You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

819 lines
24KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file flac.c
  21. * FLAC (Free Lossless Audio Codec) decoder
  22. * @author Alex Beregszaszi
  23. *
  24. * For more information on the FLAC format, visit:
  25. * http://flac.sourceforge.net/
  26. *
  27. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  28. * through, starting from the initial 'fLaC' signature; or by passing the
  29. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  30. * by data starting with the 0xFFF8 marker.
  31. */
  32. #include <limits.h>
  33. #include "avcodec.h"
  34. #include "bitstream.h"
  35. #include "golomb.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MAX_CHANNELS 8
  39. #define MAX_BLOCKSIZE 65535
  40. #define FLAC_STREAMINFO_SIZE 34
  41. enum decorrelation_type {
  42. INDEPENDENT,
  43. LEFT_SIDE,
  44. RIGHT_SIDE,
  45. MID_SIDE,
  46. };
  47. typedef struct FLACContext {
  48. AVCodecContext *avctx;
  49. GetBitContext gb;
  50. int min_blocksize, max_blocksize;
  51. int min_framesize, max_framesize;
  52. int samplerate, channels;
  53. int blocksize/*, last_blocksize*/;
  54. int bps, curr_bps;
  55. enum decorrelation_type decorrelation;
  56. int32_t *decoded[MAX_CHANNELS];
  57. uint8_t *bitstream;
  58. int bitstream_size;
  59. int bitstream_index;
  60. int allocated_bitstream_size;
  61. } FLACContext;
  62. #define METADATA_TYPE_STREAMINFO 0
  63. static int sample_rate_table[] =
  64. { 0, 0, 0, 0,
  65. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  66. 0, 0, 0, 0 };
  67. static int sample_size_table[] =
  68. { 0, 8, 12, 0, 16, 20, 24, 0 };
  69. static int blocksize_table[] = {
  70. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  71. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  72. };
  73. static const uint8_t table_crc8[256] = {
  74. 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15,
  75. 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d,
  76. 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
  77. 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d,
  78. 0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5,
  79. 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
  80. 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85,
  81. 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd,
  82. 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
  83. 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea,
  84. 0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2,
  85. 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
  86. 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32,
  87. 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a,
  88. 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
  89. 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a,
  90. 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c,
  91. 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
  92. 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec,
  93. 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4,
  94. 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
  95. 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44,
  96. 0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c,
  97. 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
  98. 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b,
  99. 0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63,
  100. 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
  101. 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13,
  102. 0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb,
  103. 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
  104. 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb,
  105. 0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3
  106. };
  107. static int64_t get_utf8(GetBitContext *gb)
  108. {
  109. uint64_t val;
  110. int ones=0, bytes;
  111. while(get_bits1(gb))
  112. ones++;
  113. if (ones==0) bytes=0;
  114. else if(ones==1) return -1;
  115. else bytes= ones - 1;
  116. val= get_bits(gb, 7-ones);
  117. while(bytes--){
  118. const int tmp = get_bits(gb, 8);
  119. if((tmp>>6) != 2)
  120. return -1;
  121. val<<=6;
  122. val|= tmp&0x3F;
  123. }
  124. return val;
  125. }
  126. static int skip_utf8(GetBitContext *gb)
  127. {
  128. int ones=0, bytes;
  129. while(get_bits1(gb))
  130. ones++;
  131. if (ones==0) bytes=0;
