You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2077 lines
68KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/channel_layout.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/libm.h"
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "mpegaudiodsp.h"
  34. /*
  35. * TODO:
  36. * - test lsf / mpeg25 extensively.
  37. */
  38. #include "mpegaudio.h"
  39. #include "mpegaudiodecheader.h"
  40. #define BACKSTEP_SIZE 512
  41. #define EXTRABYTES 24
  42. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  43. /* layer 3 "granule" */
  44. typedef struct GranuleDef {
  45. uint8_t scfsi;
  46. int part2_3_length;
  47. int big_values;
  48. int global_gain;
  49. int scalefac_compress;
  50. uint8_t block_type;
  51. uint8_t switch_point;
  52. int table_select[3];
  53. int subblock_gain[3];
  54. uint8_t scalefac_scale;
  55. uint8_t count1table_select;
  56. int region_size[3]; /* number of huffman codes in each region */
  57. int preflag;
  58. int short_start, long_end; /* long/short band indexes */
  59. uint8_t scale_factors[40];
  60. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  61. } GranuleDef;
  62. typedef struct MPADecodeContext {
  63. MPA_DECODE_HEADER
  64. uint8_t last_buf[LAST_BUF_SIZE];
  65. int last_buf_size;
  66. /* next header (used in free format parsing) */
  67. uint32_t free_format_next_header;
  68. GetBitContext gb;
  69. GetBitContext in_gb;
  70. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  71. int synth_buf_offset[MPA_MAX_CHANNELS];
  72. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  73. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  74. GranuleDef granules[2][2]; /* Used in Layer 3 */
  75. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  76. int dither_state;
  77. int err_recognition;
  78. AVCodecContext* avctx;
  79. MPADSPContext mpadsp;
  80. AVFloatDSPContext fdsp;
  81. AVFrame *frame;
  82. } MPADecodeContext;
  83. #if CONFIG_FLOAT
  84. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  85. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  86. # define FIXR(x) ((float)(x))
  87. # define FIXHR(x) ((float)(x))
  88. # define MULH3(x, y, s) ((s)*(y)*(x))
  89. # define MULLx(x, y, s) ((y)*(x))
  90. # define RENAME(a) a ## _float
  91. # define OUT_FMT AV_SAMPLE_FMT_FLT
  92. # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
  93. #else
  94. # define SHR(a,b) ((a)>>(b))
  95. /* WARNING: only correct for positive numbers */
  96. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  97. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  98. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  99. # define MULH3(x, y, s) MULH((s)*(x), y)
  100. # define MULLx(x, y, s) MULL(x,y,s)
  101. # define RENAME(a) a ## _fixed
  102. # define OUT_FMT AV_SAMPLE_FMT_S16
  103. # define OUT_FMT_P AV_SAMPLE_FMT_S16P
  104. #endif
  105. /****************/
  106. #define HEADER_SIZE 4
  107. #include "mpegaudiodata.h"
  108. #include "mpegaudiodectab.h"
  109. /* vlc structure for decoding layer 3 huffman tables */
  110. static VLC huff_vlc[16];
  111. static VLC_TYPE huff_vlc_tables[
  112. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  113. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  114. ][2];
  115. static const int huff_vlc_tables_sizes[16] = {
  116. 0, 128, 128, 128, 130, 128, 154, 166,
  117. 142, 204, 190, 170, 542, 460, 662, 414
  118. };
  119. static VLC huff_quad_vlc[2];
  120. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  121. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  122. /* computed from band_size_long */
  123. static uint16_t band_index_long[9][23];
  124. #include "mpegaudio_tablegen.h"
  125. /* intensity stereo coef table */
  126. static INTFLOAT is_table[2][16];
  127. static INTFLOAT is_table_lsf[2][2][16];
  128. static INTFLOAT csa_table[8][4];
  129. static int16_t division_tab3[1<<6 ];
  130. static int16_t division_tab5[1<<8 ];
  131. static int16_t division_tab9[1<<11];
  132. static int16_t * const division_tabs[4] = {
  133. division_tab3, division_tab5, NULL, division_tab9
  134. };
  135. /* lower 2 bits: modulo 3, higher bits: shift */
  136. static uint16_t scale_factor_modshift[64];
  137. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  138. static int32_t scale_factor_mult[15][3];
  139. /* mult table for layer 2 group quantization */
  140. #define SCALE_GEN(v) \
  141. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  142. static const int32_t scale_factor_mult2[3][3] = {
  143. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  144. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  145. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  146. };
  147. /**
  148. * Convert region offsets to region sizes and truncate
  149. * size to big_values.
  150. */
  151. static void ff_region_offset2size(GranuleDef *g)
  152. {
  153. int i, k, j = 0;
  154. g->region_size[2] = 576 / 2;
  155. for (i = 0; i < 3; i++) {
  156. k = FFMIN(g->region_size[i], g->big_values);
  157. g->region_size[i] = k - j;
  158. j = k;
  159. }
  160. }
  161. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
  162. {
  163. if (g->block_type == 2) {
  164. if (s->sample_rate_index != 8)
  165. g->region_size[0] = (36 / 2);
  166. else
  167. g->region_size[0] = (72 / 2);
  168. } else {
  169. if (s->sample_rate_index <= 2)
  170. g->region_size[0] = (36 / 2);
  171. else if (s->sample_rate_index != 8)
  172. g->region_size[0] = (54 / 2);
  173. else
  174. g->region_size[0] = (108 / 2);
  175. }
  176. g->region_size[1] = (576 / 2);
  177. }
  178. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
  179. {
  180. int l;
  181. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  182. /* should not overflow */
  183. l = FFMIN(ra1 + ra2 + 2, 22);
  184. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  185. }
  186. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  187. {
  188. if (g->block_type == 2) {
  189. if (g->switch_point) {
  190. if(s->sample_rate_index == 8)
  191. avpriv_request_sample(s->avctx, "switch point in 8khz");
  192. /* if switched mode, we handle the 36 first samples as
  193. long blocks. For 8000Hz, we handle the 72 first
  194. exponents as long blocks */
  195. if (s->sample_rate_index <= 2)
  196. g->long_end = 8;
  197. else
  198. g->long_end = 6;
  199. g->short_start = 3;
  200. } else {
  201. g->long_end = 0;
  202. g->short_start = 0;
  203. }
  204. } else {
  205. g->short_start = 13;
  206. g->long_end = 22;
  207. }
  208. }
  209. /* layer 1 unscaling */
  210. /* n = number of bits of the mantissa minus 1 */
  211. static inline int l1_unscale(int n, int mant, int scale_factor)
  212. {
  213. int shift, mod;
  214. int64_t val;
  215. shift = scale_factor_modshift[scale_factor];
  216. mod = shift & 3;
  217. shift >>= 2;
  218. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  219. shift += n;
  220. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  221. return (int)((val + (1LL << (shift - 1))) >> shift);
  222. }
  223. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  224. {
  225. int shift, mod, val;
  226. shift = scale_factor_modshift[scale_factor];
  227. mod = shift & 3;
  228. shift >>= 2;
  229. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  230. /* NOTE: at this point, 0 <= shift <= 21 */
  231. if (shift > 0)
  232. val = (val + (1 << (shift - 1))) >> shift;
  233. return val;
  234. }
  235. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  236. static inline int l3_unscale(int value, int exponent)
  237. {
  238. unsigned int m;
  239. int e;
  240. e = table_4_3_exp [4 * value + (exponent & 3)];
  241. m = table_4_3_value[4 * value + (exponent & 3)];
  242. e -= exponent >> 2;
  243. #ifdef DEBUG
  244. if(e < 1)
  245. av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
  246. #endif
  247. if (e > 31)
