You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

702 lines
21KB

  1. /*
  2. * Copyright (c) 2012 Konstantin Shishkov
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * Common functions for Microsoft Screen 1 and 2
  23. */
  24. #include "libavutil/intfloat.h"
  25. #include "libavutil/intreadwrite.h"
  26. #include "avcodec.h"
  27. #include "mss12.h"
  28. enum SplitMode {
  29. SPLIT_VERT = 0,
  30. SPLIT_HOR,
  31. SPLIT_NONE
  32. };
  33. static const int sec_order_sizes[4] = { 1, 7, 6, 1 };
  34. enum ContextDirection {
  35. TOP_LEFT = 0,
  36. TOP,
  37. TOP_RIGHT,
  38. LEFT
  39. };
  40. static int model_calc_threshold(Model *m)
  41. {
  42. int thr;
  43. thr = 2 * m->weights[m->num_syms] - 1;
  44. thr = ((thr >> 1) + 4 * m->cum_prob[0]) / thr;
  45. return FFMIN(thr, 0x3FFF);
  46. }
  47. static void model_reset(Model *m)
  48. {
  49. int i;
  50. for (i = 0; i <= m->num_syms; i++) {
  51. m->weights[i] = 1;
  52. m->cum_prob[i] = m->num_syms - i;
  53. }
  54. m->weights[0] = -1;
  55. m->idx2sym[0] = -1;
  56. m->sym2idx[m->num_syms] = -1;
  57. for (i = 0; i < m->num_syms; i++) {
  58. m->sym2idx[i] = i + 1;
  59. m->idx2sym[i + 1] = i;
  60. }
  61. }
  62. static av_cold void model_init(Model *m, int num_syms, int thr_weight)
  63. {
  64. m->num_syms = num_syms;
  65. m->thr_weight = thr_weight;
  66. m->threshold = num_syms * thr_weight;
  67. model_reset(m);
  68. }
  69. static void model_rescale_weights(Model *m)
  70. {
  71. int i;
  72. int cum_prob;
  73. if (m->thr_weight == THRESH_ADAPTIVE)
  74. m->threshold = model_calc_threshold(m);
  75. while (m->cum_prob[0] > m->threshold) {
  76. cum_prob = 0;
  77. for (i = m->num_syms; i >= 0; i--) {
  78. m->cum_prob[i] = cum_prob;
  79. m->weights[i] = (m->weights[i] + 1) >> 1;
  80. cum_prob += m->weights[i];
  81. }
  82. }
  83. }
  84. void ff_mss12_model_update(Model *m, int val)
  85. {
  86. int i;
  87. if (m->weights[val] == m->weights[val - 1]) {
  88. for (i = val; m->weights[i - 1] == m->weights[val]; i--);
  89. if (i != val) {
  90. int sym1, sym2;
  91. sym1 = m->idx2sym[val];
  92. sym2 = m->idx2sym[i];
  93. m->idx2sym[val] = sym2;
  94. m->idx2sym[i] = sym1;
  95. m->sym2idx[sym1] = i;
  96. m->sym2idx[sym2] = val;
  97. val = i;
  98. }
  99. }
  100. m->weights[val]++;
  101. for (i = val - 1; i >= 0; i--)
  102. m->cum_prob[i]++;
  103. model_rescale_weights(m);
  104. }
  105. static void pixctx_reset(PixContext *ctx)
  106. {
  107. int i, j, k;
  108. if (!ctx->special_initial_cache)
  109. for (i = 0; i < ctx->cache_size; i++)
  110. ctx->cache[i] = i;
  111. else {
  112. ctx->cache[0] = 1;
  113. ctx->cache[1] = 2;
  114. ctx->cache[2] = 4;
  115. }
  116. model_reset(&ctx->cache_model);
  117. model_reset(&ctx->full_model);
  118. for (i = 0; i < 4; i++)
  119. for (j = 0; j < sec_order_sizes[i]; j++)
  120. for (k = 0; k < 4; k++)
  121. model_reset(&ctx->sec_models[i][j][k]);
  122. }
  123. static av_cold void pixctx_init(PixContext *ctx, int cache_size,
  124. int full_model_syms, int special_initial_cache)
  125. {
  126. int i, j, k;
  127. ctx->cache_size = cache_size + 4;
  128. ctx->num_syms = cache_size;
  129. ctx->special_initial_cache = special_initial_cache;
  130. model_init(&ctx->cache_model, ctx->num_syms + 1, THRESH_LOW);