  132. else if(ones==1) return -1;
  133. else bytes= ones - 1;
  134. skip_bits(gb, 7-ones);
  135. while(bytes--){
  136. const int tmp = get_bits(gb, 8);
  137. if((tmp>>6) != 2)
  138. return -1;
  139. }
  140. return 0;
  141. }
  142. static int get_crc8(const uint8_t *buf, int count){
  143. int crc=0;
  144. int i;
  145. for(i=0; i<count; i++){
  146. crc = table_crc8[crc ^ buf[i]];
  147. }
  148. return crc;
  149. }
  150. static void metadata_streaminfo(FLACContext *s);
  151. static void dump_headers(FLACContext *s);
  152. static int flac_decode_init(AVCodecContext * avctx)
  153. {
  154. FLACContext *s = avctx->priv_data;
  155. s->avctx = avctx;
  156. /* initialize based on the demuxer-supplied streamdata header */
  157. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  158. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  159. metadata_streaminfo(s);
  160. dump_headers(s);
  161. }
  162. return 0;
  163. }
  164. static void dump_headers(FLACContext *s)
  165. {
  166. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  167. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  168. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  169. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  170. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  171. }
  172. static void allocate_buffers(FLACContext *s){
  173. int i;
  174. assert(s->max_blocksize);
  175. if(s->max_framesize == 0 && s->max_blocksize){
  176. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  177. }
  178. for (i = 0; i < s->channels; i++)
  179. {
  180. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  181. }
  182. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  183. }
  184. static void metadata_streaminfo(FLACContext *s)
  185. {
  186. /* mandatory streaminfo */
  187. s->min_blocksize = get_bits(&s->gb, 16);
  188. s->max_blocksize = get_bits(&s->gb, 16);
  189. s->min_framesize = get_bits_long(&s->gb, 24);
  190. s->max_framesize = get_bits_long(&s->gb, 24);
  191. s->samplerate = get_bits_long(&s->gb, 20);
  192. s->channels = get_bits(&s->gb, 3) + 1;
  193. s->bps = get_bits(&s->gb, 5) + 1;
  194. s->avctx->channels = s->channels;
  195. s->avctx->sample_rate = s->samplerate;
  196. skip_bits(&s->gb, 36); /* total num of samples */
  197. skip_bits(&s->gb, 64); /* md5 sum */
  198. skip_bits(&s->gb, 64); /* md5 sum */
  199. allocate_buffers(s);
  200. }
  201. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  202. {
  203. int i, tmp, partition, method_type, rice_order;
  204. int sample = 0, samples;
  205. method_type = get_bits(&s->gb, 2);
  206. if (method_type != 0){
  207. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  208. return -1;
  209. }
  210. rice_order = get_bits(&s->gb, 4);
  211. samples= s->blocksize >> rice_order;
  212. sample=
  213. i= pred_order;
  214. for (partition = 0; partition < (1 << rice_order); partition++)
  215. {
  216. tmp = get_bits(&s->gb, 4);
  217. if (tmp == 15)
  218. {
  219. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  220. tmp = get_bits(&s->gb, 5);
  221. for (; i < samples; i++, sample++)
  222. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  223. }
  224. else
  225. {
  226. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  227. for (; i < samples; i++, sample++){
  228. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  229. }
  230. }
  231. i= 0;
  232. }
  233. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  234. return 0;
  235. }
  236. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  237. {
  238. int i;
  239. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  240. /* warm up samples */
  241. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  242. for (i = 0; i < pred_order; i++)
  243. {
  244. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  245. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  246. }
  247. if (decode_residuals(s, channel, pred_order) < 0)
  248. return -1;
  249. switch(pred_order)
  250. {
  251. case 0:
  252. break;
  253. case 1:
  254. for (i = pred_order; i < s->blocksize; i++)
  255. s->decoded[channel][i] += s->decoded[channel][i-1];
  256. break;
  257. case 2:
  258. for (i = pred_order; i < s->blocksize; i++)
  259. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  260. - s->decoded[channel][i-2];
  261. break;
  262. case 3:
  263. for (i = pred_order; i < s->blocksize; i++)
  264. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  265. - 3*s->decoded[channel][i-2]