  248. return 0;
  249. m = (m + (1 << (e - 1))) >> e;
  250. return m;
  251. }
  252. static av_cold void decode_init_static(void)
  253. {
  254. int i, j, k;
  255. int offset;
  256. /* scale factors table for layer 1/2 */
  257. for (i = 0; i < 64; i++) {
  258. int shift, mod;
  259. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  260. shift = i / 3;
  261. mod = i % 3;
  262. scale_factor_modshift[i] = mod | (shift << 2);
  263. }
  264. /* scale factor multiply for layer 1 */
  265. for (i = 0; i < 15; i++) {
  266. int n, norm;
  267. n = i + 2;
  268. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  269. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  270. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  271. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  272. av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  273. scale_factor_mult[i][0],
  274. scale_factor_mult[i][1],
  275. scale_factor_mult[i][2]);
  276. }
  277. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  278. /* huffman decode tables */
  279. offset = 0;
  280. for (i = 1; i < 16; i++) {
  281. const HuffTable *h = &mpa_huff_tables[i];
  282. int xsize, x, y;
  283. uint8_t tmp_bits [512] = { 0 };
  284. uint16_t tmp_codes[512] = { 0 };
  285. xsize = h->xsize;
  286. j = 0;
  287. for (x = 0; x < xsize; x++) {
  288. for (y = 0; y < xsize; y++) {
  289. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  290. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  291. }
  292. }
  293. /* XXX: fail test */
  294. huff_vlc[i].table = huff_vlc_tables+offset;
  295. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  296. init_vlc(&huff_vlc[i], 7, 512,
  297. tmp_bits, 1, 1, tmp_codes, 2, 2,
  298. INIT_VLC_USE_NEW_STATIC);
  299. offset += huff_vlc_tables_sizes[i];
  300. }
  301. av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  302. offset = 0;
  303. for (i = 0; i < 2; i++) {
  304. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  305. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  306. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  307. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  308. INIT_VLC_USE_NEW_STATIC);
  309. offset += huff_quad_vlc_tables_sizes[i];
  310. }
  311. av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  312. for (i = 0; i < 9; i++) {
  313. k = 0;
  314. for (j = 0; j < 22; j++) {
  315. band_index_long[i][j] = k;
  316. k += band_size_long[i][j];
  317. }
  318. band_index_long[i][22] = k;
  319. }
  320. /* compute n ^ (4/3) and store it in mantissa/exp format */
  321. mpegaudio_tableinit();
  322. for (i = 0; i < 4; i++) {
  323. if (ff_mpa_quant_bits[i] < 0) {
  324. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  325. int val1, val2, val3, steps;
  326. int val = j;
  327. steps = ff_mpa_quant_steps[i];
  328. val1 = val % steps;
  329. val /= steps;
  330. val2 = val % steps;
  331. val3 = val / steps;
  332. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  333. }
  334. }
  335. }
  336. for (i = 0; i < 7; i++) {
  337. float f;
  338. INTFLOAT v;
  339. if (i != 6) {
  340. f = tan((double)i * M_PI / 12.0);
  341. v = FIXR(f / (1.0 + f));
  342. } else {
  343. v = FIXR(1.0);
  344. }
  345. is_table[0][ i] = v;
  346. is_table[1][6 - i] = v;
  347. }
  348. /* invalid values */
  349. for (i = 7; i < 16; i++)
  350. is_table[0][i] = is_table[1][i] = 0.0;
  351. for (i = 0; i < 16; i++) {
  352. double f;
  353. int e, k;
  354. for (j = 0; j < 2; j++) {
  355. e = -(j + 1) * ((i + 1) >> 1);
  356. f = exp2(e / 4.0);
  357. k = i & 1;
  358. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  359. is_table_lsf[j][k ][i] = FIXR(1.0);
  360. av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  361. i, j, (float) is_table_lsf[j][0][i],
  362. (float) is_table_lsf[j][1][i]);
  363. }
  364. }
  365. for (i = 0; i < 8; i++) {
  366. float ci, cs, ca;
  367. ci = ci_table[i];
  368. cs = 1.0 / sqrt(1.0 + ci * ci);
  369. ca = cs * ci;
  370. #if !CONFIG_FLOAT
  371. csa_table[i][0] = FIXHR(cs/4);
  372. csa_table[i][1] = FIXHR(ca/4);
  373. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  374. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  375. #else
  376. csa_table[i][0] = cs;
  377. csa_table[i][1] = ca;
  378. csa_table[i][2] = ca + cs;
  379. csa_table[i][3] = ca - cs;
  380. #endif
  381. }
  382. }
  383. static av_cold int decode_init(AVCodecContext * avctx)
  384. {
  385. static int initialized_tables = 0;
  386. MPADecodeContext *s = avctx->priv_data;
  387. if (!initialized_tables) {
  388. decode_init_static();
  389. initialized_tables = 1;
  390. }
  391. s->avctx = avctx;
  392. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  393. ff_mpadsp_init(&s->mpadsp);
  394. if (avctx->request_sample_fmt == OUT_FMT &&
  395. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  396. avctx->sample_fmt = OUT_FMT;
  397. else
  398. avctx->sample_fmt = OUT_FMT_P;
  399. s->err_recognition = avctx->err_recognition;
  400. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  401. s->adu_mode = 1;
  402. return 0;
  403. }
  404. #define C3 FIXHR(0.86602540378443864676/2)
  405. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  406. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  407. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  408. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  409. cases. */
  410. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  411. {
  412. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  413. in0 = in[0*3];
  414. in1 = in[1*3] + in[0*3];
  415. in2 = in[2*3] + in[1*3];
  416. in3 = in[3*3] + in[2*3];
  417. in4 = in[4*3] + in[3*3];
  418. in5 = in[5*3] + in[4*3];
  419. in5 += in3;
  420. in3 += in1;
  421. in2 = MULH3(in2, C3, 2);
  422. in3 = MULH3(in3, C3, 4);
  423. t1 = in0 - in4;
  424. t2 = MULH3(in1 - in5, C4, 2);
  425. out[ 7] =
  426. out[10] = t1 + t2;
  427. out[ 1] =
  428. out[ 4] = t1 - t2;
  429. in0 += SHR(in4, 1);
  430. in4 = in0 + in2;
  431. in5 += 2*in1;
  432. in1 = MULH3(in5 + in3, C5, 1);
  433. out[ 8] =
  434. out[ 9] = in4 + in1;
  435. out[ 2] =
  436. out[ 3] = in4 - in1;
  437. in0 -= in2;
  438. in5 = MULH3(in5 - in3, C6, 2);
  439. out[ 0] =
  440. out[ 5] = in0 - in5;
  441. out[ 6] =
  442. out[11] = in0 + in5;
  443. }
  444. /* return the number of decoded frames */
  445. static int mp_decode_layer1(MPADecodeContext *s)
  446. {
  447. int bound, i, v, n, ch, j, mant;
  448. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  449. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  450. if (s->mode == MPA_JSTEREO)
  451. bound = (s->mode_ext + 1) * 4;
  452. else
  453. bound = SBLIMIT;
  454. /* allocation bits */
  455. for (i = 0; i < bound; i++) {
  456. for (ch = 0; ch < s->nb_channels; ch++) {
  457. allocation[ch][i] = get_bits(&s->gb, 4);
  458. }
  459. }
  460. for (i = bound; i < SBLIMIT; i++)
  461. allocation[0][i] = get_bits(&s->gb, 4);
  462. /* scale factors */
  463. for (i = 0; i < bound; i++) {
  464. for (ch = 0; ch < s->nb_channels; ch++) {
  465. if (allocation[ch][i])
  466. scale_factors[ch][i] = get_bits(&s->gb, 6);
  467. }
  468. }
  469. for (i = bound; i < SBLIMIT; i++) {
  470. if (allocation[0][i]) {
  471. scale_factors[0][i] = get_bits(&s->gb, 6);
  472. scale_factors[1][i] = get_bits(&s->gb, 6);
  473. }
  474. }
  475. /* compute samples */
  476. for (j = 0; j < 12; j++) {
  477. for (i = 0; i < bound; i++) {
  478. for (ch = 0; ch < s->nb_channels; ch++) {
  479. n = allocation[ch][i];
  480. if (n) {
  481. mant = get_bits(&s->gb, n + 1);
  482. v = l1_unscale(n, mant, scale_factors[ch][i]);
  483. } else {
  484. v = 0;
  485. }
  486. s->sb_samples[ch][j][i] = v;
  487. }
  488. }
  489. for (i = bound; i < SBLIMIT; i++) {
  490. n = allocation[0][i];
  491. if (n) {
  492. mant = get_bits(&s->gb, n + 1);