  131. model_init(&ctx->full_model, full_model_syms, THRESH_HIGH);
  132. for (i = 0; i < 4; i++)
  133. for (j = 0; j < sec_order_sizes[i]; j++)
  134. for (k = 0; k < 4; k++)
  135. model_init(&ctx->sec_models[i][j][k], 2 + i,
  136. i ? THRESH_LOW : THRESH_ADAPTIVE);
  137. }
  138. static int decode_top_left_pixel(ArithCoder *acoder, PixContext *pctx)
  139. {
  140. int i, val, pix;
  141. val = acoder->get_model_sym(acoder, &pctx->cache_model);
  142. if (val < pctx->num_syms) {
  143. pix = pctx->cache[val];
  144. } else {
  145. pix = acoder->get_model_sym(acoder, &pctx->full_model);
  146. for (i = 0; i < pctx->cache_size - 1; i++)
  147. if (pctx->cache[i] == pix)
  148. break;
  149. val = i;
  150. }
  151. if (val) {
  152. for (i = val; i > 0; i--)
  153. pctx->cache[i] = pctx->cache[i - 1];
  154. pctx->cache[0] = pix;
  155. }
  156. return pix;
  157. }
  158. static int decode_pixel(ArithCoder *acoder, PixContext *pctx,
  159. uint8_t *ngb, int num_ngb)
  160. {
  161. int i, val, pix;
  162. val = acoder->get_model_sym(acoder, &pctx->cache_model);
  163. if (val < pctx->num_syms) {
  164. int idx, j;
  165. idx = 0;
  166. for (i = 0; i < pctx->cache_size; i++) {
  167. for (j = 0; j < num_ngb; j++)
  168. if (pctx->cache[i] == ngb[j])
  169. break;
  170. if (j == num_ngb) {
  171. if (idx == val)
  172. break;
  173. idx++;
  174. }
  175. }
  176. val = FFMIN(i, pctx->cache_size - 1);
  177. pix = pctx->cache[val];
  178. } else {
  179. pix = acoder->get_model_sym(acoder, &pctx->full_model);
  180. for (i = 0; i < pctx->cache_size - 1; i++)
  181. if (pctx->cache[i] == pix)
  182. break;
  183. val = i;
  184. }
  185. if (val) {
  186. for (i = val; i > 0; i--)
  187. pctx->cache[i] = pctx->cache[i - 1];
  188. pctx->cache[0] = pix;
  189. }
  190. return pix;
  191. }
  192. static int decode_pixel_in_context(ArithCoder *acoder, PixContext *pctx,
  193. uint8_t *src, int stride, int x, int y,
  194. int has_right)
  195. {
  196. uint8_t neighbours[4];
  197. uint8_t ref_pix[4];
  198. int nlen;
  199. int layer = 0, sub;
  200. int pix;
  201. int i, j;
  202. if (!y) {
  203. memset(neighbours, src[-1], 4);
  204. } else {
  205. neighbours[TOP] = src[-stride];
  206. if (!x) {
  207. neighbours[TOP_LEFT] = neighbours[LEFT] = neighbours[TOP];
  208. } else {
  209. neighbours[TOP_LEFT] = src[-stride - 1];
  210. neighbours[ LEFT] = src[-1];
  211. }
  212. if (has_right)
  213. neighbours[TOP_RIGHT] = src[-stride + 1];
  214. else
  215. neighbours[TOP_RIGHT] = neighbours[TOP];
  216. }
  217. sub = 0;
  218. if (x >= 2 && src[-2] == neighbours[LEFT])
  219. sub = 1;
  220. if (y >= 2 && src[-2 * stride] == neighbours[TOP])
  221. sub |= 2;
  222. nlen = 1;
  223. ref_pix[0] = neighbours[0];
  224. for (i = 1; i < 4; i++) {
  225. for (j = 0; j < nlen; j++)
  226. if (ref_pix[j] == neighbours[i])
  227. break;
  228. if (j == nlen)
  229. ref_pix[nlen++] = neighbours[i];
  230. }
  231. switch (nlen) {
  232. case 1:
  233. case 4:
  234. layer = 0;
  235. break;
  236. case 2:
  237. if (neighbours[TOP] == neighbours[TOP_LEFT]) {
  238. if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
  239. layer = 3;
  240. else if (neighbours[LEFT] == neighbours[TOP_LEFT])
  241. layer = 2;
