You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1275 lines
41KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "bitstream.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #define VLC_BITS 11
  32. #ifdef WORDS_BIGENDIAN
  33. #define B 3
  34. #define G 2
  35. #define R 1
  36. #else
  37. #define B 0
  38. #define G 1
  39. #define R 2
  40. #endif
  41. typedef enum Predictor{
  42. LEFT= 0,
  43. PLANE,
  44. MEDIAN,
  45. } Predictor;
  46. typedef struct HYuvContext{
  47. AVCodecContext *avctx;
  48. Predictor predictor;
  49. GetBitContext gb;
  50. PutBitContext pb;
  51. int interlaced;
  52. int decorrelate;
  53. int bitstream_bpp;
  54. int version;
  55. int yuy2; //use yuy2 instead of 422P
  56. int bgr32; //use bgr32 instead of bgr24
  57. int width, height;
  58. int flags;
  59. int context;
  60. int picture_number;
  61. int last_slice_end;
  62. uint8_t *temp[3];
  63. uint64_t stats[3][256];
  64. uint8_t len[3][256];
  65. uint32_t bits[3][256];
  66. VLC vlc[3];
  67. AVFrame picture;
  68. uint8_t *bitstream_buffer;
  69. int bitstream_buffer_size;
  70. DSPContext dsp;
  71. }HYuvContext;
  72. static const unsigned char classic_shift_luma[] = {
  73. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  74. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  75. 69,68, 0
  76. };
  77. static const unsigned char classic_shift_chroma[] = {
  78. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  79. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  80. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  81. };
  82. static const unsigned char classic_add_luma[256] = {
  83. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  84. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  85. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  86. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  87. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  88. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  89. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  90. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  91. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  92. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  93. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  94. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  95. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  96. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  97. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  98. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  99. };
  100. static const unsigned char classic_add_chroma[256] = {
  101. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  102. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  103. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  104. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  105. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  106. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  107. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  108. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  109. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  110. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  111. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  112. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  113. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  114. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  115. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  116. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  117. };
  118. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  119. int i;
  120. for(i=0; i<w-1; i++){
  121. acc+= src[i];
  122. dst[i]= acc;
  123. i++;
  124. acc+= src[i];
  125. dst[i]= acc;
  126. }
  127. for(; i<w; i++){
  128. acc+= src[i];
  129. dst[i]= acc;
  130. }
  131. return acc;
  132. }
  133. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  134. int i;
  135. uint8_t l, lt;
  136. l= *left;
  137. lt= *left_top;
  138. for(i=0; i<w; i++){
  139. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  140. lt= src1[i];
  141. dst[i]= l;
  142. }
  143. *left= l;
  144. *left_top= lt;
  145. }
  146. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  147. int i;
  148. int r,g,b;
  149. r= *red;
  150. g= *green;
  151. b= *blue;
  152. for(i=0; i<w; i++){
  153. b+= src[4*i+B];
  154. g+= src[4*i+G];
  155. r+= src[4*i+R];
  156. dst[4*i+B]= b;
  157. dst[4*i+G]= g;
  158. dst[4*i+R]= r;
  159. }
  160. *red= r;
  161. *green= g;
  162. *blue= b;
  163. }
  164. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  165. int i;