  266. + s->decoded[channel][i-3];
  267. break;
  268. case 4:
  269. for (i = pred_order; i < s->blocksize; i++)
  270. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  271. - 6*s->decoded[channel][i-2]
  272. + 4*s->decoded[channel][i-3]
  273. - s->decoded[channel][i-4];
  274. break;
  275. default:
  276. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  277. return -1;
  278. }
  279. return 0;
  280. }
  281. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  282. {
  283. int sum, i, j;
  284. int coeff_prec, qlevel;
  285. int coeffs[pred_order];
  286. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  287. /* warm up samples */
  288. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  289. for (i = 0; i < pred_order; i++)
  290. {
  291. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  292. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  293. }
  294. coeff_prec = get_bits(&s->gb, 4) + 1;
  295. if (coeff_prec == 16)
  296. {
  297. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  298. return -1;
  299. }
  300. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  301. qlevel = get_sbits(&s->gb, 5);
  302. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  303. if(qlevel < 0){
  304. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  305. return -1;
  306. }
  307. for (i = 0; i < pred_order; i++)
  308. {
  309. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  310. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  311. }
  312. if (decode_residuals(s, channel, pred_order) < 0)
  313. return -1;
  314. for (i = pred_order; i < s->blocksize; i++)
  315. {
  316. sum = 0;
  317. for (j = 0; j < pred_order; j++)
  318. sum += coeffs[j] * s->decoded[channel][i-j-1];
  319. s->decoded[channel][i] += sum >> qlevel;
  320. }
  321. return 0;
  322. }
  323. static inline int decode_subframe(FLACContext *s, int channel)
  324. {
  325. int type, wasted = 0;
  326. int i, tmp;
  327. s->curr_bps = s->bps;
  328. if(channel == 0){
  329. if(s->decorrelation == RIGHT_SIDE)
  330. s->curr_bps++;
  331. }else{
  332. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  333. s->curr_bps++;
  334. }
  335. if (get_bits1(&s->gb))
  336. {
  337. av_log(s->avctx, AV_LOG_DEBUG, "invalid subframe padding\n");
  338. return -1;
  339. }
  340. type = get_bits(&s->gb, 6);
  341. // wasted = get_bits1(&s->gb);
  342. // if (wasted)
  343. // {
  344. // while (!get_bits1(&s->gb))
  345. // wasted++;
  346. // if (wasted)
  347. // wasted++;
  348. // s->curr_bps -= wasted;
  349. // }
  350. #if 0
  351. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  352. skip_bits(&s->gb, wasted+1);
  353. s->curr_bps -= wasted;
  354. #else
  355. if (get_bits1(&s->gb))
  356. {
  357. wasted = 1;
  358. while (!get_bits1(&s->gb))
  359. wasted++;
  360. s->curr_bps -= wasted;
  361. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  362. }
  363. #endif
  364. //FIXME use av_log2 for types
  365. if (type == 0)
  366. {
  367. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  368. tmp = get_sbits(&s->gb, s->curr_bps);
  369. for (i = 0; i < s->blocksize; i++)
  370. s->decoded[channel][i] = tmp;
  371. }
  372. else if (type == 1)
  373. {
  374. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  375. for (i = 0; i < s->blocksize; i++)
  376. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  377. }
  378. else if ((type >= 8) && (type <= 12))
  379. {
  380. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  381. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  382. return -1;
  383. }
  384. else if (type >= 32)
  385. {
  386. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  387. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  388. return -1;
  389. }
  390. else
  391. {
  392. av_log(s->avctx, AV_LOG_DEBUG, "invalid coding type\n");
  393. return -1;
  394. }
  395. if (wasted)
  396. {
  397. int i;
  398. for (i = 0; i < s->blocksize; i++)
  399. s->decoded[channel][i] <<= wasted;
  400. }
  401. return 0;
  402. }
  403. static int decode_frame(FLACContext *s)
  404. {
  405. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  406. int decorrelation, bps, blocksize, samplerate;
  407. blocksize_code = get_bits(&s->gb, 4);
  408. sample_rate_code = get_bits(&s->gb, 4);
  409. assignment = get_bits(&s->gb, 4); /* channel assignment */
  410. if (assignment < 8 && s->channels == assignment+1)
  411. decorrelation = INDEPENDENT;