  242. else
  243. layer = 4;
  244. } else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT]) {
  245. if (neighbours[LEFT] == neighbours[TOP_LEFT])
  246. layer = 1;
  247. else
  248. layer = 5;
  249. } else if (neighbours[LEFT] == neighbours[TOP_LEFT]) {
  250. layer = 6;
  251. } else {
  252. layer = 0;
  253. }
  254. break;
  255. case 3:
  256. if (neighbours[TOP] == neighbours[TOP_LEFT])
  257. layer = 0;
  258. else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
  259. layer = 1;
  260. else if (neighbours[LEFT] == neighbours[TOP_LEFT])
  261. layer = 2;
  262. else if (neighbours[TOP_RIGHT] == neighbours[TOP])
  263. layer = 3;
  264. else if (neighbours[TOP] == neighbours[LEFT])
  265. layer = 4;
  266. else
  267. layer = 5;
  268. break;
  269. }
  270. pix = acoder->get_model_sym(acoder,
  271. &pctx->sec_models[nlen - 1][layer][sub]);
  272. if (pix < nlen)
  273. return ref_pix[pix];
  274. else
  275. return decode_pixel(acoder, pctx, ref_pix, nlen);
  276. }
  277. static int decode_region(ArithCoder *acoder, uint8_t *dst, uint8_t *rgb_pic,
  278. int x, int y, int width, int height, int stride,
  279. int rgb_stride, PixContext *pctx, const uint32_t *pal)
  280. {
  281. int i, j, p;
  282. uint8_t *rgb_dst = rgb_pic + x * 3 + y * rgb_stride;
  283. dst += x + y * stride;
  284. for (j = 0; j < height; j++) {
  285. for (i = 0; i < width; i++) {
  286. if (!i && !j)
  287. p = decode_top_left_pixel(acoder, pctx);
  288. else
  289. p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
  290. i, j, width - i - 1);
  291. dst[i] = p;
  292. if (rgb_pic)
  293. AV_WB24(rgb_dst + i * 3, pal[p]);
  294. }
  295. dst += stride;
  296. rgb_dst += rgb_stride;
  297. }
  298. return 0;
  299. }
  300. static void copy_rectangles(MSS12Context const *c,
  301. int x, int y, int width, int height)
  302. {
  303. int j;
  304. if (c->last_rgb_pic)
  305. for (j = y; j < y + height; j++) {
  306. memcpy(c->rgb_pic + j * c->rgb_stride + x * 3,
  307. c->last_rgb_pic + j * c->rgb_stride + x * 3,
  308. width * 3);
  309. memcpy(c->pal_pic + j * c->pal_stride + x,
  310. c->last_pal_pic + j * c->pal_stride + x,
  311. width);
  312. }
  313. }
  314. static int motion_compensation(MSS12Context const *c,
  315. int x, int y, int width, int height)
  316. {
  317. if (x + c->mvX < 0 || x + c->mvX + width > c->avctx->width ||
  318. y + c->mvY < 0 || y + c->mvY + height > c->avctx->height ||
  319. !c->rgb_pic)
  320. return -1;
  321. else {
  322. uint8_t *dst = c->pal_pic + x + y * c->pal_stride;
  323. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
  324. uint8_t *src;
  325. uint8_t *rgb_src;
  326. int j;
  327. x += c->mvX;
  328. y += c->mvY;
  329. if (c->last_rgb_pic) {
  330. src = c->last_pal_pic + x + y * c->pal_stride;
  331. rgb_src = c->last_rgb_pic + x * 3 + y * c->rgb_stride;
  332. } else {
  333. src = c->pal_pic + x + y * c->pal_stride;
  334. rgb_src = c->rgb_pic + x * 3 + y * c->rgb_stride;
  335. }
  336. for (j = 0; j < height; j++) {
  337. memmove(dst, src, width);
  338. memmove(rgb_dst, rgb_src, width * 3);
  339. dst += c->pal_stride;
  340. src += c->pal_stride;
  341. rgb_dst += c->rgb_stride;
  342. rgb_src += c->rgb_stride;
  343. }
  344. }
  345. return 0;
  346. }