  166. if(w<32){
  167. for(i=0; i<w; i++){
  168. const int temp= src[i];
  169. dst[i]= temp - left;
  170. left= temp;
  171. }
  172. return left;
  173. }else{
  174. for(i=0; i<16; i++){
  175. const int temp= src[i];
  176. dst[i]= temp - left;
  177. left= temp;
  178. }
  179. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  180. return src[w-1];
  181. }
  182. }
  183. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  184. int i, val, repeat;
  185. for(i=0; i<256;){
  186. repeat= get_bits(gb, 3);
  187. val = get_bits(gb, 5);
  188. if(repeat==0)
  189. repeat= get_bits(gb, 8);
  190. //printf("%d %d\n", val, repeat);
  191. while (repeat--)
  192. dst[i++] = val;
  193. }
  194. }
  195. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  196. int len, index;
  197. uint32_t bits=0;
  198. for(len=32; len>0; len--){
  199. for(index=0; index<256; index++){
  200. if(len_table[index]==len)
  201. dst[index]= bits++;
  202. }
  203. if(bits & 1){
  204. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  205. return -1;
  206. }
  207. bits >>= 1;
  208. }
  209. return 0;
  210. }
  211. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  212. uint64_t counts[2*size];
  213. int up[2*size];
  214. int offset, i, next;
  215. for(offset=1; ; offset<<=1){
  216. for(i=0; i<size; i++){
  217. counts[i]= stats[i] + offset - 1;
  218. }
  219. for(next=size; next<size*2; next++){
  220. uint64_t min1, min2;
  221. int min1_i, min2_i;
  222. min1=min2= INT64_MAX;
  223. min1_i= min2_i=-1;
  224. for(i=0; i<next; i++){
  225. if(min2 > counts[i]){
  226. if(min1 > counts[i]){
  227. min2= min1;
  228. min2_i= min1_i;
  229. min1= counts[i];
  230. min1_i= i;
  231. }else{
  232. min2= counts[i];
  233. min2_i= i;
  234. }
  235. }
  236. }
  237. if(min2==INT64_MAX) break;
  238. counts[next]= min1 + min2;
  239. counts[min1_i]=
  240. counts[min2_i]= INT64_MAX;
  241. up[min1_i]=
  242. up[min2_i]= next;
  243. up[next]= -1;
  244. }
  245. for(i=0; i<size; i++){
  246. int len;
  247. int index=i;
  248. for(len=0; up[index] != -1; len++)
  249. index= up[index];
  250. if(len >= 32) break;
  251. dst[i]= len;
  252. }
  253. if(i==size) break;
  254. }
  255. }
  256. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  257. GetBitContext gb;
  258. int i;
  259. init_get_bits(&gb, src, length*8);
  260. for(i=0; i<3; i++){
  261. read_len_table(s->len[i], &gb);
  262. if(generate_bits_table(s->bits[i], s->len[i])<0){
  263. return -1;
  264. }
  265. #if 0
  266. for(j=0; j<256; j++){
  267. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  268. }
  269. #endif
  270. free_vlc(&s->vlc[i]);
  271. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  272. }
  273. return (get_bits_count(&gb)+7)/8;
  274. }
  275. static int read_old_huffman_tables(HYuvContext *s){
  276. #if 1
  277. GetBitContext gb;
  278. int i;
  279. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  280. read_len_table(s->len[0], &gb);
  281. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  282. read_len_table(s->len[1], &gb);
  283. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  284. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  285. if(s->bitstream_bpp >= 24){
  286. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  287. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  288. }
  289. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  290. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  291. for(i=0; i<3; i++){
  292. free_vlc(&s->vlc[i]);
  293. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  294. }
  295. return 0;
  296. #else
  297. fprintf(stderr, "v1 huffyuv is not supported \n");
  298. return -1;
  299. #endif
  300. }
  301. static int common_init(AVCodecContext *avctx){
  302. HYuvContext *s = avctx->priv_data;
  303. int i;
  304. s->avctx= avctx;
  305. s->flags= avctx->flags;
  306. dsputil_init(&s->dsp, avctx);
  307. s->width= avctx->width;
  308. s->height= avctx->height;
  309. assert(s->width>0 && s->height>0);
  310. for(i=0; i<3; i++){
  311. s->temp[i]= av_malloc(avctx->width + 16);
  312. }
  313. return 0;
  314. }
  315. static int decode_init(AVCodecContext *avctx)
  316. {
  317. HYuvContext *s = avctx->priv_data;
  318. common_init(avctx);
  319. memset(s->vlc, 0, 3*sizeof(VLC));
  320. avctx->coded_frame= &s->picture;
  321. s->interlaced= s->height > 288;
  322. s->bgr32=1;
  323. //if(avctx->extradata)
  324. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  325. if(avctx->extradata_size){
  326. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  327. s->version=1; // do such files exist at all?
