You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

962 lines
32KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/ratecontrol.c
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/intmath.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "ratecontrol.h"
  30. #include "mpegvideo.h"
  31. #include "eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s){
  40. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  41. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  42. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  43. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  44. }
  45. static inline double qp2bits(RateControlEntry *rce, double qp){
  46. if(qp<=0.0){
  47. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  48. }
  49. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  50. }
  51. static inline double bits2qp(RateControlEntry *rce, double bits){
  52. if(bits<0.9){
  53. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  54. }
  55. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  56. }
  57. int ff_rate_control_init(MpegEncContext *s)
  58. {
  59. RateControlContext *rcc= &s->rc_context;
  60. int i;
  61. const char *error = NULL;
  62. static const char * const const_names[]={
  63. "PI",
  64. "E",
  65. "iTex",
  66. "pTex",
  67. "tex",
  68. "mv",
  69. "fCode",
  70. "iCount",
  71. "mcVar",
  72. "var",
  73. "isI",
  74. "isP",
  75. "isB",
  76. "avgQP",
  77. "qComp",
  78. /* "lastIQP",
  79. "lastPQP",
  80. "lastBQP",
  81. "nextNonBQP",*/
  82. "avgIITex",
  83. "avgPITex",
  84. "avgPPTex",
  85. "avgBPTex",
  86. "avgTex",
  87. NULL
  88. };
  89. static double (* const func1[])(void *, double)={
  90. (void *)bits2qp,
  91. (void *)qp2bits,
  92. NULL
  93. };
  94. static const char * const func1_names[]={
  95. "bits2qp",
  96. "qp2bits",
  97. NULL
  98. };
  99. emms_c();
  100. rcc->rc_eq_eval = ff_parse(s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1, func1_names, NULL, NULL, &error);
  101. if (!rcc->rc_eq_eval) {
  102. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
  103. return -1;
  104. }
  105. for(i=0; i<5; i++){
  106. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  107. rcc->pred[i].count= 1.0;
  108. rcc->pred[i].decay= 0.4;
  109. rcc->i_cplx_sum [i]=
  110. rcc->p_cplx_sum [i]=
  111. rcc->mv_bits_sum[i]=
  112. rcc->qscale_sum [i]=
  113. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  114. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  115. }
  116. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  117. if(s->flags&CODEC_FLAG_PASS2){
  118. int i;
  119. char *p;
  120. /* find number of pics */
  121. p= s->avctx->stats_in;
  122. for(i=-1; p; i++){
  123. p= strchr(p+1, ';');
  124. }
  125. i+= s->max_b_frames;
  126. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  127. return -1;
  128. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  129. rcc->num_entries= i;
  130. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  131. for(i=0; i<rcc->num_entries; i++){
  132. RateControlEntry *rce= &rcc->entry[i];
  133. rce->pict_type= rce->new_pict_type=FF_P_TYPE;
  134. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  135. rce->misc_bits= s->mb_num + 10;
  136. rce->mb_var_sum= s->mb_num*100;
  137. }
  138. /* read stats */
  139. p= s->avctx->stats_in;
  140. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  141. RateControlEntry *rce;
  142. int picture_number;
  143. int e;
  144. char *next;
  145. next= strchr(p, ';');
  146. if(next){
  147. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  148. next++;
  149. }
  150. e= sscanf(p, " in:%d ", &picture_number);
  151. assert(picture_number >= 0);
  152. assert(picture_number < rcc->num_entries);
  153. rce= &rcc->entry[picture_number];
  154. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  155. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  156. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  157. if(e!=14){
  158. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  159. return -1;
  160. }
  161. p= next;
  162. }
  163. if(init_pass2(s) < 0) return -1;
  164. //FIXME maybe move to end
  165. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  166. #if CONFIG_LIBXVID
  167. return ff_xvid_rate_control_init(s);
  168. #else
  169. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  170. return -1;
  171. #endif
  172. }
  173. }
  174. if(!(s->flags&CODEC_FLAG_PASS2)){
  175. rcc->short_term_qsum=0.001;
  176. rcc->short_term_qcount=0.001;
  177. rcc->pass1_rc_eq_output_sum= 0.001;
  178. rcc->pass1_wanted_bits=0.001;
  179. if(s->avctx->qblur > 1.0){