  347. static int decode_region_masked(MSS12Context const *c, ArithCoder *acoder,
  348. uint8_t *dst, int stride, uint8_t *mask,
  349. int mask_stride, int x, int y,
  350. int width, int height,
  351. PixContext *pctx)
  352. {
  353. int i, j, p;
  354. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
  355. dst += x + y * stride;
  356. mask += x + y * mask_stride;
  357. for (j = 0; j < height; j++) {
  358. for (i = 0; i < width; i++) {
  359. if (c->avctx->err_recognition & AV_EF_EXPLODE &&
  360. ( c->rgb_pic && mask[i] != 0x01 && mask[i] != 0x02 && mask[i] != 0x04 ||
  361. !c->rgb_pic && mask[i] != 0x80 && mask[i] != 0xFF))
  362. return -1;
  363. if (mask[i] == 0x02) {
  364. copy_rectangles(c, x + i, y + j, 1, 1);
  365. } else if (mask[i] == 0x04) {
  366. if (motion_compensation(c, x + i, y + j, 1, 1))
  367. return -1;
  368. } else if (mask[i] != 0x80) {
  369. if (!i && !j)
  370. p = decode_top_left_pixel(acoder, pctx);
  371. else
  372. p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
  373. i, j, width - i - 1);
  374. dst[i] = p;
  375. if (c->rgb_pic)
  376. AV_WB24(rgb_dst + i * 3, c->pal[p]);
  377. }
  378. }
  379. dst += stride;
  380. mask += mask_stride;
  381. rgb_dst += c->rgb_stride;
  382. }
  383. return 0;
  384. }
  385. static av_cold void slicecontext_init(SliceContext *sc,
  386. int version, int full_model_syms)
  387. {
  388. model_init(&sc->intra_region, 2, THRESH_ADAPTIVE);
  389. model_init(&sc->inter_region, 2, THRESH_ADAPTIVE);
  390. model_init(&sc->split_mode, 3, THRESH_HIGH);
  391. model_init(&sc->edge_mode, 2, THRESH_HIGH);
  392. model_init(&sc->pivot, 3, THRESH_LOW);
  393. pixctx_init(&sc->intra_pix_ctx, 8, full_model_syms, 0);
  394. pixctx_init(&sc->inter_pix_ctx, version ? 3 : 2,
  395. full_model_syms, version ? 1 : 0);
  396. }
  397. void ff_mss12_slicecontext_reset(SliceContext *sc)
  398. {
  399. model_reset(&sc->intra_region);
  400. model_reset(&sc->inter_region);
  401. model_reset(&sc->split_mode);
  402. model_reset(&sc->edge_mode);
  403. model_reset(&sc->pivot);
  404. pixctx_reset(&sc->intra_pix_ctx);
  405. pixctx_reset(&sc->inter_pix_ctx);
  406. }
  407. static int decode_pivot(SliceContext *sc, ArithCoder *acoder, int base)
  408. {
  409. int val, inv;
  410. inv = acoder->get_model_sym(acoder, &sc->edge_mode);
  411. val = acoder->get_model_sym(acoder, &sc->pivot) + 1;
  412. if (val > 2) {
  413. if ((base + 1) / 2 - 2 <= 0)
  414. return -1;
  415. val = acoder->get_number(acoder, (base + 1) / 2 - 2) + 3;
  416. }
  417. if (val >= base)
  418. return -1;
  419. return inv ? base - val : val;
  420. }
  421. static int decode_region_intra(SliceContext *sc, ArithCoder *acoder,
  422. int x, int y, int width, int height)
  423. {
  424. MSS12Context const *c = sc->c;
  425. int mode;
  426. mode = acoder->get_model_sym(acoder, &sc->intra_region);
  427. if (!mode) {
  428. int i, j, pix, rgb_pix;
  429. int stride = c->pal_stride;
  430. int rgb_stride = c->rgb_stride;
  431. uint8_t *dst = c->pal_pic + x + y * stride;
  432. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * rgb_stride;
  433. pix = decode_top_left_pixel(acoder, &sc->intra_pix_ctx);
  434. rgb_pix = c->pal[pix];
  435. for (i = 0; i < height; i++, dst += stride, rgb_dst += rgb_stride) {