  493. v = l1_unscale(n, mant, scale_factors[0][i]);
  494. s->sb_samples[0][j][i] = v;
  495. v = l1_unscale(n, mant, scale_factors[1][i]);
  496. s->sb_samples[1][j][i] = v;
  497. } else {
  498. s->sb_samples[0][j][i] = 0;
  499. s->sb_samples[1][j][i] = 0;
  500. }
  501. }
  502. }
  503. return 12;
  504. }
  505. static int mp_decode_layer2(MPADecodeContext *s)
  506. {
  507. int sblimit; /* number of used subbands */
  508. const unsigned char *alloc_table;
  509. int table, bit_alloc_bits, i, j, ch, bound, v;
  510. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  511. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  512. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  513. int scale, qindex, bits, steps, k, l, m, b;
  514. /* select decoding table */
  515. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  516. s->sample_rate, s->lsf);
  517. sblimit = ff_mpa_sblimit_table[table];
  518. alloc_table = ff_mpa_alloc_tables[table];
  519. if (s->mode == MPA_JSTEREO)
  520. bound = (s->mode_ext + 1) * 4;
  521. else
  522. bound = sblimit;
  523. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  524. /* sanity check */
  525. if (bound > sblimit)
  526. bound = sblimit;
  527. /* parse bit allocation */
  528. j = 0;
  529. for (i = 0; i < bound; i++) {
  530. bit_alloc_bits = alloc_table[j];
  531. for (ch = 0; ch < s->nb_channels; ch++)
  532. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  533. j += 1 << bit_alloc_bits;
  534. }
  535. for (i = bound; i < sblimit; i++) {
  536. bit_alloc_bits = alloc_table[j];
  537. v = get_bits(&s->gb, bit_alloc_bits);
  538. bit_alloc[0][i] = v;
  539. bit_alloc[1][i] = v;
  540. j += 1 << bit_alloc_bits;
  541. }
  542. /* scale codes */
  543. for (i = 0; i < sblimit; i++) {
  544. for (ch = 0; ch < s->nb_channels; ch++) {
  545. if (bit_alloc[ch][i])
  546. scale_code[ch][i] = get_bits(&s->gb, 2);
  547. }
  548. }
  549. /* scale factors */
  550. for (i = 0; i < sblimit; i++) {
  551. for (ch = 0; ch < s->nb_channels; ch++) {
  552. if (bit_alloc[ch][i]) {
  553. sf = scale_factors[ch][i];
  554. switch (scale_code[ch][i]) {
  555. default:
  556. case 0:
  557. sf[0] = get_bits(&s->gb, 6);
  558. sf[1] = get_bits(&s->gb, 6);
  559. sf[2] = get_bits(&s->gb, 6);
  560. break;
  561. case 2:
  562. sf[0] = get_bits(&s->gb, 6);
  563. sf[1] = sf[0];
  564. sf[2] = sf[0];
  565. break;
  566. case 1:
  567. sf[0] = get_bits(&s->gb, 6);
  568. sf[2] = get_bits(&s->gb, 6);
  569. sf[1] = sf[0];
  570. break;
  571. case 3:
  572. sf[0] = get_bits(&s->gb, 6);
  573. sf[2] = get_bits(&s->gb, 6);
  574. sf[1] = sf[2];
  575. break;
  576. }
  577. }
  578. }
  579. }
  580. /* samples */
  581. for (k = 0; k < 3; k++) {
  582. for (l = 0; l < 12; l += 3) {
  583. j = 0;
  584. for (i = 0; i < bound; i++) {
  585. bit_alloc_bits = alloc_table[j];
  586. for (ch = 0; ch < s->nb_channels; ch++) {
  587. b = bit_alloc[ch][i];
  588. if (b) {
  589. scale = scale_factors[ch][i][k];
  590. qindex = alloc_table[j+b];
  591. bits = ff_mpa_quant_bits[qindex];
  592. if (bits < 0) {
  593. int v2;
  594. /* 3 values at the same time */
  595. v = get_bits(&s->gb, -bits);
  596. v2 = division_tabs[qindex][v];
  597. steps = ff_mpa_quant_steps[qindex];
  598. s->sb_samples[ch][k * 12 + l + 0][i] =
  599. l2_unscale_group(steps, v2 & 15, scale);
  600. s->sb_samples[ch][k * 12 + l + 1][i] =
  601. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  602. s->sb_samples[ch][k * 12 + l + 2][i] =
  603. l2_unscale_group(steps, v2 >> 8 , scale);
  604. } else {
  605. for (m = 0; m < 3; m++) {
  606. v = get_bits(&s->gb, bits);
  607. v = l1_unscale(bits - 1, v, scale);
  608. s->sb_samples[ch][k * 12 + l + m][i] = v;
  609. }
  610. }
  611. } else {
  612. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  613. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  614. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  615. }
  616. }
  617. /* next subband in alloc table */
  618. j += 1 << bit_alloc_bits;
  619. }
  620. /* XXX: find a way to avoid this duplication of code */
  621. for (i = bound; i < sblimit; i++) {
  622. bit_alloc_bits = alloc_table[j];
  623. b = bit_alloc[0][i];
  624. if (b) {
  625. int mant, scale0, scale1;
  626. scale0 = scale_factors[0][i][k];
  627. scale1 = scale_factors[1][i][k];
  628. qindex = alloc_table[j+b];
  629. bits = ff_mpa_quant_bits[qindex];
  630. if (bits < 0) {
  631. /* 3 values at the same time */
  632. v = get_bits(&s->gb, -bits);
  633. steps = ff_mpa_quant_steps[qindex];
  634. mant = v % steps;
  635. v = v / steps;
  636. s->sb_samples[0][k * 12 + l + 0][i] =
  637. l2_unscale_group(steps, mant, scale0);
  638. s->sb_samples[1][k * 12 + l + 0][i] =
  639. l2_unscale_group(steps, mant, scale1);
  640. mant = v % steps;
  641. v = v / steps;
  642. s->sb_samples[0][k * 12 + l + 1][i] =
  643. l2_unscale_group(steps, mant, scale0);
  644. s->sb_samples[1][k * 12 + l + 1][i] =
  645. l2_unscale_group(steps, mant, scale1);
  646. s->sb_samples[0][k * 12 + l + 2][i] =
  647. l2_unscale_group(steps, v, scale0);
  648. s->sb_samples[1][k * 12 + l + 2][i] =
  649. l2_unscale_group(steps, v, scale1);
  650. } else {
  651. for (m = 0; m < 3; m++) {
  652. mant = get_bits(&s->gb, bits);
  653. s->sb_samples[0][k * 12 + l + m][i] =
  654. l1_unscale(bits - 1, mant, scale0);
  655. s->sb_samples[1][k * 12 + l + m][i] =
  656. l1_unscale(bits - 1, mant, scale1);
  657. }
  658. }
  659. } else {
  660. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  661. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  662. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  663. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  664. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  665. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  666. }
  667. /* next subband in alloc table */
  668. j += 1 << bit_alloc_bits;
  669. }
  670. /* fill remaining samples to zero */
  671. for (i = sblimit; i < SBLIMIT; i++) {
  672. for (ch = 0; ch < s->nb_channels; ch++) {
  673. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  674. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  675. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  676. }
  677. }
  678. }
  679. }
  680. return 3 * 12;
  681. }
  682. #define SPLIT(dst,sf,n) \
  683. if (n == 3) { \
  684. int m = (sf * 171) >> 9; \
  685. dst = sf - 3 * m; \
  686. sf = m; \
  687. } else if (n == 4) { \
  688. dst = sf & 3; \
  689. sf >>= 2; \
  690. } else if (n == 5) { \
  691. int m = (sf * 205) >> 10; \
  692. dst = sf - 5 * m; \
  693. sf = m; \
  694. } else if (n == 6) { \
  695. int m = (sf * 171) >> 10; \
  696. dst = sf - 6 * m; \
  697. sf = m; \
  698. } else { \
  699. dst = 0; \
  700. }
  701. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  702. int n3)
  703. {
  704. SPLIT(slen[3], sf, n3)
  705. SPLIT(slen[2], sf, n2)
  706. SPLIT(slen[1], sf, n1)
  707. slen[0] = sf;
  708. }
  709. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  710. int16_t *exponents)
  711. {
  712. const uint8_t *bstab, *pretab;
  713. int len, i, j, k, l, v0, shift, gain, gains[3];
  714. int16_t *exp_ptr;
  715. exp_ptr = exponents;
  716. gain = g->global_gain - 210;
  717. shift = g->scalefac_scale + 1;
  718. bstab = band_size_long[s->sample_rate_index];
  719. pretab = mpa_pretab[g->preflag];
  720. for (i = 0; i < g->long_end; i++) {
  721. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  722. len = bstab[i];
  723. for (j = len; j > 0; j--)
  724. *exp_ptr++ = v0;
  725. }
  726. if (g->short_start < 13) {
  727. bstab = band_size_short[s->sample_rate_index];
  728. gains[0] = gain - (g->subblock_gain[0] << 3);
  729. gains[1] = gain - (g->subblock_gain[1] << 3);
  730. gains[2] = gain - (g->subblock_gain[2] << 3);
  731. k = g->long_end;
  732. for (i = g->short_start; i < 13; i++) {
  733. len = bstab[i];