  412. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  413. decorrelation = LEFT_SIDE + assignment - 8;
  414. else
  415. {
  416. av_log(s->avctx, AV_LOG_DEBUG, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  417. return -1;
  418. }
  419. sample_size_code = get_bits(&s->gb, 3);
  420. if(sample_size_code == 0)
  421. bps= s->bps;
  422. else if((sample_size_code != 3) && (sample_size_code != 7))
  423. bps = sample_size_table[sample_size_code];
  424. else
  425. {
  426. av_log(s->avctx, AV_LOG_DEBUG, "invalid sample size code (%d)\n", sample_size_code);
  427. return -1;
  428. }
  429. if (get_bits1(&s->gb))
  430. {
  431. av_log(s->avctx, AV_LOG_DEBUG, "broken stream, invalid padding\n");
  432. return -1;
  433. }
  434. if(get_utf8(&s->gb) < 0){
  435. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  436. return -1;
  437. }
  438. #if 0
  439. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  440. (s->min_blocksize != s->max_blocksize)){
  441. }else{
  442. }
  443. #endif
  444. if (blocksize_code == 0)
  445. blocksize = s->min_blocksize;
  446. else if (blocksize_code == 6)
  447. blocksize = get_bits(&s->gb, 8)+1;
  448. else if (blocksize_code == 7)
  449. blocksize = get_bits(&s->gb, 16)+1;
  450. else
  451. blocksize = blocksize_table[blocksize_code];
  452. if(blocksize > s->max_blocksize){
  453. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  454. return -1;
  455. }
  456. if (sample_rate_code == 0){
  457. samplerate= s->samplerate;
  458. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  459. samplerate = sample_rate_table[sample_rate_code];
  460. else if (sample_rate_code == 12)
  461. samplerate = get_bits(&s->gb, 8) * 1000;
  462. else if (sample_rate_code == 13)
  463. samplerate = get_bits(&s->gb, 16);
  464. else if (sample_rate_code == 14)
  465. samplerate = get_bits(&s->gb, 16) * 10;
  466. else{
  467. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  468. return -1;
  469. }
  470. skip_bits(&s->gb, 8);
  471. crc8= get_crc8(s->gb.buffer, get_bits_count(&s->gb)/8);
  472. if(crc8){
  473. av_log(s->avctx, AV_LOG_ERROR, "header crc missmatch crc=%2X\n", crc8);
  474. return -1;
  475. }
  476. s->blocksize = blocksize;
  477. s->samplerate = samplerate;
  478. s->bps = bps;
  479. s->decorrelation= decorrelation;
  480. // dump_headers(s);
  481. /* subframes */
  482. for (i = 0; i < s->channels; i++)
  483. {
  484. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  485. if (decode_subframe(s, i) < 0)
  486. return -1;
  487. }
  488. align_get_bits(&s->gb);
  489. /* frame footer */
  490. skip_bits(&s->gb, 16); /* data crc */
  491. return 0;
  492. }
  493. static int flac_decode_frame(AVCodecContext *avctx,
  494. void *data, int *data_size,
  495. uint8_t *buf, int buf_size)
  496. {
  497. FLACContext *s = avctx->priv_data;
  498. int metadata_last, metadata_type, metadata_size;
  499. int tmp = 0, i, j = 0, input_buf_size = 0;
  500. int16_t *samples = data;
  501. if(s->max_framesize == 0){
  502. s->max_framesize= 8192; // should hopefully be enough for the first header
  503. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  504. }
  505. if(1 && s->max_framesize){//FIXME truncated
  506. buf_size= FFMIN(buf_size, s->max_framesize - s->bitstream_size);
  507. input_buf_size= buf_size;
  508. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  509. // printf("memmove\n");
  510. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  511. s->bitstream_index=0;
  512. }
  513. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  514. buf= &s->bitstream[s->bitstream_index];
  515. buf_size += s->bitstream_size;
  516. s->bitstream_size= buf_size;
  517. if(buf_size < s->max_framesize){
  518. // printf("wanna more data ...\n");
  519. return input_buf_size;
  520. }
  521. }
  522. init_get_bits(&s->gb, buf, buf_size*8);
  523. /* fLaC signature (be) */
  524. if (show_bits_long(&s->gb, 32) == bswap_32(ff_get_fourcc("fLaC")))
  525. {
  526. skip_bits(&s->gb, 32);
  527. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  528. do {
  529. metadata_last = get_bits(&s->gb, 1);
  530. metadata_type = get_bits(&s->gb, 7);
  531. metadata_size = get_bits_long(&s->gb, 24);
  532. av_log(s->avctx, AV_LOG_DEBUG, " metadata block: flag = %d, type = %d, size = %d\n",
  533. metadata_last, metadata_type,
  534. metadata_size);
  535. if(metadata_size){
  536. switch(metadata_type)
  537. {
  538. case METADATA_TYPE_STREAMINFO:{