  328. else
  329. s->version=2;
  330. }else
  331. s->version=0;
  332. if(s->version==2){
  333. int method, interlace;
  334. method= ((uint8_t*)avctx->extradata)[0];
  335. s->decorrelate= method&64 ? 1 : 0;
  336. s->predictor= method&63;
  337. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  338. if(s->bitstream_bpp==0)
  339. s->bitstream_bpp= avctx->bits_per_sample&~7;
  340. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  341. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  342. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  343. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  344. return -1;
  345. }else{
  346. switch(avctx->bits_per_sample&7){
  347. case 1:
  348. s->predictor= LEFT;
  349. s->decorrelate= 0;
  350. break;
  351. case 2:
  352. s->predictor= LEFT;
  353. s->decorrelate= 1;
  354. break;
  355. case 3:
  356. s->predictor= PLANE;
  357. s->decorrelate= avctx->bits_per_sample >= 24;
  358. break;
  359. case 4:
  360. s->predictor= MEDIAN;
  361. s->decorrelate= 0;
  362. break;
  363. default:
  364. s->predictor= LEFT; //OLD
  365. s->decorrelate= 0;
  366. break;
  367. }
  368. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  369. s->context= 0;
  370. if(read_old_huffman_tables(s) < 0)
  371. return -1;
  372. }
  373. switch(s->bitstream_bpp){
  374. case 12:
  375. avctx->pix_fmt = PIX_FMT_YUV420P;
  376. break;
  377. case 16:
  378. if(s->yuy2){
  379. avctx->pix_fmt = PIX_FMT_YUV422;
  380. }else{
  381. avctx->pix_fmt = PIX_FMT_YUV422P;
  382. }
  383. break;
  384. case 24:
  385. case 32:
  386. if(s->bgr32){
  387. avctx->pix_fmt = PIX_FMT_RGBA32;
  388. }else{
  389. avctx->pix_fmt = PIX_FMT_BGR24;
  390. }
  391. break;
  392. default:
  393. assert(0);
  394. }
  395. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  396. return 0;
  397. }
  398. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  399. int i;
  400. int index= 0;
  401. for(i=0; i<256;){
  402. int val= len[i];
  403. int repeat=0;
  404. for(; i<256 && len[i]==val && repeat<255; i++)
  405. repeat++;
  406. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  407. if(repeat>7){
  408. buf[index++]= val;
  409. buf[index++]= repeat;
  410. }else{
  411. buf[index++]= val | (repeat<<5);
  412. }
  413. }
  414. return index;
  415. }
  416. static int encode_init(AVCodecContext *avctx)
  417. {
  418. HYuvContext *s = avctx->priv_data;
  419. int i, j;
  420. common_init(avctx);
  421. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  422. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  423. s->version=2;
  424. avctx->coded_frame= &s->picture;
  425. switch(avctx->pix_fmt){
  426. case PIX_FMT_YUV420P:
  427. s->bitstream_bpp= 12;
  428. break;
  429. case PIX_FMT_YUV422P:
  430. s->bitstream_bpp= 16;
  431. break;
  432. default:
  433. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  434. return -1;
  435. }
  436. avctx->bits_per_sample= s->bitstream_bpp;
  437. s->decorrelate= s->bitstream_bpp >= 24;
  438. s->predictor= avctx->prediction_method;
  439. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  440. if(avctx->context_model==1){
  441. s->context= avctx->context_model;
  442. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  443. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  444. return -1;
  445. }
  446. }else s->context= 0;
  447. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  448. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  449. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  450. return -1;
  451. }
  452. if(avctx->context_model){
  453. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  454. return -1;
  455. }
  456. if(s->interlaced != ( s->height > 288 ))
  457. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  458. }else if(avctx->strict_std_compliance>=0){
  459. av_log(avctx, AV_LOG_ERROR, "This codec is under development; files encoded with it may not be decodeable with future versions!!! Set vstrict=-1 to use it anyway.\n");
  460. return -1;
  461. }
  462. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  463. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  464. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  465. if(s->context)
  466. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  467. ((uint8_t*)avctx->extradata)[3]= 0;
  468. s->avctx->extradata_size= 4;
  469. if(avctx->stats_in){
  470. char *p= avctx->stats_in;
  471. for(i=0; i<3; i++)
  472. for(j=0; j<256; j++)
  473. s->stats[i][j]= 1;
  474. for(;;){
  475. for(i=0; i<3; i++){
  476. char *next;
  477. for(j=0; j<256; j++){
  478. s->stats[i][j]+= strtol(p, &next, 0);
  479. if(next==p) return -1;
  480. p=next;
  481. }
  482. }
  483. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  484. }
  485. }else{
  486. for(i=0; i<3; i++)
  487. for(j=0; j<256; j++){
  488. int d= FFMIN(j, 256-j);
  489. s->stats[i][j]= 100000000/(d+1);
  490. }
  491. }
  492. for(i=0; i<3; i++){