  180. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  181. return -1;
  182. }
  183. /* init stuff with the user specified complexity */
  184. if(s->avctx->rc_initial_cplx){
  185. for(i=0; i<60*30; i++){
  186. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  187. RateControlEntry rce;
  188. if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
  189. else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
  190. else rce.pict_type= FF_P_TYPE;
  191. rce.new_pict_type= rce.pict_type;
  192. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  193. rce.mb_var_sum = s->mb_num;
  194. rce.qscale = FF_QP2LAMBDA * 2;
  195. rce.f_code = 2;
  196. rce.b_code = 1;
  197. rce.misc_bits= 1;
  198. if(s->pict_type== FF_I_TYPE){
  199. rce.i_count = s->mb_num;
  200. rce.i_tex_bits= bits;
  201. rce.p_tex_bits= 0;
  202. rce.mv_bits= 0;
  203. }else{
  204. rce.i_count = 0; //FIXME we do know this approx
  205. rce.i_tex_bits= 0;
  206. rce.p_tex_bits= bits*0.9;
  207. rce.mv_bits= bits*0.1;
  208. }
  209. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  210. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  211. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  212. rcc->frame_count[rce.pict_type] ++;
  213. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  214. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
  215. }
  216. }
  217. }
  218. return 0;
  219. }
  220. void ff_rate_control_uninit(MpegEncContext *s)
  221. {
  222. RateControlContext *rcc= &s->rc_context;
  223. emms_c();
  224. ff_eval_free(rcc->rc_eq_eval);
  225. av_freep(&rcc->entry);
  226. #if CONFIG_LIBXVID
  227. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  228. ff_xvid_rate_control_uninit(s);
  229. #endif
  230. }
  231. int ff_vbv_update(MpegEncContext *s, int frame_size){
  232. RateControlContext *rcc= &s->rc_context;
  233. const double fps= 1/av_q2d(s->avctx->time_base);
  234. const int buffer_size= s->avctx->rc_buffer_size;
  235. const double min_rate= s->avctx->rc_min_rate/fps;
  236. const double max_rate= s->avctx->rc_max_rate/fps;
  237. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  238. if(buffer_size){
  239. int left;
  240. rcc->buffer_index-= frame_size;
  241. if(rcc->buffer_index < 0){
  242. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  243. rcc->buffer_index= 0;
  244. }
  245. left= buffer_size - rcc->buffer_index - 1;
  246. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  247. if(rcc->buffer_index > buffer_size){
  248. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  249. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  250. stuffing=4;
  251. rcc->buffer_index -= 8*stuffing;
  252. if(s->avctx->debug & FF_DEBUG_RC)
  253. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  254. return stuffing;
  255. }
  256. }
  257. return 0;
  258. }
  259. /**
  260. * modifies the bitrate curve from pass1 for one frame
  261. */
  262. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  263. RateControlContext *rcc= &s->rc_context;
  264. AVCodecContext *a= s->avctx;
  265. double q, bits;
  266. const int pict_type= rce->new_pict_type;
  267. const double mb_num= s->mb_num;
  268. int i;
  269. double const_values[]={
  270. M_PI,
  271. M_E,
  272. rce->i_tex_bits*rce->qscale,
  273. rce->p_tex_bits*rce->qscale,
  274. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  275. rce->mv_bits/mb_num,
  276. rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  277. rce->i_count/mb_num,
  278. rce->mc_mb_var_sum/mb_num,
  279. rce->mb_var_sum/mb_num,
  280. rce->pict_type == FF_I_TYPE,
  281. rce->pict_type == FF_P_TYPE,
  282. rce->pict_type == FF_B_TYPE,
  283. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  284. a->qcompress,
  285. /* rcc->last_qscale_for[FF_I_TYPE],
  286. rcc->last_qscale_for[FF_P_TYPE],
  287. rcc->last_qscale_for[FF_B_TYPE],
  288. rcc->next_non_b_qscale,*/
  289. rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
  290. rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
  291. rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
  292. rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
  293. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  294. 0
  295. };
  296. bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce);
  297. if (isnan(bits)) {
  298. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  299. return -1;
  300. }
  301. rcc->pass1_rc_eq_output_sum+= bits;
  302. bits*=rate_factor;
  303. if(bits<0.0) bits=0.0;
  304. bits+= 1.0; //avoid 1/0 issues
  305. /* user override */
  306. for(i=0; i<s->avctx->rc_override_count; i++){
  307. RcOverride *rco= s->avctx->rc_override;
  308. if(rco[i].start_frame > frame_num) continue;