  734. for (l = 0; l < 3; l++) {
  735. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  736. for (j = len; j > 0; j--)
  737. *exp_ptr++ = v0;
  738. }
  739. }
  740. }
  741. }
  742. /* handle n = 0 too */
  743. static inline int get_bitsz(GetBitContext *s, int n)
  744. {
  745. return n ? get_bits(s, n) : 0;
  746. }
  747. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  748. int *end_pos2)
  749. {
  750. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  751. s->gb = s->in_gb;
  752. s->in_gb.buffer = NULL;
  753. av_assert2((get_bits_count(&s->gb) & 7) == 0);
  754. skip_bits_long(&s->gb, *pos - *end_pos);
  755. *end_pos2 =
  756. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  757. *pos = get_bits_count(&s->gb);
  758. }
  759. }
  760. /* Following is a optimized code for
  761. INTFLOAT v = *src
  762. if(get_bits1(&s->gb))
  763. v = -v;
  764. *dst = v;
  765. */
  766. #if CONFIG_FLOAT
  767. #define READ_FLIP_SIGN(dst,src) \
  768. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  769. AV_WN32A(dst, v);
  770. #else
  771. #define READ_FLIP_SIGN(dst,src) \
  772. v = -get_bits1(&s->gb); \
  773. *(dst) = (*(src) ^ v) - v;
  774. #endif
  775. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  776. int16_t *exponents, int end_pos2)
  777. {
  778. int s_index;
  779. int i;
  780. int last_pos, bits_left;
  781. VLC *vlc;
  782. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  783. /* low frequencies (called big values) */
  784. s_index = 0;
  785. for (i = 0; i < 3; i++) {
  786. int j, k, l, linbits;
  787. j = g->region_size[i];
  788. if (j == 0)
  789. continue;
  790. /* select vlc table */
  791. k = g->table_select[i];
  792. l = mpa_huff_data[k][0];
  793. linbits = mpa_huff_data[k][1];
  794. vlc = &huff_vlc[l];
  795. if (!l) {
  796. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  797. s_index += 2 * j;
  798. continue;
  799. }
  800. /* read huffcode and compute each couple */
  801. for (; j > 0; j--) {
  802. int exponent, x, y;
  803. int v;
  804. int pos = get_bits_count(&s->gb);
  805. if (pos >= end_pos){
  806. switch_buffer(s, &pos, &end_pos, &end_pos2);
  807. if (pos >= end_pos)
  808. break;
  809. }
  810. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  811. if (!y) {
  812. g->sb_hybrid[s_index ] =
  813. g->sb_hybrid[s_index+1] = 0;
  814. s_index += 2;
  815. continue;
  816. }
  817. exponent= exponents[s_index];
  818. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  819. i, g->region_size[i] - j, x, y, exponent);
  820. if (y & 16) {
  821. x = y >> 5;
  822. y = y & 0x0f;
  823. if (x < 15) {
  824. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  825. } else {
  826. x += get_bitsz(&s->gb, linbits);
  827. v = l3_unscale(x, exponent);
  828. if (get_bits1(&s->gb))
  829. v = -v;
  830. g->sb_hybrid[s_index] = v;
  831. }
  832. if (y < 15) {
  833. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  834. } else {
  835. y += get_bitsz(&s->gb, linbits);
  836. v = l3_unscale(y, exponent);
  837. if (get_bits1(&s->gb))
  838. v = -v;
  839. g->sb_hybrid[s_index+1] = v;
  840. }
  841. } else {
  842. x = y >> 5;
  843. y = y & 0x0f;
  844. x += y;
  845. if (x < 15) {
  846. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  847. } else {
  848. x += get_bitsz(&s->gb, linbits);
  849. v = l3_unscale(x, exponent);
  850. if (get_bits1(&s->gb))
  851. v = -v;
  852. g->sb_hybrid[s_index+!!y] = v;
  853. }
  854. g->sb_hybrid[s_index + !y] = 0;
  855. }
  856. s_index += 2;
  857. }
  858. }
  859. /* high frequencies */
  860. vlc = &huff_quad_vlc[g->count1table_select];
  861. last_pos = 0;
  862. while (s_index <= 572) {
  863. int pos, code;
  864. pos = get_bits_count(&s->gb);
  865. if (pos >= end_pos) {
  866. if (pos > end_pos2 && last_pos) {
  867. /* some encoders generate an incorrect size for this
  868. part. We must go back into the data */
  869. s_index -= 4;
  870. skip_bits_long(&s->gb, last_pos - pos);
  871. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  872. if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
  873. s_index=0;
  874. break;
  875. }
  876. switch_buffer(s, &pos, &end_pos, &end_pos2);
  877. if (pos >= end_pos)
  878. break;
  879. }
  880. last_pos = pos;
  881. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  882. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  883. g->sb_hybrid[s_index+0] =
  884. g->sb_hybrid[s_index+1] =
  885. g->sb_hybrid[s_index+2] =
  886. g->sb_hybrid[s_index+3] = 0;
  887. while (code) {
  888. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  889. int v;
  890. int pos = s_index + idxtab[code];
  891. code ^= 8 >> idxtab[code];
  892. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  893. }
  894. s_index += 4;
  895. }
  896. /* skip extension bits */
  897. bits_left = end_pos2 - get_bits_count(&s->gb);
  898. if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
  899. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  900. s_index=0;
  901. } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
  902. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  903. s_index = 0;
  904. }
  905. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  906. skip_bits_long(&s->gb, bits_left);
  907. i = get_bits_count(&s->gb);
  908. switch_buffer(s, &i, &end_pos, &end_pos2);
  909. return 0;
  910. }
  911. /* Reorder short blocks from bitstream order to interleaved order. It
  912. would be faster to do it in parsing, but the code would be far more
  913. complicated */
  914. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  915. {
  916. int i, j, len;
  917. INTFLOAT *ptr, *dst, *ptr1;
  918. INTFLOAT tmp[576];
  919. if (g->block_type != 2)
  920. return;
  921. if (g->switch_point) {
  922. if (s->sample_rate_index != 8)
  923. ptr = g->sb_hybrid + 36;
  924. else
  925. ptr = g->sb_hybrid + 72;
  926. } else {
  927. ptr = g->sb_hybrid;
  928. }
  929. for (i = g->short_start; i < 13; i++) {
  930. len = band_size_short[s->sample_rate_index][i];
  931. ptr1 = ptr;
  932. dst = tmp;
  933. for (j = len; j > 0; j--) {
  934. *dst++ = ptr[0*len];
  935. *dst++ = ptr[1*len];
  936. *dst++ = ptr[2*len];
  937. ptr++;
  938. }
  939. ptr += 2 * len;
  940. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  941. }
  942. }
  943. #define ISQRT2 FIXR(0.70710678118654752440)
  944. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  945. {
  946. int i, j, k, l;
  947. int sf_max, sf, len, non_zero_found;
  948. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  949. int non_zero_found_short[3];
  950. /* intensity stereo */
  951. if (s->mode_ext & MODE_EXT_I_STEREO) {
  952. if (!s->lsf) {
  953. is_tab = is_table;
  954. sf_max = 7;
  955. } else {
  956. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  957. sf_max = 16;
  958. }
  959. tab0 = g0->sb_hybrid + 576;
  960. tab1 = g1->sb_hybrid + 576;
  961. non_zero_found_short[0] = 0;
  962. non_zero_found_short[1] = 0;
  963. non_zero_found_short[2] = 0;
  964. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  965. for (i = 12; i >= g1->short_start; i--) {
  966. /* for last band, use previous scale factor */
  967. if (i != 11)
  968. k -= 3;
  969. len = band_size_short[s->sample_rate_index][i];
  970. for (l = 2; l >= 0; l--) {
  971. tab0 -= len;
  972. tab1 -= len;
  973. if (!non_zero_found_short[l]) {
  974. /* test if non zero band. if so, stop doing i-stereo */
  975. for (j = 0; j < len; j++) {
  976. if (tab1[j] != 0) {
  977. non_zero_found_short[l] = 1;
  978. goto found1;
  979. }
  980. }
  981. sf = g1->scale_factors[k + l];
  982. if (sf >= sf_max)
  983. goto found1;
  984. v1 = is_tab[0][sf];
  985. v2 = is_tab[1][sf];
  986. for (j = 0; j < len; j++) {
  987. tmp0 = tab0[j];
  988. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  989. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  990. }