  493. generate_len_table(s->len[i], s->stats[i], 256);
  494. if(generate_bits_table(s->bits[i], s->len[i])<0){
  495. return -1;
  496. }
  497. s->avctx->extradata_size+=
  498. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  499. }
  500. if(s->context){
  501. for(i=0; i<3; i++){
  502. int pels = s->width*s->height / (i?40:10);
  503. for(j=0; j<256; j++){
  504. int d= FFMIN(j, 256-j);
  505. s->stats[i][j]= pels/(d+1);
  506. }
  507. }
  508. }else{
  509. for(i=0; i<3; i++)
  510. for(j=0; j<256; j++)
  511. s->stats[i][j]= 0;
  512. }
  513. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  514. s->picture_number=0;
  515. return 0;
  516. }
  517. static void decode_422_bitstream(HYuvContext *s, int count){
  518. int i;
  519. count/=2;
  520. for(i=0; i<count; i++){
  521. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  522. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  523. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  524. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  525. }
  526. }
  527. static void decode_gray_bitstream(HYuvContext *s, int count){
  528. int i;
  529. count/=2;
  530. for(i=0; i<count; i++){
  531. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  532. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  533. }
  534. }
  535. static int encode_422_bitstream(HYuvContext *s, int count){
  536. int i;
  537. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  538. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  539. return -1;
  540. }
  541. count/=2;
  542. if(s->flags&CODEC_FLAG_PASS1){
  543. for(i=0; i<count; i++){
  544. s->stats[0][ s->temp[0][2*i ] ]++;
  545. s->stats[1][ s->temp[1][ i ] ]++;
  546. s->stats[0][ s->temp[0][2*i+1] ]++;
  547. s->stats[2][ s->temp[2][ i ] ]++;
  548. }
  549. }
  550. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  551. return 0;
  552. if(s->context){
  553. for(i=0; i<count; i++){
  554. s->stats[0][ s->temp[0][2*i ] ]++;
  555. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  556. s->stats[1][ s->temp[1][ i ] ]++;
  557. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  558. s->stats[0][ s->temp[0][2*i+1] ]++;
  559. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  560. s->stats[2][ s->temp[2][ i ] ]++;
  561. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  562. }
  563. }else{
  564. for(i=0; i<count; i++){
  565. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  566. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  567. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  568. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  569. }
  570. }
  571. return 0;
  572. }
  573. static int encode_gray_bitstream(HYuvContext *s, int count){
  574. int i;
  575. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  576. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  577. return -1;
  578. }
  579. count/=2;
  580. if(s->flags&CODEC_FLAG_PASS1){
  581. for(i=0; i<count; i++){
  582. s->stats[0][ s->temp[0][2*i ] ]++;
  583. s->stats[0][ s->temp[0][2*i+1] ]++;
  584. }
  585. }
  586. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  587. return 0;
  588. if(s->context){
  589. for(i=0; i<count; i++){
  590. s->stats[0][ s->temp[0][2*i ] ]++;
  591. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  592. s->stats[0][ s->temp[0][2*i+1] ]++;
  593. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  594. }
  595. }else{
  596. for(i=0; i<count; i++){
  597. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  598. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  599. }
  600. }
  601. return 0;
  602. }
  603. static void decode_bgr_bitstream(HYuvContext *s, int count){
  604. int i;
  605. if(s->decorrelate){
  606. if(s->bitstream_bpp==24){
  607. for(i=0; i<count; i++){
  608. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  609. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  610. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  611. }
  612. }else{
  613. for(i=0; i<count; i++){
  614. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  615. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  616. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  617. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  618. }
  619. }
  620. }else{
  621. if(s->bitstream_bpp==24){
  622. for(i=0; i<count; i++){
  623. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  624. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  625. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  626. }
  627. }else{
  628. for(i=0; i<count; i++){
  629. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  630. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  631. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  632. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  633. }
  634. }
  635. }
  636. }
  637. static void draw_slice(HYuvContext *s, int y){
  638. int h, cy;
  639. int offset[4];
  640. if(s->avctx->draw_horiz_band==NULL)