  436. memset(dst, pix, width);
  437. if (c->rgb_pic)
  438. for (j = 0; j < width * 3; j += 3)
  439. AV_WB24(rgb_dst + j, rgb_pix);
  440. }
  441. } else {
  442. return decode_region(acoder, c->pal_pic, c->rgb_pic,
  443. x, y, width, height, c->pal_stride, c->rgb_stride,
  444. &sc->intra_pix_ctx, &c->pal[0]);
  445. }
  446. return 0;
  447. }
  448. static int decode_region_inter(SliceContext *sc, ArithCoder *acoder,
  449. int x, int y, int width, int height)
  450. {
  451. MSS12Context const *c = sc->c;
  452. int mode;
  453. mode = acoder->get_model_sym(acoder, &sc->inter_region);
  454. if (!mode) {
  455. mode = decode_top_left_pixel(acoder, &sc->inter_pix_ctx);
  456. if (c->avctx->err_recognition & AV_EF_EXPLODE &&
  457. ( c->rgb_pic && mode != 0x01 && mode != 0x02 && mode != 0x04 ||
  458. !c->rgb_pic && mode != 0x80 && mode != 0xFF))
  459. return -1;
  460. if (mode == 0x02)
  461. copy_rectangles(c, x, y, width, height);
  462. else if (mode == 0x04)
  463. return motion_compensation(c, x, y, width, height);
  464. else if (mode != 0x80)
  465. return decode_region_intra(sc, acoder, x, y, width, height);
  466. } else {
  467. if (decode_region(acoder, c->mask, NULL,
  468. x, y, width, height, c->mask_stride, 0,
  469. &sc->inter_pix_ctx, &c->pal[0]) < 0)
  470. return -1;
  471. return decode_region_masked(c, acoder, c->pal_pic,
  472. c->pal_stride, c->mask,
  473. c->mask_stride,
  474. x, y, width, height,
  475. &sc->intra_pix_ctx);
  476. }
  477. return 0;
  478. }
  479. int ff_mss12_decode_rect(SliceContext *sc, ArithCoder *acoder,
  480. int x, int y, int width, int height)
  481. {
  482. int mode, pivot;
  483. mode = acoder->get_model_sym(acoder, &sc->split_mode);
  484. switch (mode) {
  485. case SPLIT_VERT:
  486. if ((pivot = decode_pivot(sc, acoder, height)) < 1)
  487. return -1;
  488. if (ff_mss12_decode_rect(sc, acoder, x, y, width, pivot))
  489. return -1;
  490. if (ff_mss12_decode_rect(sc, acoder, x, y + pivot, width, height - pivot))
  491. return -1;
  492. break;
  493. case SPLIT_HOR:
  494. if ((pivot = decode_pivot(sc, acoder, width)) < 1)
  495. return -1;
  496. if (ff_mss12_decode_rect(sc, acoder, x, y, pivot, height))
  497. return -1;
  498. if (ff_mss12_decode_rect(sc, acoder, x + pivot, y, width - pivot, height))
  499. return -1;
  500. break;
  501. case SPLIT_NONE:
  502. if (sc->c->keyframe)
  503. return decode_region_intra(sc, acoder, x, y, width, height);
  504. else
  505. return decode_region_inter(sc, acoder, x, y, width, height);
  506. default:
  507. return -1;
  508. }
  509. return 0;
  510. }
  511. av_cold int ff_mss12_decode_init(MSS12Context *c, int version,
  512. SliceContext* sc1, SliceContext *sc2)
  513. {
  514. AVCodecContext *avctx = c->avctx;
  515. int i;
  516. if (avctx->extradata_size < 52 + 256 * 3) {
  517. av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d\n",
  518. avctx->extradata_size);
  519. return AVERROR_INVALIDDATA;
  520. }
  521. if (AV_RB32(avctx->extradata) < avctx->extradata_size) {
  522. av_log(avctx, AV_LOG_ERROR,
  523. "Insufficient extradata size: expected %d got %d\n",
  524. AV_RB32(avctx->extradata),
  525. avctx->extradata_size);
  526. return AVERROR_INVALIDDATA;
  527. }
  528. avctx->coded_width = AV_RB32(avctx->extradata + 20);