  991. } else {
  992. found1:
  993. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  994. /* lower part of the spectrum : do ms stereo
  995. if enabled */
  996. for (j = 0; j < len; j++) {
  997. tmp0 = tab0[j];
  998. tmp1 = tab1[j];
  999. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1000. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1001. }
  1002. }
  1003. }
  1004. }
  1005. }
  1006. non_zero_found = non_zero_found_short[0] |
  1007. non_zero_found_short[1] |
  1008. non_zero_found_short[2];
  1009. for (i = g1->long_end - 1;i >= 0;i--) {
  1010. len = band_size_long[s->sample_rate_index][i];
  1011. tab0 -= len;
  1012. tab1 -= len;
  1013. /* test if non zero band. if so, stop doing i-stereo */
  1014. if (!non_zero_found) {
  1015. for (j = 0; j < len; j++) {
  1016. if (tab1[j] != 0) {
  1017. non_zero_found = 1;
  1018. goto found2;
  1019. }
  1020. }
  1021. /* for last band, use previous scale factor */
  1022. k = (i == 21) ? 20 : i;
  1023. sf = g1->scale_factors[k];
  1024. if (sf >= sf_max)
  1025. goto found2;
  1026. v1 = is_tab[0][sf];
  1027. v2 = is_tab[1][sf];
  1028. for (j = 0; j < len; j++) {
  1029. tmp0 = tab0[j];
  1030. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1031. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1032. }
  1033. } else {
  1034. found2:
  1035. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1036. /* lower part of the spectrum : do ms stereo
  1037. if enabled */
  1038. for (j = 0; j < len; j++) {
  1039. tmp0 = tab0[j];
  1040. tmp1 = tab1[j];
  1041. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1042. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1043. }
  1044. }
  1045. }
  1046. }
  1047. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1048. /* ms stereo ONLY */
  1049. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1050. global gain */
  1051. #if CONFIG_FLOAT
  1052. s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1053. #else
  1054. tab0 = g0->sb_hybrid;
  1055. tab1 = g1->sb_hybrid;
  1056. for (i = 0; i < 576; i++) {
  1057. tmp0 = tab0[i];
  1058. tmp1 = tab1[i];
  1059. tab0[i] = tmp0 + tmp1;
  1060. tab1[i] = tmp0 - tmp1;
  1061. }
  1062. #endif
  1063. }
  1064. }
  1065. #if CONFIG_FLOAT
  1066. #if HAVE_MIPSFPU
  1067. # include "mips/compute_antialias_float.h"
  1068. #endif /* HAVE_MIPSFPU */
  1069. #else
  1070. #if HAVE_MIPSDSPR1
  1071. # include "mips/compute_antialias_fixed.h"
  1072. #endif /* HAVE_MIPSDSPR1 */
  1073. #endif /* CONFIG_FLOAT */
  1074. #ifndef compute_antialias
  1075. #if CONFIG_FLOAT
  1076. #define AA(j) do { \
  1077. float tmp0 = ptr[-1-j]; \
  1078. float tmp1 = ptr[ j]; \
  1079. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1080. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1081. } while (0)
  1082. #else
  1083. #define AA(j) do { \
  1084. int tmp0 = ptr[-1-j]; \
  1085. int tmp1 = ptr[ j]; \
  1086. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1087. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1088. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1089. } while (0)
  1090. #endif
  1091. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1092. {
  1093. INTFLOAT *ptr;
  1094. int n, i;
  1095. /* we antialias only "long" bands */
  1096. if (g->block_type == 2) {
  1097. if (!g->switch_point)
  1098. return;
  1099. /* XXX: check this for 8000Hz case */
  1100. n = 1;
  1101. } else {
  1102. n = SBLIMIT - 1;
  1103. }
  1104. ptr = g->sb_hybrid + 18;
  1105. for (i = n; i > 0; i--) {
  1106. AA(0);
  1107. AA(1);
  1108. AA(2);
  1109. AA(3);
  1110. AA(4);
  1111. AA(5);
  1112. AA(6);
  1113. AA(7);
  1114. ptr += 18;
  1115. }
  1116. }
  1117. #endif /* compute_antialias */
  1118. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1119. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1120. {
  1121. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1122. INTFLOAT out2[12];
  1123. int i, j, mdct_long_end, sblimit;
  1124. /* find last non zero block */
  1125. ptr = g->sb_hybrid + 576;
  1126. ptr1 = g->sb_hybrid + 2 * 18;
  1127. while (ptr >= ptr1) {
  1128. int32_t *p;
  1129. ptr -= 6;
  1130. p = (int32_t*)ptr;
  1131. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1132. break;
  1133. }
  1134. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1135. if (g->block_type == 2) {
  1136. /* XXX: check for 8000 Hz */
  1137. if (g->switch_point)
  1138. mdct_long_end = 2;
  1139. else
  1140. mdct_long_end = 0;
  1141. } else {
  1142. mdct_long_end = sblimit;
  1143. }
  1144. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1145. mdct_long_end, g->switch_point,
  1146. g->block_type);
  1147. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1148. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1149. for (j = mdct_long_end; j < sblimit; j++) {
  1150. /* select frequency inversion */
  1151. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1152. out_ptr = sb_samples + j;
  1153. for (i = 0; i < 6; i++) {
  1154. *out_ptr = buf[4*i];
  1155. out_ptr += SBLIMIT;
  1156. }
  1157. imdct12(out2, ptr + 0);
  1158. for (i = 0; i < 6; i++) {
  1159. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1160. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1161. out_ptr += SBLIMIT;
  1162. }
  1163. imdct12(out2, ptr + 1);
  1164. for (i = 0; i < 6; i++) {
  1165. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1166. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1167. out_ptr += SBLIMIT;
  1168. }
  1169. imdct12(out2, ptr + 2);
  1170. for (i = 0; i < 6; i++) {
  1171. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1172. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1173. buf[4*(i + 6*2)] = 0;
  1174. }
  1175. ptr += 18;
  1176. buf += (j&3) != 3 ? 1 : (4*18-3);
  1177. }
  1178. /* zero bands */
  1179. for (j = sblimit; j < SBLIMIT; j++) {
  1180. /* overlap */
  1181. out_ptr = sb_samples + j;
  1182. for (i = 0; i < 18; i++) {
  1183. *out_ptr = buf[4*i];
  1184. buf[4*i] = 0;
  1185. out_ptr += SBLIMIT;
  1186. }
  1187. buf += (j&3) != 3 ? 1 : (4*18-3);
  1188. }
  1189. }
  1190. /* main layer3 decoding function */
  1191. static int mp_decode_layer3(MPADecodeContext *s)
  1192. {
  1193. int nb_granules, main_data_begin;
  1194. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1195. GranuleDef *g;
  1196. int16_t exponents[576]; //FIXME try INTFLOAT
  1197. /* read side info */
  1198. if (s->lsf) {
  1199. main_data_begin = get_bits(&s->gb, 8);
  1200. skip_bits(&s->gb, s->nb_channels);
  1201. nb_granules = 1;
  1202. } else {
  1203. main_data_begin = get_bits(&s->gb, 9);
  1204. if (s->nb_channels == 2)
  1205. skip_bits(&s->gb, 3);
  1206. else
  1207. skip_bits(&s->gb, 5);
  1208. nb_granules = 2;
  1209. for (ch = 0; ch < s->nb_channels; ch++) {
  1210. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1211. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1212. }
  1213. }
  1214. for (gr = 0; gr < nb_granules; gr++) {
  1215. for (ch = 0; ch < s->nb_channels; ch++) {
  1216. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1217. g = &s->granules[ch][gr];
  1218. g->part2_3_length = get_bits(&s->gb, 12);
  1219. g->big_values = get_bits(&s->gb, 9);
  1220. if (g->big_values > 288) {
  1221. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1222. return AVERROR_INVALIDDATA;
  1223. }
  1224. g->global_gain = get_bits(&s->gb, 8);
  1225. /* if MS stereo only is selected, we precompute the
  1226. 1/sqrt(2) renormalization factor */
  1227. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1228. MODE_EXT_MS_STEREO)
  1229. g->global_gain -= 2;
  1230. if (s->lsf)
  1231. g->scalefac_compress = get_bits(&s->gb, 9);
  1232. else
  1233. g->scalefac_compress = get_bits(&s->gb, 4);
  1234. blocksplit_flag = get_bits1(&s->gb);
  1235. if (blocksplit_flag) {
  1236. g->block_type = get_bits(&s->gb, 2);