  641. return;
  642. h= y - s->last_slice_end;
  643. y -= h;
  644. if(s->bitstream_bpp==12){
  645. cy= y>>1;
  646. }else{
  647. cy= y;
  648. }
  649. offset[0] = s->picture.linesize[0]*y;
  650. offset[1] = s->picture.linesize[1]*cy;
  651. offset[2] = s->picture.linesize[2]*cy;
  652. offset[3] = 0;
  653. emms_c();
  654. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  655. s->last_slice_end= y + h;
  656. }
  657. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  658. HYuvContext *s = avctx->priv_data;
  659. const int width= s->width;
  660. const int width2= s->width>>1;
  661. const int height= s->height;
  662. int fake_ystride, fake_ustride, fake_vstride;
  663. AVFrame * const p= &s->picture;
  664. int table_size= 0;
  665. AVFrame *picture = data;
  666. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  667. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  668. if(p->data[0])
  669. avctx->release_buffer(avctx, p);
  670. p->reference= 0;
  671. if(avctx->get_buffer(avctx, p) < 0){
  672. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  673. return -1;
  674. }
  675. if(s->context){
  676. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  677. if(table_size < 0)
  678. return -1;
  679. }
  680. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  681. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  682. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  683. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  684. s->last_slice_end= 0;
  685. if(s->bitstream_bpp<24){
  686. int y, cy;
  687. int lefty, leftu, leftv;
  688. int lefttopy, lefttopu, lefttopv;
  689. if(s->yuy2){
  690. p->data[0][3]= get_bits(&s->gb, 8);
  691. p->data[0][2]= get_bits(&s->gb, 8);
  692. p->data[0][1]= get_bits(&s->gb, 8);
  693. p->data[0][0]= get_bits(&s->gb, 8);
  694. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  695. return -1;
  696. }else{
  697. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  698. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  699. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  700. p->data[0][0]= get_bits(&s->gb, 8);
  701. switch(s->predictor){
  702. case LEFT:
  703. case PLANE:
  704. decode_422_bitstream(s, width-2);
  705. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  706. if(!(s->flags&CODEC_FLAG_GRAY)){
  707. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  708. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  709. }
  710. for(cy=y=1; y<s->height; y++,cy++){
  711. uint8_t *ydst, *udst, *vdst;
  712. if(s->bitstream_bpp==12){
  713. decode_gray_bitstream(s, width);
  714. ydst= p->data[0] + p->linesize[0]*y;
  715. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  716. if(s->predictor == PLANE){
  717. if(y>s->interlaced)
  718. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  719. }
  720. y++;
  721. if(y>=s->height) break;
  722. }
  723. draw_slice(s, y);
  724. ydst= p->data[0] + p->linesize[0]*y;
  725. udst= p->data[1] + p->linesize[1]*cy;
  726. vdst= p->data[2] + p->linesize[2]*cy;
  727. decode_422_bitstream(s, width);
  728. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  729. if(!(s->flags&CODEC_FLAG_GRAY)){
  730. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  731. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  732. }
  733. if(s->predictor == PLANE){
  734. if(cy>s->interlaced){
  735. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  736. if(!(s->flags&CODEC_FLAG_GRAY)){
  737. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  738. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  739. }
  740. }
  741. }
  742. }
  743. draw_slice(s, height);
  744. break;
  745. case MEDIAN:
  746. /* first line except first 2 pixels is left predicted */
  747. decode_422_bitstream(s, width-2);
  748. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  749. if(!(s->flags&CODEC_FLAG_GRAY)){
  750. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  751. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  752. }
  753. cy=y=1;
  754. /* second line is left predicted for interlaced case */
  755. if(s->interlaced){
  756. decode_422_bitstream(s, width);
  757. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  758. if(!(s->flags&CODEC_FLAG_GRAY)){
  759. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  760. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  761. }
  762. y++; cy++;
  763. }
  764. /* next 4 pixels are left predicted too */
  765. decode_422_bitstream(s, 4);
  766. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  767. if(!(s->flags&CODEC_FLAG_GRAY)){
  768. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  769. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  770. }
  771. /* next line except the first 4 pixels is median predicted */
  772. lefttopy= p->data[0][3];
  773. decode_422_bitstream(s, width-4);
  774. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  775. if(!(s->flags&CODEC_FLAG_GRAY)){
