p->linesize[2]*cy;
  736. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  737. if(!(s->flags&CODEC_FLAG_GRAY)){
  738. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  739. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  740. }
  741. }
  742. draw_slice(s, height);
  743. break;
  744. }
  745. }
  746. }else{
  747. int y;
  748. int leftr, leftg, leftb;
  749. const int last_line= (height-1)*p->linesize[0];
  750. if(s->bitstream_bpp==32){
  751. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  752. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  753. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  754. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  755. }else{
  756. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  757. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  758. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  759. skip_bits(&s->gb, 8);
  760. }
  761. if(s->bgr32){
  762. switch(s->predictor){
  763. case LEFT:
  764. case PLANE:
  765. decode_bgr_bitstream(s, width-1);
  766. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  767. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  768. decode_bgr_bitstream(s, width);
  769. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  770. if(s->predictor == PLANE){
  771. if((y&s->interlaced)==0){
  772. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  773. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  774. }
  775. }
  776. }
  777. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  778. break;
  779. default:
  780. fprintf(stderr, "prediction type not supported!\n");
  781. }
  782. }else{
  783. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  784. return -1;
  785. }
  786. }
  787. emms_c();
  788. *picture= *p;
  789. avctx->release_buffer(avctx, p);
  790. *data_size = sizeof(AVFrame);
  791. return (get_bits_count(&s->gb)+31)/32*4;
  792. }
  793. static int decode_end(AVCodecContext *avctx)
  794. {
  795. HYuvContext *s = avctx->priv_data;
  796. int i;
  797. for(i=0; i<3; i++){
  798. free_vlc(&s->vlc[i]);
  799. }
  800. if(avctx->get_buffer == avcodec_default_get_buffer){
  801. for(i=0; i<4; i++){
  802. av_freep(&s->picture.base[i]);
  803. s->picture.data[i]= NULL;
  804. }
  805. av_freep(&s->picture.opaque);
  806. }
  807. return 0;
  808. }
  809. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  810. HYuvContext *s = avctx->priv_data;
  811. AVFrame *pict = data;
  812. const int width= s->width;
  813. const int width2= s->width>>1;
  814. const int height= s->height;
  815. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  816. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  817. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  818. AVFrame * const p= &s->picture;
  819. int i, size;
  820. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  821. *p = *pict;
  822. p->pict_type= FF_I_TYPE;
  823. p->key_frame= 1;
  824. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  825. int lefty, leftu, leftv, y, cy;
  826. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  827. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  828. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  829. put_bits(&s->pb, 8, p->data[0][0]);
  830. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  831. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  832. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  833. encode_422_bitstream(s, width-2);
  834. if(s->predictor==MEDIAN){
  835. int lefttopy, lefttopu, lefttopv;
  836. cy=y=1;
  837. if(s->interlaced){
  838. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  839. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  840. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  841. encode_422_bitstream(s, width);
  842. y++; cy++;
  843. }
  844. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  845. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  846. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  847. encode_422_bitstream(s, 4);
  848. lefttopy= p->data[0][3];
  849. lefttopu= p->data[1][1];
  850. lefttopv= p->data[2][1];
  851. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  852. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  853. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  854. encode_422_bitstream(s, width-4);
  855. y++; cy++;
  856. for(; y<height; y++,cy++){
  857. uint8_t *ydst, *udst, *vdst;
  858. if(s->bitstream_bpp==12){
  859. while(2*cy > y){
  860. ydst= p->data[0] + p->linesize[0]*y;
  861. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  862. encode_gray_bitstream(s, width);
  863. y++;
  864. }
  865. if(y>=height) break;
  866. }
  867. ydst= p->data[0] + p->linesize[0]*y;
  868. udst= p->data[1] + p->linesize[1]*cy;
  869. vdst= p->data[2] + p->linesize[2]*cy;
  870. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  871. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  872. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  873. encode_422_bitstream(s, width);
  874. }
  875. }else{
  876. for(cy=y=1; y<height; y++,cy++){
  877. uint8_t *ydst, *udst, *vdst;
  878. /* encode a luma only line & y++ */
  879. if(s->bitstream_bpp==12){
  880. ydst= p->data[0] + p->linesize[0]*y;
  881. if(s->predictor == PLANE && s->interlaced < y){
  882. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  883. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  884. }else{
  885. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  886. }
  887. encode_gray_bitstream(s, width);
  888. y++;
  889. if(y>=height) break;
  890. }
  891. ydst= p->data[0] + p->linesize[0]*y;
  892. udst= p->data[1] + p->linesize[1]*cy;
  893. vdst= p->data[2] + p->linesize[2]*cy;
  894. if(s->predictor == PLANE && s->interlaced < cy){
  895. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  896. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  897. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  898. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  899. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  900. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  901. }else{
  902. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  903. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  904. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  905. }
  906. encode_422_bitstream(s, width);
  907. }
  908. }
  909. }else{
  910. fprintf(stderr, "Format not supported!\n");
  911. }
  912. emms_c();
  913. size= (get_bit_count(&s->pb)+31)/32;
  914. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  915. int j;
  916. char *p= avctx->stats_out;
  917. for(i=0; i<3; i++){
  918. for(j=0; j<256; j++){
  919. sprintf(p, "%Ld ", s->stats[i][j]);
  920. p+= strlen(p);
  921. s->stats[i][j]= 0;
  922. }
  923. sprintf(p, "\n");
  924. p++;
  925. }
  926. }else{
  927. flush_put_bits(&s->pb);
  928. bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  929. }
  930. s->picture_number++;
  931. return size*4;
  932. }
  933. static int encode_end(AVCodecContext *avctx)
  934. {
  935. // HYuvContext *s = avctx->priv_data;
  936. av_freep(&avctx->extradata);
  937. av_freep(&avctx->stats_out);
  938. return 0;
  939. }
  940. AVCodec huffyuv_decoder = {
  941. "huffyuv",
  942. CODEC_TYPE_VIDEO,
  943. CODEC_ID_HUFFYUV,
  944. sizeof(HYuvContext),
  945. decode_init,
  946. NULL,
  947. decode_end,
  948. decode_frame,
  949. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  950. NULL
  951. };
  952. AVCodec huffyuv_encoder = {
  953. "huffyuv",
  954. CODEC_TYPE_VIDEO,
  955. CODEC_ID_HUFFYUV,
  956. sizeof(HYuvContext),
  957. encode_init,
  958. encode_frame,
  959. encode_end,
  960. };