  1237. if (g->block_type == 0) {
  1238. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1239. return AVERROR_INVALIDDATA;
  1240. }
  1241. g->switch_point = get_bits1(&s->gb);
  1242. for (i = 0; i < 2; i++)
  1243. g->table_select[i] = get_bits(&s->gb, 5);
  1244. for (i = 0; i < 3; i++)
  1245. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1246. ff_init_short_region(s, g);
  1247. } else {
  1248. int region_address1, region_address2;
  1249. g->block_type = 0;
  1250. g->switch_point = 0;
  1251. for (i = 0; i < 3; i++)
  1252. g->table_select[i] = get_bits(&s->gb, 5);
  1253. /* compute huffman coded region sizes */
  1254. region_address1 = get_bits(&s->gb, 4);
  1255. region_address2 = get_bits(&s->gb, 3);
  1256. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1257. region_address1, region_address2);
  1258. ff_init_long_region(s, g, region_address1, region_address2);
  1259. }
  1260. ff_region_offset2size(g);
  1261. ff_compute_band_indexes(s, g);
  1262. g->preflag = 0;
  1263. if (!s->lsf)
  1264. g->preflag = get_bits1(&s->gb);
  1265. g->scalefac_scale = get_bits1(&s->gb);
  1266. g->count1table_select = get_bits1(&s->gb);
  1267. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1268. g->block_type, g->switch_point);
  1269. }
  1270. }
  1271. if (!s->adu_mode) {
  1272. int skip;
  1273. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1274. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
  1275. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1276. /* now we get bits from the main_data_begin offset */
  1277. av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1278. main_data_begin, s->last_buf_size);
  1279. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1280. s->in_gb = s->gb;
  1281. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1282. #if !UNCHECKED_BITSTREAM_READER
  1283. s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
  1284. #endif
  1285. s->last_buf_size <<= 3;
  1286. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1287. for (ch = 0; ch < s->nb_channels; ch++) {
  1288. g = &s->granules[ch][gr];
  1289. s->last_buf_size += g->part2_3_length;
  1290. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1291. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1292. }
  1293. }
  1294. skip = s->last_buf_size - 8 * main_data_begin;
  1295. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1296. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1297. s->gb = s->in_gb;
  1298. s->in_gb.buffer = NULL;
  1299. } else {
  1300. skip_bits_long(&s->gb, skip);
  1301. }
  1302. } else {
  1303. gr = 0;
  1304. }
  1305. for (; gr < nb_granules; gr++) {
  1306. for (ch = 0; ch < s->nb_channels; ch++) {
  1307. g = &s->granules[ch][gr];
  1308. bits_pos = get_bits_count(&s->gb);
  1309. if (!s->lsf) {
  1310. uint8_t *sc;
  1311. int slen, slen1, slen2;
  1312. /* MPEG1 scale factors */
  1313. slen1 = slen_table[0][g->scalefac_compress];
  1314. slen2 = slen_table[1][g->scalefac_compress];
  1315. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1316. if (g->block_type == 2) {
  1317. n = g->switch_point ? 17 : 18;
  1318. j = 0;
  1319. if (slen1) {
  1320. for (i = 0; i < n; i++)
  1321. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1322. } else {
  1323. for (i = 0; i < n; i++)
  1324. g->scale_factors[j++] = 0;
  1325. }
  1326. if (slen2) {
  1327. for (i = 0; i < 18; i++)
  1328. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1329. for (i = 0; i < 3; i++)
  1330. g->scale_factors[j++] = 0;
  1331. } else {
  1332. for (i = 0; i < 21; i++)
  1333. g->scale_factors[j++] = 0;
  1334. }
  1335. } else {
  1336. sc = s->granules[ch][0].scale_factors;
  1337. j = 0;
  1338. for (k = 0; k < 4; k++) {
  1339. n = k == 0 ? 6 : 5;
  1340. if ((g->scfsi & (0x8 >> k)) == 0) {
  1341. slen = (k < 2) ? slen1 : slen2;
  1342. if (slen) {
  1343. for (i = 0; i < n; i++)
  1344. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1345. } else {
  1346. for (i = 0; i < n; i++)
  1347. g->scale_factors[j++] = 0;
  1348. }
  1349. } else {
  1350. /* simply copy from last granule */
  1351. for (i = 0; i < n; i++) {
  1352. g->scale_factors[j] = sc[j];
  1353. j++;
  1354. }
  1355. }
  1356. }
  1357. g->scale_factors[j++] = 0;
  1358. }
  1359. } else {
  1360. int tindex, tindex2, slen[4], sl, sf;
  1361. /* LSF scale factors */
  1362. if (g->block_type == 2)
  1363. tindex = g->switch_point ? 2 : 1;
  1364. else
  1365. tindex = 0;
  1366. sf = g->scalefac_compress;
  1367. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1368. /* intensity stereo case */
  1369. sf >>= 1;
  1370. if (sf < 180) {
  1371. lsf_sf_expand(slen, sf, 6, 6, 0);
  1372. tindex2 = 3;
  1373. } else if (sf < 244) {
  1374. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1375. tindex2 = 4;
  1376. } else {
  1377. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1378. tindex2 = 5;
  1379. }
  1380. } else {
  1381. /* normal case */
  1382. if (sf < 400) {
  1383. lsf_sf_expand(slen, sf, 5, 4, 4);
  1384. tindex2 = 0;
  1385. } else if (sf < 500) {
  1386. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1387. tindex2 = 1;
  1388. } else {
  1389. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1390. tindex2 = 2;
  1391. g->preflag = 1;
  1392. }
  1393. }
  1394. j = 0;
  1395. for (k = 0; k < 4; k++) {
  1396. n = lsf_nsf_table[tindex2][tindex][k];
  1397. sl = slen[k];
  1398. if (sl) {
  1399. for (i = 0; i < n; i++)
  1400. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1401. } else {
  1402. for (i = 0; i < n; i++)
  1403. g->scale_factors[j++] = 0;
  1404. }
  1405. }
  1406. /* XXX: should compute exact size */
  1407. for (; j < 40; j++)
  1408. g->scale_factors[j] = 0;
  1409. }
  1410. exponents_from_scale_factors(s, g, exponents);
  1411. /* read Huffman coded residue */
  1412. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1413. } /* ch */
  1414. if (s->mode == MPA_JSTEREO)
  1415. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1416. for (ch = 0; ch < s->nb_channels; ch++) {
  1417. g = &s->granules[ch][gr];
  1418. reorder_block(s, g);
  1419. compute_antialias(s, g);
  1420. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1421. }
  1422. } /* gr */
  1423. if (get_bits_count(&s->gb) < 0)
  1424. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1425. return nb_granules * 18;
  1426. }
  1427. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1428. const uint8_t *buf, int buf_size)
  1429. {
  1430. int i, nb_frames, ch, ret;
  1431. OUT_INT *samples_ptr;
  1432. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1433. /* skip error protection field */
  1434. if (s->error_protection)
  1435. skip_bits(&s->gb, 16);
  1436. switch(s->layer) {
  1437. case 1:
  1438. s->avctx->frame_size = 384;
  1439. nb_frames = mp_decode_layer1(s);
  1440. break;
  1441. case 2:
  1442. s->avctx->frame_size = 1152;
  1443. nb_frames = mp_decode_layer2(s);
  1444. break;
  1445. case 3:
  1446. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1447. default:
  1448. nb_frames = mp_decode_layer3(s);
  1449. s->last_buf_size=0;
  1450. if (s->in_gb.buffer) {
  1451. align_get_bits(&s->gb);
  1452. i = get_bits_left(&s->gb)>>3;
  1453. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1454. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1455. s->last_buf_size=i;
  1456. } else
  1457. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1458. s->gb = s->in_gb;
  1459. s->in_gb.buffer = NULL;
  1460. }
  1461. align_get_bits(&s->gb);
  1462. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1463. i = get_bits_left(&s->gb) >> 3;
  1464. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1465. if (i < 0)
  1466. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1467. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1468. }
  1469. av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