  776. lefttopu= p->data[1][1];
  777. lefttopv= p->data[2][1];
  778. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  779. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  780. }
  781. y++; cy++;
  782. for(; y<height; y++,cy++){
  783. uint8_t *ydst, *udst, *vdst;
  784. if(s->bitstream_bpp==12){
  785. while(2*cy > y){
  786. decode_gray_bitstream(s, width);
  787. ydst= p->data[0] + p->linesize[0]*y;
  788. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  789. y++;
  790. }
  791. if(y>=height) break;
  792. }
  793. draw_slice(s, y);
  794. decode_422_bitstream(s, width);
  795. ydst= p->data[0] + p->linesize[0]*y;
  796. udst= p->data[1] + p->linesize[1]*cy;
  797. vdst= p->data[2] + p->linesize[2]*cy;
  798. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  799. if(!(s->flags&CODEC_FLAG_GRAY)){
  800. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  801. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  802. }
  803. }
  804. draw_slice(s, height);
  805. break;
  806. }
  807. }
  808. }else{
  809. int y;
  810. int leftr, leftg, leftb;
  811. const int last_line= (height-1)*p->linesize[0];
  812. if(s->bitstream_bpp==32){
  813. skip_bits(&s->gb, 8);
  814. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  815. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  816. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  817. }else{
  818. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  819. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  820. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  821. skip_bits(&s->gb, 8);
  822. }
  823. if(s->bgr32){
  824. switch(s->predictor){
  825. case LEFT:
  826. case PLANE:
  827. decode_bgr_bitstream(s, width-1);
  828. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  829. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  830. decode_bgr_bitstream(s, width);
  831. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  832. if(s->predictor == PLANE){
  833. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  834. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  835. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  836. }
  837. }
  838. }
  839. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  840. break;
  841. default:
  842. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  843. }
  844. }else{
  845. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  846. return -1;
  847. }
  848. }
  849. emms_c();
  850. *picture= *p;
  851. *data_size = sizeof(AVFrame);
  852. return (get_bits_count(&s->gb)+31)/32*4;
  853. }
  854. static int common_end(HYuvContext *s){
  855. int i;
  856. for(i=0; i<3; i++){
  857. av_freep(&s->temp[i]);
  858. }
  859. return 0;
  860. }
  861. static int decode_end(AVCodecContext *avctx)
  862. {
  863. HYuvContext *s = avctx->priv_data;
  864. int i;
  865. common_end(s);
  866. av_freep(&s->bitstream_buffer);
  867. for(i=0; i<3; i++){
  868. free_vlc(&s->vlc[i]);
  869. }
  870. return 0;
  871. }
  872. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  873. HYuvContext *s = avctx->priv_data;
  874. AVFrame *pict = data;
  875. const int width= s->width;
  876. const int width2= s->width>>1;
  877. const int height= s->height;
  878. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  879. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  880. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  881. AVFrame * const p= &s->picture;
  882. int i, j, size=0;
  883. *p = *pict;
  884. p->pict_type= FF_I_TYPE;
  885. p->key_frame= 1;
  886. if(s->context){
  887. for(i=0; i<3; i++){
  888. generate_len_table(s->len[i], s->stats[i], 256);
  889. if(generate_bits_table(s->bits[i], s->len[i])<0)
  890. return -1;
  891. size+= store_table(s, s->len[i], &buf[size]);
  892. }
  893. for(i=0; i<3; i++)
  894. for(j=0; j<256; j++)
  895. s->stats[i][j] >>= 1;
  896. }
  897. init_put_bits(&s->pb, buf+size, buf_size-size);
  898. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  899. int lefty, leftu, leftv, y, cy;
  900. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  901. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  902. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  903. put_bits(&s->pb, 8, p->data[0][0]);
  904. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  905. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  906. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  907. encode_422_bitstream(s, width-2);
  908. if(s->predictor==MEDIAN){
  909. int lefttopy, lefttopu, lefttopv;
  910. cy=y=1;
  911. if(s->interlaced){
  912. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  913. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  914. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  915. encode_422_bitstream(s, width);
  916. y++; cy++;
  917. }
  918. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  919. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  920. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  921. encode_422_bitstream(s, 4);