  529. avctx->coded_height = AV_RB32(avctx->extradata + 24);
  530. if (avctx->coded_width > 4096 || avctx->coded_height > 4096) {
  531. av_log(avctx, AV_LOG_ERROR, "Frame dimensions %dx%d too large",
  532. avctx->coded_width, avctx->coded_height);
  533. return AVERROR_INVALIDDATA;
  534. }
  535. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d\n",
  536. AV_RB32(avctx->extradata + 4), AV_RB32(avctx->extradata + 8));
  537. if (version != AV_RB32(avctx->extradata + 4) > 1) {
  538. av_log(avctx, AV_LOG_ERROR,
  539. "Header version doesn't match codec tag\n");
  540. return -1;
  541. }
  542. c->free_colours = AV_RB32(avctx->extradata + 48);
  543. if ((unsigned)c->free_colours > 256) {
  544. av_log(avctx, AV_LOG_ERROR,
  545. "Incorrect number of changeable palette entries: %d\n",
  546. c->free_colours);
  547. return AVERROR_INVALIDDATA;
  548. }
  549. av_log(avctx, AV_LOG_DEBUG, "%d free colour(s)\n", c->free_colours);
  550. av_log(avctx, AV_LOG_DEBUG, "Display dimensions %dx%d\n",
  551. AV_RB32(avctx->extradata + 12), AV_RB32(avctx->extradata + 16));
  552. av_log(avctx, AV_LOG_DEBUG, "Coded dimensions %dx%d\n",
  553. avctx->coded_width, avctx->coded_height);
  554. av_log(avctx, AV_LOG_DEBUG, "%g frames per second\n",
  555. av_int2float(AV_RB32(avctx->extradata + 28)));
  556. av_log(avctx, AV_LOG_DEBUG, "Bitrate %d bps\n",
  557. AV_RB32(avctx->extradata + 32));
  558. av_log(avctx, AV_LOG_DEBUG, "Max. lead time %g ms\n",
  559. av_int2float(AV_RB32(avctx->extradata + 36)));
  560. av_log(avctx, AV_LOG_DEBUG, "Max. lag time %g ms\n",
  561. av_int2float(AV_RB32(avctx->extradata + 40)));
  562. av_log(avctx, AV_LOG_DEBUG, "Max. seek time %g ms\n",
  563. av_int2float(AV_RB32(avctx->extradata + 44)));
  564. if (version) {
  565. if (avctx->extradata_size < 60 + 256 * 3) {
  566. av_log(avctx, AV_LOG_ERROR,
  567. "Insufficient extradata size %d for v2\n",
  568. avctx->extradata_size);
  569. return AVERROR_INVALIDDATA;
  570. }
  571. c->slice_split = AV_RB32(avctx->extradata + 52);
  572. av_log(avctx, AV_LOG_DEBUG, "Slice split %d\n", c->slice_split);
  573. c->full_model_syms = AV_RB32(avctx->extradata + 56);
  574. if (c->full_model_syms < 2 || c->full_model_syms > 256) {
  575. av_log(avctx, AV_LOG_ERROR,
  576. "Incorrect number of used colours %d\n",
  577. c->full_model_syms);
  578. return AVERROR_INVALIDDATA;
  579. }
  580. av_log(avctx, AV_LOG_DEBUG, "Used colours %d\n",
  581. c->full_model_syms);
  582. } else {
  583. c->slice_split = 0;
  584. c->full_model_syms = 256;
  585. }
  586. for (i = 0; i < 256; i++)
  587. c->pal[i] = AV_RB24(avctx->extradata + 52 +
  588. (version ? 8 : 0) + i * 3);
  589. c->mask_stride = FFALIGN(avctx->width, 16);
  590. c->mask = av_malloc(c->mask_stride * avctx->height);
  591. if (!c->mask) {
  592. av_log(avctx, AV_LOG_ERROR, "Cannot allocate mask plane\n");
  593. return AVERROR(ENOMEM);
  594. }
  595. sc1->c = c;
  596. slicecontext_init(sc1, version, c->full_model_syms);
  597. if (c->slice_split) {
  598. sc2->c = c;
  599. slicecontext_init(sc2, version, c->full_model_syms);
  600. }
  601. c->corrupted = 1;
  602. return 0;
  603. }
  604. av_cold int ff_mss12_decode_end(MSS12Context *c)
  605. {
  606. av_freep(&c->mask);
  607. return 0;
  608. }