  309. if(rco[i].end_frame < frame_num) continue;
  310. if(rco[i].qscale)
  311. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  312. else
  313. bits*= rco[i].quality_factor;
  314. }
  315. q= bits2qp(rce, bits);
  316. /* I/B difference */
  317. if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
  318. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  319. else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
  320. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  321. if(q<1) q=1;
  322. return q;
  323. }
  324. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  325. RateControlContext *rcc= &s->rc_context;
  326. AVCodecContext *a= s->avctx;
  327. const int pict_type= rce->new_pict_type;
  328. const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
  329. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  330. if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
  331. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  332. else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
  333. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  334. if(q<1) q=1;
  335. /* last qscale / qdiff stuff */
  336. if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
  337. double last_q= rcc->last_qscale_for[pict_type];
  338. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  339. if (q > last_q + maxdiff) q= last_q + maxdiff;
  340. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  341. }
  342. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  343. if(pict_type!=FF_B_TYPE)
  344. rcc->last_non_b_pict_type= pict_type;
  345. return q;
  346. }
  347. /**
  348. * gets the qmin & qmax for pict_type
  349. */
  350. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  351. int qmin= s->avctx->lmin;
  352. int qmax= s->avctx->lmax;
  353. assert(qmin <= qmax);
  354. if(pict_type==FF_B_TYPE){
  355. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  356. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  357. }else if(pict_type==FF_I_TYPE){
  358. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  359. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  360. }
  361. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  362. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  363. if(qmax<qmin) qmax= qmin;
  364. *qmin_ret= qmin;
  365. *qmax_ret= qmax;
  366. }
  367. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  368. RateControlContext *rcc= &s->rc_context;
  369. int qmin, qmax;
  370. const int pict_type= rce->new_pict_type;
  371. const double buffer_size= s->avctx->rc_buffer_size;
  372. const double fps= 1/av_q2d(s->avctx->time_base);
  373. const double min_rate= s->avctx->rc_min_rate / fps;
  374. const double max_rate= s->avctx->rc_max_rate / fps;
  375. get_qminmax(&qmin, &qmax, s, pict_type);
  376. /* modulation */
  377. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
  378. q*= s->avctx->rc_qmod_amp;
  379. //printf("q:%f\n", q);
  380. /* buffer overflow/underflow protection */
  381. if(buffer_size){
  382. double expected_size= rcc->buffer_index;
  383. double q_limit;
  384. if(min_rate){
  385. double d= 2*(buffer_size - expected_size)/buffer_size;
  386. if(d>1.0) d=1.0;
  387. else if(d<0.0001) d=0.0001;
  388. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  389. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  390. if(q > q_limit){
  391. if(s->avctx->debug&FF_DEBUG_RC){
  392. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  393. }
  394. q= q_limit;
  395. }
  396. }
  397. if(max_rate){
  398. double d= 2*expected_size/buffer_size;
  399. if(d>1.0) d=1.0;
  400. else if(d<0.0001) d=0.0001;
  401. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  402. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  403. if(q < q_limit){
  404. if(s->avctx->debug&FF_DEBUG_RC){
  405. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  406. }
  407. q= q_limit;
  408. }
  409. }
  410. }
  411. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  412. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  413. if (q<qmin) q=qmin;
  414. else if(q>qmax) q=qmax;
  415. }else{
  416. double min2= log(qmin);
  417. double max2= log(qmax);
  418. q= log(q);
  419. q= (q - min2)/(max2-min2) - 0.5;
  420. q*= -4.0;
  421. q= 1.0/(1.0 + exp(q));
  422. q= q*(max2-min2) + min2;
  423. q= exp(q);
  424. }
  425. return q;
  426. }
  427. //----------------------------------
  428. // 1 Pass Code
  429. static double predict_size(Predictor *p, double q, double var)
  430. {
  431. return p->coeff*var / (q*p->count);
  432. }
  433. /*
  434. static double predict_qp(Predictor *p, double size, double var)
  435. {