  922. lefttopy= p->data[0][3];
  923. lefttopu= p->data[1][1];
  924. lefttopv= p->data[2][1];
  925. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  926. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  927. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  928. encode_422_bitstream(s, width-4);
  929. y++; cy++;
  930. for(; y<height; y++,cy++){
  931. uint8_t *ydst, *udst, *vdst;
  932. if(s->bitstream_bpp==12){
  933. while(2*cy > y){
  934. ydst= p->data[0] + p->linesize[0]*y;
  935. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  936. encode_gray_bitstream(s, width);
  937. y++;
  938. }
  939. if(y>=height) break;
  940. }
  941. ydst= p->data[0] + p->linesize[0]*y;
  942. udst= p->data[1] + p->linesize[1]*cy;
  943. vdst= p->data[2] + p->linesize[2]*cy;
  944. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  945. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  946. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  947. encode_422_bitstream(s, width);
  948. }
  949. }else{
  950. for(cy=y=1; y<height; y++,cy++){
  951. uint8_t *ydst, *udst, *vdst;
  952. /* encode a luma only line & y++ */
  953. if(s->bitstream_bpp==12){
  954. ydst= p->data[0] + p->linesize[0]*y;
  955. if(s->predictor == PLANE && s->interlaced < y){
  956. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  957. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  958. }else{
  959. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  960. }
  961. encode_gray_bitstream(s, width);
  962. y++;
  963. if(y>=height) break;
  964. }
  965. ydst= p->data[0] + p->linesize[0]*y;
  966. udst= p->data[1] + p->linesize[1]*cy;
  967. vdst= p->data[2] + p->linesize[2]*cy;
  968. if(s->predictor == PLANE && s->interlaced < cy){
  969. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  970. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  971. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  972. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  973. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  974. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  975. }else{
  976. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  977. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  978. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  979. }
  980. encode_422_bitstream(s, width);
  981. }
  982. }
  983. }else{
  984. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  985. }
  986. emms_c();
  987. size+= (put_bits_count(&s->pb)+31)/8;
  988. size/= 4;
  989. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  990. int j;
  991. char *p= avctx->stats_out;
  992. char *end= p + 1024*30;
  993. for(i=0; i<3; i++){
  994. for(j=0; j<256; j++){
  995. snprintf(p, end-p, "%llu ", s->stats[i][j]);
  996. p+= strlen(p);
  997. s->stats[i][j]= 0;
  998. }
  999. snprintf(p, end-p, "\n");
  1000. p++;
  1001. }
  1002. }
  1003. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1004. flush_put_bits(&s->pb);
  1005. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1006. avctx->stats_out[0] = '\0';
  1007. }
  1008. s->picture_number++;
  1009. return size*4;
  1010. }
  1011. static int encode_end(AVCodecContext *avctx)
  1012. {
  1013. HYuvContext *s = avctx->priv_data;
  1014. common_end(s);
  1015. av_freep(&avctx->extradata);
  1016. av_freep(&avctx->stats_out);
  1017. return 0;
  1018. }
  1019. static const AVOption huffyuv_options[] =
  1020. {
  1021. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  1022. AVOPTION_END()
  1023. };
  1024. static const AVOption ffvhuff_options[] =
  1025. {
  1026. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  1027. AVOPTION_CODEC_INT("context_model", "context_model", context_model, 0, 2, 0),
  1028. AVOPTION_END()
  1029. };
  1030. AVCodec huffyuv_decoder = {
  1031. "huffyuv",
  1032. CODEC_TYPE_VIDEO,
  1033. CODEC_ID_HUFFYUV,
  1034. sizeof(HYuvContext),
  1035. decode_init,
  1036. NULL,
  1037. decode_end,
  1038. decode_frame,
  1039. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1040. NULL
  1041. };
  1042. AVCodec ffvhuff_decoder = {
  1043. "ffvhuff",
  1044. CODEC_TYPE_VIDEO,
  1045. CODEC_ID_FFVHUFF,
  1046. sizeof(HYuvContext),
  1047. decode_init,
  1048. NULL,
  1049. decode_end,
  1050. decode_frame,
  1051. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1052. NULL
  1053. };
  1054. #ifdef CONFIG_ENCODERS
  1055. AVCodec huffyuv_encoder = {
  1056. "huffyuv",
  1057. CODEC_TYPE_VIDEO,
  1058. CODEC_ID_HUFFYUV,
  1059. sizeof(HYuvContext),
  1060. encode_init,
  1061. encode_frame,
  1062. encode_end,
  1063. .options = huffyuv_options,
  1064. };
  1065. AVCodec ffvhuff_encoder = {
  1066. "ffvhuff",
  1067. CODEC_TYPE_VIDEO,
  1068. CODEC_ID_FFVHUFF,
  1069. sizeof(HYuvContext),
  1070. encode_init,
  1071. encode_frame,
  1072. encode_end,
  1073. .options = ffvhuff_options,
  1074. };
  1075. #endif //CONFIG_ENCODERS