  539. int bits_count= get_bits_count(&s->gb);
  540. metadata_streaminfo(s);
  541. buf= &s->bitstream[s->bitstream_index];
  542. init_get_bits(&s->gb, buf, buf_size*8);
  543. skip_bits(&s->gb, bits_count);
  544. dump_headers(s);
  545. break;}
  546. default:
  547. for(i=0; i<metadata_size; i++)
  548. skip_bits(&s->gb, 8);
  549. }
  550. }
  551. } while(!metadata_last);
  552. }
  553. else
  554. {
  555. tmp = show_bits(&s->gb, 16);
  556. if(tmp != 0xFFF8){
  557. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  558. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  559. skip_bits(&s->gb, 8);
  560. goto end; // we may not have enough bits left to decode a frame, so try next time
  561. }
  562. skip_bits(&s->gb, 16);
  563. if (decode_frame(s) < 0){
  564. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  565. s->bitstream_size=0;
  566. s->bitstream_index=0;
  567. return -1;
  568. }
  569. }
  570. #if 0
  571. /* fix the channel order here */
  572. if (s->order == MID_SIDE)
  573. {
  574. short *left = samples;
  575. short *right = samples + s->blocksize;
  576. for (i = 0; i < s->blocksize; i += 2)
  577. {
  578. uint32_t x = s->decoded[0][i];
  579. uint32_t y = s->decoded[0][i+1];
  580. right[i] = x - (y / 2);
  581. left[i] = right[i] + y;
  582. }
  583. *data_size = 2 * s->blocksize;
  584. }
  585. else
  586. {
  587. for (i = 0; i < s->channels; i++)
  588. {
  589. switch(s->order)
  590. {
  591. case INDEPENDENT:
  592. for (j = 0; j < s->blocksize; j++)
  593. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  594. break;
  595. case LEFT_SIDE:
  596. case RIGHT_SIDE:
  597. if (i == 0)
  598. for (j = 0; j < s->blocksize; j++)
  599. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  600. else
  601. for (j = 0; j < s->blocksize; j++)
  602. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  603. break;
  604. // case MID_SIDE:
  605. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  606. }
  607. *data_size += s->blocksize;
  608. }
  609. }
  610. #else
  611. switch(s->decorrelation)
  612. {
  613. case INDEPENDENT:
  614. for (j = 0; j < s->blocksize; j++)
  615. {
  616. for (i = 0; i < s->channels; i++)
  617. *(samples++) = s->decoded[i][j];
  618. }
  619. break;
  620. case LEFT_SIDE:
  621. assert(s->channels == 2);
  622. for (i = 0; i < s->blocksize; i++)
  623. {
  624. *(samples++) = s->decoded[0][i];
  625. *(samples++) = s->decoded[0][i] - s->decoded[1][i];
  626. }
  627. break;
  628. case RIGHT_SIDE:
  629. assert(s->channels == 2);
  630. for (i = 0; i < s->blocksize; i++)
  631. {
  632. *(samples++) = s->decoded[0][i] + s->decoded[1][i];
  633. *(samples++) = s->decoded[1][i];
  634. }
  635. break;
  636. case MID_SIDE:
  637. assert(s->channels == 2);
  638. for (i = 0; i < s->blocksize; i++)
  639. {
  640. int mid, side;
  641. mid = s->decoded[0][i];
  642. side = s->decoded[1][i];
  643. #if 1 //needs to be checked but IMHO it should be binary identical
  644. mid -= side>>1;
  645. *(samples++) = mid + side;
  646. *(samples++) = mid;
  647. #else
  648. mid <<= 1;
  649. if (side & 1)
  650. mid++;
  651. *(samples++) = (mid + side) >> 1;
  652. *(samples++) = (mid - side) >> 1;
  653. #endif
  654. }
  655. break;
  656. }
  657. #endif
  658. *data_size = (int8_t *)samples - (int8_t *)data;
  659. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  660. // s->last_blocksize = s->blocksize;
  661. end:
  662. i= (get_bits_count(&s->gb)+7)/8;;
  663. if(i > buf_size){
  664. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  665. s->bitstream_size=0;
  666. s->bitstream_index=0;
  667. return -1;
  668. }
  669. if(s->bitstream_size){
  670. s->bitstream_index += i;
  671. s->bitstream_size -= i;
  672. return input_buf_size;
  673. }else
  674. return i;
  675. }
  676. static int flac_decode_close(AVCodecContext *avctx)
  677. {
  678. FLACContext *s = avctx->priv_data;
  679. int i;
  680. for (i = 0; i < s->channels; i++)
  681. {
  682. av_freep(&s->decoded[i]);
  683. }
  684. av_freep(&s->bitstream);
  685. return 0;
  686. }
  687. static void flac_flush(AVCodecContext *avctx){
  688. FLACContext *s = avctx->priv_data;
  689. s->bitstream_size=
  690. s->bitstream_index= 0;
  691. }
  692. AVCodec flac_decoder = {
  693. "flac",
  694. CODEC_TYPE_AUDIO,
  695. CODEC_ID_FLAC,
  696. sizeof(FLACContext),
  697. flac_decode_init,
  698. NULL,
  699. flac_decode_close,
  700. flac_decode_frame,
  701. .flush= flac_flush,
  702. };