  436. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  437. return p->coeff*var / (size*p->count);
  438. }
  439. */
  440. static void update_predictor(Predictor *p, double q, double var, double size)
  441. {
  442. double new_coeff= size*q / (var + 1);
  443. if(var<10) return;
  444. p->count*= p->decay;
  445. p->coeff*= p->decay;
  446. p->count++;
  447. p->coeff+= new_coeff;
  448. }
  449. static void adaptive_quantization(MpegEncContext *s, double q){
  450. int i;
  451. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  452. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  453. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  454. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  455. const float p_masking = s->avctx->p_masking;
  456. const float border_masking = s->avctx->border_masking;
  457. float bits_sum= 0.0;
  458. float cplx_sum= 0.0;
  459. float cplx_tab[s->mb_num];
  460. float bits_tab[s->mb_num];
  461. const int qmin= s->avctx->mb_lmin;
  462. const int qmax= s->avctx->mb_lmax;
  463. Picture * const pic= &s->current_picture;
  464. const int mb_width = s->mb_width;
  465. const int mb_height = s->mb_height;
  466. for(i=0; i<s->mb_num; i++){
  467. const int mb_xy= s->mb_index2xy[i];
  468. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  469. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  470. const int lumi= pic->mb_mean[mb_xy];
  471. float bits, cplx, factor;
  472. int mb_x = mb_xy % s->mb_stride;
  473. int mb_y = mb_xy / s->mb_stride;
  474. int mb_distance;
  475. float mb_factor = 0.0;
  476. #if 0
  477. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  478. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  479. #endif
  480. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  481. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  482. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  483. cplx= spat_cplx;
  484. factor= 1.0 + p_masking;
  485. }else{
  486. cplx= temp_cplx;
  487. factor= pow(temp_cplx, - temp_cplx_masking);
  488. }
  489. factor*=pow(spat_cplx, - spatial_cplx_masking);
  490. if(lumi>127)
  491. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  492. else
  493. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  494. if(mb_x < mb_width/5){
  495. mb_distance = mb_width/5 - mb_x;
  496. mb_factor = (float)mb_distance / (float)(mb_width/5);
  497. }else if(mb_x > 4*mb_width/5){
  498. mb_distance = mb_x - 4*mb_width/5;
  499. mb_factor = (float)mb_distance / (float)(mb_width/5);
  500. }
  501. if(mb_y < mb_height/5){
  502. mb_distance = mb_height/5 - mb_y;
  503. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  504. }else if(mb_y > 4*mb_height/5){
  505. mb_distance = mb_y - 4*mb_height/5;
  506. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  507. }
  508. factor*= 1.0 - border_masking*mb_factor;
  509. if(factor<0.00001) factor= 0.00001;
  510. bits= cplx*factor;
  511. cplx_sum+= cplx;
  512. bits_sum+= bits;
  513. cplx_tab[i]= cplx;
  514. bits_tab[i]= bits;
  515. }
  516. /* handle qmin/qmax clipping */
  517. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  518. float factor= bits_sum/cplx_sum;
  519. for(i=0; i<s->mb_num; i++){
  520. float newq= q*cplx_tab[i]/bits_tab[i];
  521. newq*= factor;
  522. if (newq > qmax){
  523. bits_sum -= bits_tab[i];
  524. cplx_sum -= cplx_tab[i]*q/qmax;
  525. }
  526. else if(newq < qmin){
  527. bits_sum -= bits_tab[i];
  528. cplx_sum -= cplx_tab[i]*q/qmin;
  529. }
  530. }
  531. if(bits_sum < 0.001) bits_sum= 0.001;
  532. if(cplx_sum < 0.001) cplx_sum= 0.001;
  533. }
  534. for(i=0; i<s->mb_num; i++){
  535. const int mb_xy= s->mb_index2xy[i];
  536. float newq= q*cplx_tab[i]/bits_tab[i];
  537. int intq;
  538. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  539. newq*= bits_sum/cplx_sum;
  540. }
  541. intq= (int)(newq + 0.5);
  542. if (intq > qmax) intq= qmax;
  543. else if(intq < qmin) intq= qmin;
  544. //if(i%s->mb_width==0) printf("\n");
  545. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  546. s->lambda_table[mb_xy]= intq;
  547. }
  548. }
  549. void ff_get_2pass_fcode(MpegEncContext *s){
  550. RateControlContext *rcc= &s->rc_context;
  551. int picture_number= s->picture_number;
  552. RateControlEntry *rce;
  553. rce= &rcc->entry[picture_number];
  554. s->f_code= rce->f_code;
  555. s->b_code= rce->b_code;
  556. }
  557. //FIXME rd or at least approx for dquant
  558. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  559. {
  560. float q;
  561. int qmin, qmax;
  562. float br_compensation;
  563. double diff;
  564. double short_term_q;
  565. double fps;
  566. int picture_number= s->picture_number;