  1470. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1471. s->last_buf_size += i;
  1472. }
  1473. if(nb_frames < 0)
  1474. return nb_frames;
  1475. /* get output buffer */
  1476. if (!samples) {
  1477. av_assert0(s->frame != NULL);
  1478. s->frame->nb_samples = s->avctx->frame_size;
  1479. if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
  1480. return ret;
  1481. samples = (OUT_INT **)s->frame->extended_data;
  1482. }
  1483. /* apply the synthesis filter */
  1484. for (ch = 0; ch < s->nb_channels; ch++) {
  1485. int sample_stride;
  1486. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1487. samples_ptr = samples[ch];
  1488. sample_stride = 1;
  1489. } else {
  1490. samples_ptr = samples[0] + ch;
  1491. sample_stride = s->nb_channels;
  1492. }
  1493. for (i = 0; i < nb_frames; i++) {
  1494. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1495. &(s->synth_buf_offset[ch]),
  1496. RENAME(ff_mpa_synth_window),
  1497. &s->dither_state, samples_ptr,
  1498. sample_stride, s->sb_samples[ch][i]);
  1499. samples_ptr += 32 * sample_stride;
  1500. }
  1501. }
  1502. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1503. }
  1504. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1505. AVPacket *avpkt)
  1506. {
  1507. const uint8_t *buf = avpkt->data;
  1508. int buf_size = avpkt->size;
  1509. MPADecodeContext *s = avctx->priv_data;
  1510. uint32_t header;
  1511. int ret;
  1512. while(buf_size && !*buf){
  1513. buf++;
  1514. buf_size--;
  1515. }
  1516. if (buf_size < HEADER_SIZE)
  1517. return AVERROR_INVALIDDATA;
  1518. header = AV_RB32(buf);
  1519. if (header>>8 == AV_RB32("TAG")>>8) {
  1520. av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
  1521. return buf_size;
  1522. }
  1523. if (ff_mpa_check_header(header) < 0) {
  1524. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1525. return AVERROR_INVALIDDATA;
  1526. }
  1527. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1528. /* free format: prepare to compute frame size */
  1529. s->frame_size = -1;
  1530. return AVERROR_INVALIDDATA;
  1531. }
  1532. /* update codec info */
  1533. avctx->channels = s->nb_channels;
  1534. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1535. if (!avctx->bit_rate)
  1536. avctx->bit_rate = s->bit_rate;
  1537. if (s->frame_size <= 0 || s->frame_size > buf_size) {
  1538. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1539. return AVERROR_INVALIDDATA;
  1540. } else if (s->frame_size < buf_size) {
  1541. av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
  1542. buf_size= s->frame_size;
  1543. }
  1544. s->frame = data;
  1545. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1546. if (ret >= 0) {
  1547. s->frame->nb_samples = avctx->frame_size;
  1548. *got_frame_ptr = 1;
  1549. avctx->sample_rate = s->sample_rate;
  1550. //FIXME maybe move the other codec info stuff from above here too
  1551. } else {
  1552. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1553. /* Only return an error if the bad frame makes up the whole packet or
  1554. * the error is related to buffer management.
  1555. * If there is more data in the packet, just consume the bad frame
  1556. * instead of returning an error, which would discard the whole
  1557. * packet. */
  1558. *got_frame_ptr = 0;
  1559. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1560. return ret;
  1561. }
  1562. s->frame_size = 0;
  1563. return buf_size;
  1564. }
  1565. static void mp_flush(MPADecodeContext *ctx)
  1566. {
  1567. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1568. ctx->last_buf_size = 0;
  1569. }
  1570. static void flush(AVCodecContext *avctx)
  1571. {
  1572. mp_flush(avctx->priv_data);
  1573. }
  1574. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1575. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1576. int *got_frame_ptr, AVPacket *avpkt)
  1577. {
  1578. const uint8_t *buf = avpkt->data;
  1579. int buf_size = avpkt->size;
  1580. MPADecodeContext *s = avctx->priv_data;
  1581. uint32_t header;
  1582. int len, ret;
  1583. int av_unused out_size;
  1584. len = buf_size;
  1585. // Discard too short frames
  1586. if (buf_size < HEADER_SIZE) {
  1587. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1588. return AVERROR_INVALIDDATA;
  1589. }
  1590. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1591. len = MPA_MAX_CODED_FRAME_SIZE;
  1592. // Get header and restore sync word
  1593. header = AV_RB32(buf) | 0xffe00000;
  1594. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1595. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1596. return AVERROR_INVALIDDATA;
  1597. }
  1598. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1599. /* update codec info */
  1600. avctx->sample_rate = s->sample_rate;
  1601. avctx->channels = s->nb_channels;
  1602. if (!avctx->bit_rate)
  1603. avctx->bit_rate = s->bit_rate;
  1604. s->frame_size = len;
  1605. s->frame = data;
  1606. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1607. if (ret < 0) {
  1608. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1609. return ret;
  1610. }
  1611. *got_frame_ptr = 1;
  1612. return buf_size;
  1613. }
  1614. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1615. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1616. /**
  1617. * Context for MP3On4 decoder
  1618. */
  1619. typedef struct MP3On4DecodeContext {
  1620. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1621. int syncword; ///< syncword patch
  1622. const uint8_t *coff; ///< channel offsets in output buffer
  1623. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1624. } MP3On4DecodeContext;
  1625. #include "mpeg4audio.h"
  1626. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1627. /* number of mp3 decoder instances */
  1628. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1629. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1630. static const uint8_t chan_offset[8][5] = {
  1631. { 0 },
  1632. { 0 }, // C
  1633. { 0 }, // FLR
  1634. { 2, 0 }, // C FLR
  1635. { 2, 0, 3 }, // C FLR BS
  1636. { 2, 0, 3 }, // C FLR BLRS
  1637. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1638. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1639. };
  1640. /* mp3on4 channel layouts */
  1641. static const int16_t chan_layout[8] = {
  1642. 0,
  1643. AV_CH_LAYOUT_MONO,
  1644. AV_CH_LAYOUT_STEREO,
  1645. AV_CH_LAYOUT_SURROUND,
  1646. AV_CH_LAYOUT_4POINT0,
  1647. AV_CH_LAYOUT_5POINT0,
  1648. AV_CH_LAYOUT_5POINT1,
  1649. AV_CH_LAYOUT_7POINT1
  1650. };
  1651. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1652. {
  1653. MP3On4DecodeContext *s = avctx->priv_data;
  1654. int i;
  1655. for (i = 0; i < s->frames; i++)
  1656. av_free(s->mp3decctx[i]);
  1657. return 0;
  1658. }
  1659. static int decode_init_mp3on4(AVCodecContext * avctx)
  1660. {
  1661. MP3On4DecodeContext *s = avctx->priv_data;
  1662. MPEG4AudioConfig cfg;
  1663. int i;
  1664. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1665. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1666. return AVERROR_INVALIDDATA;
  1667. }
  1668. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1669. avctx->extradata_size * 8, 1);
  1670. if (!cfg.chan_config || cfg.chan_config > 7) {
  1671. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1672. return AVERROR_INVALIDDATA;
  1673. }
  1674. s->frames = mp3Frames[cfg.chan_config];
  1675. s->coff = chan_offset[cfg.chan_config];
  1676. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1677. avctx->channel_layout = chan_layout[cfg.chan_config];
  1678. if (cfg.sample_rate < 16000)
  1679. s->syncword = 0xffe00000;
  1680. else
  1681. s->syncword = 0xfff00000;
  1682. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1683. * We replace avctx->priv_data with the context of the first decoder so that
  1684. * decode_init() does not have to be changed.