  567. int64_t wanted_bits;
  568. RateControlContext *rcc= &s->rc_context;
  569. AVCodecContext *a= s->avctx;
  570. RateControlEntry local_rce, *rce;
  571. double bits;
  572. double rate_factor;
  573. int var;
  574. const int pict_type= s->pict_type;
  575. Picture * const pic= &s->current_picture;
  576. emms_c();
  577. #if CONFIG_LIBXVID
  578. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  579. return ff_xvid_rate_estimate_qscale(s, dry_run);
  580. #endif
  581. get_qminmax(&qmin, &qmax, s, pict_type);
  582. fps= 1/av_q2d(s->avctx->time_base);
  583. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  584. /* update predictors */
  585. if(picture_number>2 && !dry_run){
  586. const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  587. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  588. }
  589. if(s->flags&CODEC_FLAG_PASS2){
  590. assert(picture_number>=0);
  591. assert(picture_number<rcc->num_entries);
  592. rce= &rcc->entry[picture_number];
  593. wanted_bits= rce->expected_bits;
  594. }else{
  595. Picture *dts_pic;
  596. rce= &local_rce;
  597. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  598. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  599. if(s->pict_type == FF_B_TYPE || s->low_delay)
  600. dts_pic= s->current_picture_ptr;
  601. else
  602. dts_pic= s->last_picture_ptr;
  603. //if(dts_pic)
  604. // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
  605. if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
  606. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  607. else
  608. wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
  609. }
  610. diff= s->total_bits - wanted_bits;
  611. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  612. if(br_compensation<=0.0) br_compensation=0.001;
  613. var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  614. short_term_q = 0; /* avoid warning */
  615. if(s->flags&CODEC_FLAG_PASS2){
  616. if(pict_type!=FF_I_TYPE)
  617. assert(pict_type == rce->new_pict_type);
  618. q= rce->new_qscale / br_compensation;
  619. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  620. }else{
  621. rce->pict_type=
  622. rce->new_pict_type= pict_type;
  623. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  624. rce->mb_var_sum = pic-> mb_var_sum;
  625. rce->qscale = FF_QP2LAMBDA * 2;
  626. rce->f_code = s->f_code;
  627. rce->b_code = s->b_code;
  628. rce->misc_bits= 1;
  629. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  630. if(pict_type== FF_I_TYPE){
  631. rce->i_count = s->mb_num;
  632. rce->i_tex_bits= bits;
  633. rce->p_tex_bits= 0;
  634. rce->mv_bits= 0;
  635. }else{
  636. rce->i_count = 0; //FIXME we do know this approx
  637. rce->i_tex_bits= 0;
  638. rce->p_tex_bits= bits*0.9;
  639. rce->mv_bits= bits*0.1;
  640. }
  641. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  642. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  643. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  644. rcc->frame_count[pict_type] ++;
  645. bits= rce->i_tex_bits + rce->p_tex_bits;
  646. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  647. q= get_qscale(s, rce, rate_factor, picture_number);
  648. if (q < 0)
  649. return -1;
  650. assert(q>0.0);
  651. //printf("%f ", q);
  652. q= get_diff_limited_q(s, rce, q);
  653. //printf("%f ", q);
  654. assert(q>0.0);
  655. if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
  656. rcc->short_term_qsum*=a->qblur;
  657. rcc->short_term_qcount*=a->qblur;
  658. rcc->short_term_qsum+= q;
  659. rcc->short_term_qcount++;
  660. //printf("%f ", q);
  661. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  662. //printf("%f ", q);
  663. }
  664. assert(q>0.0);
  665. q= modify_qscale(s, rce, q, picture_number);
  666. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  667. assert(q>0.0);
  668. }
  669. if(s->avctx->debug&FF_DEBUG_RC){
  670. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  671. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  672. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  673. );
  674. }
  675. if (q<qmin) q=qmin;
  676. else if(q>qmax) q=qmax;
  677. if(s->adaptive_quant)
  678. adaptive_quantization(s, q);
  679. else
  680. q= (int)(q + 0.5);
  681. if(!dry_run){
  682. rcc->last_qscale= q;
  683. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  684. rcc->last_mb_var_sum= pic->mb_var_sum;
  685. }
  686. #if 0
  687. {
  688. static int mvsum=0, texsum=0;
  689. mvsum += s->mv_bits;
  690. texsum += s->i_tex_bits + s->p_tex_bits;
  691. printf("%d %d//\n\n", mvsum, texsum);
  692. }
  693. #endif
  694. return q;
  695. }
  696. //----------------------------------------------
  697. // 2-Pass code
  698. static int init_pass2(MpegEncContext *s)
  699. {
  700. RateControlContext *rcc= &s->rc_context;
  701. AVCodecContext *a= s->avctx;
  702. int i, toobig;
  703. double fps= 1/av_q2d(s->avctx->time_base);
  704. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  705. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  706. uint64_t all_const_bits;
  707. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  708. double rate_factor=0;
  709. double step;
  710. //int last_i_frame=-10000000;
  711. const int filter_size= (int)(a->qblur*4) | 1;
  712. double expected_bits;
  713. double *qscale, *blurred_qscale, qscale_sum;
  714. /* find complexity & const_bits & decide the pict_types */
  715. for(i=0; i<rcc->num_entries; i++){
  716. RateControlEntry *rce= &rcc->entry[i];
  717. rce->new_pict_type= rce->pict_type;
  718. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  719. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  720. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  721. rcc->frame_count[rce->pict_type] ++;
  722. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  723. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  724. }
  725. all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
  726. if(all_available_bits < all_const_bits){
  727. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  728. return -1;
  729. }
  730. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  731. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  732. toobig = 0;
  733. for(step=256*256; step>0.0000001; step*=0.5){
  734. expected_bits=0;
  735. rate_factor+= step;
  736. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  737. /* find qscale */
  738. for(i=0; i<rcc->num_entries; i++){
  739. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  740. }
  741. assert(filter_size%2==1);
  742. /* fixed I/B QP relative to P mode */
  743. for(i=rcc->num_entries-1; i>=0; i--){
  744. RateControlEntry *rce= &rcc->entry[i];
  745. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  746. }
  747. /* smooth curve */
  748. for(i=0; i<rcc->num_entries; i++){
  749. RateControlEntry *rce= &rcc->entry[i];
  750. const int pict_type= rce->new_pict_type;
  751. int j;
  752. double q=0.0, sum=0.0;
  753. for(j=0; j<filter_size; j++){
  754. int index= i+j-filter_size/2;
  755. double d= index-i;
  756. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  757. if(index < 0 || index >= rcc->num_entries) continue;
  758. if(pict_type != rcc->entry[index].new_pict_type) continue;
  759. q+= qscale[index] * coeff;
  760. sum+= coeff;
  761. }
  762. blurred_qscale[i]= q/sum;
  763. }
  764. /* find expected bits */
  765. for(i=0; i<rcc->num_entries; i++){
  766. RateControlEntry *rce= &rcc->entry[i];
  767. double bits;
  768. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  769. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  770. //printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
  771. bits += 8*ff_vbv_update(s, bits);
  772. rce->expected_bits= expected_bits;
  773. expected_bits += bits;
  774. }
  775. /*
  776. av_log(s->avctx, AV_LOG_INFO,
  777. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  778. expected_bits, (int)all_available_bits, rate_factor);
  779. */
  780. if(expected_bits > all_available_bits) {
  781. rate_factor-= step;
  782. ++toobig;
  783. }
  784. }
  785. av_free(qscale);
  786. av_free(blurred_qscale);
  787. /* check bitrate calculations and print info */
  788. qscale_sum = 0.0;
  789. for(i=0; i<rcc->num_entries; i++){
  790. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  791. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  792. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  793. }
  794. assert(toobig <= 40);
  795. av_log(s->avctx, AV_LOG_DEBUG,
  796. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  797. s->bit_rate,
  798. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  799. av_log(s->avctx, AV_LOG_DEBUG,
  800. "[lavc rc] estimated target average qp: %.3f\n",
  801. (float)qscale_sum / rcc->num_entries);
  802. if (toobig == 0) {
  803. av_log(s->avctx, AV_LOG_INFO,
  804. "[lavc rc] Using all of requested bitrate is not "
  805. "necessary for this video with these parameters.\n");
  806. } else if (toobig == 40) {
  807. av_log(s->avctx, AV_LOG_ERROR,
  808. "[lavc rc] Error: bitrate too low for this video "
  809. "with these parameters.\n");
  810. return -1;
  811. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  812. av_log(s->avctx, AV_LOG_ERROR,
  813. "[lavc rc] Error: 2pass curve failed to converge\n");
  814. return -1;
  815. }
  816. return 0;
  817. }