  1685. * Other decoders will be initialized here copying data from the first context
  1686. */
  1687. // Allocate zeroed memory for the first decoder context
  1688. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1689. if (!s->mp3decctx[0])
  1690. goto alloc_fail;
  1691. // Put decoder context in place to make init_decode() happy
  1692. avctx->priv_data = s->mp3decctx[0];
  1693. decode_init(avctx);
  1694. // Restore mp3on4 context pointer
  1695. avctx->priv_data = s;
  1696. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1697. /* Create a separate codec/context for each frame (first is already ok).
  1698. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1699. */
  1700. for (i = 1; i < s->frames; i++) {
  1701. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1702. if (!s->mp3decctx[i])
  1703. goto alloc_fail;
  1704. s->mp3decctx[i]->adu_mode = 1;
  1705. s->mp3decctx[i]->avctx = avctx;
  1706. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1707. }
  1708. return 0;
  1709. alloc_fail:
  1710. decode_close_mp3on4(avctx);
  1711. return AVERROR(ENOMEM);
  1712. }
  1713. static void flush_mp3on4(AVCodecContext *avctx)
  1714. {
  1715. int i;
  1716. MP3On4DecodeContext *s = avctx->priv_data;
  1717. for (i = 0; i < s->frames; i++)
  1718. mp_flush(s->mp3decctx[i]);
  1719. }
  1720. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1721. int *got_frame_ptr, AVPacket *avpkt)
  1722. {
  1723. AVFrame *frame = data;
  1724. const uint8_t *buf = avpkt->data;
  1725. int buf_size = avpkt->size;
  1726. MP3On4DecodeContext *s = avctx->priv_data;
  1727. MPADecodeContext *m;
  1728. int fsize, len = buf_size, out_size = 0;
  1729. uint32_t header;
  1730. OUT_INT **out_samples;
  1731. OUT_INT *outptr[2];
  1732. int fr, ch, ret;
  1733. /* get output buffer */
  1734. frame->nb_samples = MPA_FRAME_SIZE;
  1735. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1736. return ret;
  1737. out_samples = (OUT_INT **)frame->extended_data;
  1738. // Discard too short frames
  1739. if (buf_size < HEADER_SIZE)
  1740. return AVERROR_INVALIDDATA;
  1741. avctx->bit_rate = 0;
  1742. ch = 0;
  1743. for (fr = 0; fr < s->frames; fr++) {
  1744. fsize = AV_RB16(buf) >> 4;
  1745. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1746. m = s->mp3decctx[fr];
  1747. av_assert1(m);
  1748. if (fsize < HEADER_SIZE) {
  1749. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1750. return AVERROR_INVALIDDATA;
  1751. }
  1752. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1753. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1754. break;
  1755. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1756. if (ch + m->nb_channels > avctx->channels || s->coff[fr] + m->nb_channels > avctx->channels) {
  1757. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1758. "channel count\n");
  1759. return AVERROR_INVALIDDATA;
  1760. }
  1761. ch += m->nb_channels;
  1762. outptr[0] = out_samples[s->coff[fr]];
  1763. if (m->nb_channels > 1)
  1764. outptr[1] = out_samples[s->coff[fr] + 1];
  1765. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
  1766. return ret;
  1767. out_size += ret;
  1768. buf += fsize;
  1769. len -= fsize;
  1770. avctx->bit_rate += m->bit_rate;
  1771. }
  1772. /* update codec info */
  1773. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1774. frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1775. *got_frame_ptr = 1;
  1776. return buf_size;
  1777. }
  1778. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1779. #if !CONFIG_FLOAT
  1780. #if CONFIG_MP1_DECODER
  1781. AVCodec ff_mp1_decoder = {
  1782. .name = "mp1",
  1783. .type = AVMEDIA_TYPE_AUDIO,
  1784. .id = AV_CODEC_ID_MP1,
  1785. .priv_data_size = sizeof(MPADecodeContext),
  1786. .init = decode_init,
  1787. .decode = decode_frame,
  1788. .capabilities = CODEC_CAP_DR1,
  1789. .flush = flush,
  1790. .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1791. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1792. AV_SAMPLE_FMT_S16,
  1793. AV_SAMPLE_FMT_NONE },
  1794. };
  1795. #endif
  1796. #if CONFIG_MP2_DECODER
  1797. AVCodec ff_mp2_decoder = {
  1798. .name = "mp2",
  1799. .type = AVMEDIA_TYPE_AUDIO,
  1800. .id = AV_CODEC_ID_MP2,
  1801. .priv_data_size = sizeof(MPADecodeContext),
  1802. .init = decode_init,
  1803. .decode = decode_frame,
  1804. .capabilities = CODEC_CAP_DR1,
  1805. .flush = flush,
  1806. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1807. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1808. AV_SAMPLE_FMT_S16,
  1809. AV_SAMPLE_FMT_NONE },
  1810. };
  1811. #endif
  1812. #if CONFIG_MP3_DECODER
  1813. AVCodec ff_mp3_decoder = {
  1814. .name = "mp3",
  1815. .type = AVMEDIA_TYPE_AUDIO,
  1816. .id = AV_CODEC_ID_MP3,
  1817. .priv_data_size = sizeof(MPADecodeContext),
  1818. .init = decode_init,
  1819. .decode = decode_frame,
  1820. .capabilities = CODEC_CAP_DR1,
  1821. .flush = flush,
  1822. .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  1823. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1824. AV_SAMPLE_FMT_S16,
  1825. AV_SAMPLE_FMT_NONE },
  1826. };
  1827. #endif
  1828. #if CONFIG_MP3ADU_DECODER
  1829. AVCodec ff_mp3adu_decoder = {
  1830. .name = "mp3adu",
  1831. .type = AVMEDIA_TYPE_AUDIO,
  1832. .id = AV_CODEC_ID_MP3ADU,
  1833. .priv_data_size = sizeof(MPADecodeContext),
  1834. .init = decode_init,
  1835. .decode = decode_frame_adu,
  1836. .capabilities = CODEC_CAP_DR1,
  1837. .flush = flush,
  1838. .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  1839. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1840. AV_SAMPLE_FMT_S16,
  1841. AV_SAMPLE_FMT_NONE },
  1842. };
  1843. #endif
  1844. #if CONFIG_MP3ON4_DECODER
  1845. AVCodec ff_mp3on4_decoder = {
  1846. .name = "mp3on4",
  1847. .type = AVMEDIA_TYPE_AUDIO,
  1848. .id = AV_CODEC_ID_MP3ON4,
  1849. .priv_data_size = sizeof(MP3On4DecodeContext),
  1850. .init = decode_init_mp3on4,
  1851. .close = decode_close_mp3on4,
  1852. .decode = decode_frame_mp3on4,
  1853. .capabilities = CODEC_CAP_DR1,
  1854. .flush = flush_mp3on4,
  1855. .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
  1856. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1857. AV_SAMPLE_FMT_NONE },
  1858. };
  1859. #endif
  1860. #endif