You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1516 lines
56KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define LUMA_DC_BLOCK_INDEX 25
  38. #define CHROMA_DC_BLOCK_INDEX 26
  39. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  40. #define COEFF_TOKEN_VLC_BITS 8
  41. #define TOTAL_ZEROS_VLC_BITS 9
  42. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  43. #define RUN_VLC_BITS 3
  44. #define RUN7_VLC_BITS 6
  45. #define MAX_SPS_COUNT 32
  46. #define MAX_PPS_COUNT 256
  47. #define MAX_MMCO_COUNT 66
  48. #define MAX_DELAYED_PIC_COUNT 16
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #define ALLOW_NOCHROMA
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 16
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF h->mb_mbaff
  61. #define MB_FIELD h->mb_field_decoding_flag
  62. #define FRAME_MBAFF h->mb_aff_frame
  63. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  64. #else
  65. #define MB_MBAFF 0
  66. #define MB_FIELD 0
  67. #define FRAME_MBAFF 0
  68. #define FIELD_PICTURE 0
  69. #undef IS_INTERLACED
  70. #define IS_INTERLACED(mb_type) 0
  71. #endif
  72. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  73. #ifdef ALLOW_NOCHROMA
  74. #define CHROMA h->sps.chroma_format_idc
  75. #else
  76. #define CHROMA 1
  77. #endif
  78. #ifndef CABAC
  79. #define CABAC h->pps.cabac
  80. #endif
  81. #define EXTENDED_SAR 255
  82. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  83. #define MB_TYPE_8x8DCT 0x01000000
  84. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  85. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  86. /**
  87. * Value of Picture.reference when Picture is not a reference picture, but
  88. * is held for delayed output.
  89. */
  90. #define DELAYED_PIC_REF 4
  91. /* NAL unit types */
  92. enum {
  93. NAL_SLICE=1,
  94. NAL_DPA,
  95. NAL_DPB,
  96. NAL_DPC,
  97. NAL_IDR_SLICE,
  98. NAL_SEI,
  99. NAL_SPS,
  100. NAL_PPS,
  101. NAL_AUD,
  102. NAL_END_SEQUENCE,
  103. NAL_END_STREAM,
  104. NAL_FILLER_DATA,
  105. NAL_SPS_EXT,
  106. NAL_AUXILIARY_SLICE=19
  107. };
  108. /**
  109. * SEI message types
  110. */
  111. typedef enum {
  112. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  113. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  114. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  115. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  116. } SEI_Type;
  117. /**
  118. * pic_struct in picture timing SEI message
  119. */
  120. typedef enum {
  121. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  122. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  123. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  124. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  125. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  126. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  127. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  128. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  129. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  130. } SEI_PicStructType;
  131. /**
  132. * Sequence parameter set
  133. */
  134. typedef struct SPS{
  135. int profile_idc;
  136. int level_idc;
  137. int chroma_format_idc;
  138. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  139. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  140. int poc_type; ///< pic_order_cnt_type
  141. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  142. int delta_pic_order_always_zero_flag;
  143. int offset_for_non_ref_pic;
  144. int offset_for_top_to_bottom_field;
  145. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  146. int ref_frame_count; ///< num_ref_frames
  147. int gaps_in_frame_num_allowed_flag;
  148. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  149. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  150. int frame_mbs_only_flag;
  151. int mb_aff; ///<mb_adaptive_frame_field_flag
  152. int direct_8x8_inference_flag;
  153. int crop; ///< frame_cropping_flag
  154. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  155. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  156. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  157. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  158. int vui_parameters_present_flag;
  159. AVRational sar;
  160. int video_signal_type_present_flag;
  161. int full_range;
  162. int colour_description_present_flag;
  163. enum AVColorPrimaries color_primaries;
  164. enum AVColorTransferCharacteristic color_trc;
  165. enum AVColorSpace colorspace;
  166. int timing_info_present_flag;
  167. uint32_t num_units_in_tick;
  168. uint32_t time_scale;
  169. int fixed_frame_rate_flag;
  170. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  171. int bitstream_restriction_flag;
  172. int num_reorder_frames;
  173. int scaling_matrix_present;
  174. uint8_t scaling_matrix4[6][16];
  175. uint8_t scaling_matrix8[2][64];
  176. int nal_hrd_parameters_present_flag;
  177. int vcl_hrd_parameters_present_flag;
  178. int pic_struct_present_flag;
  179. int time_offset_length;
  180. int cpb_cnt; ///< See H.264 E.1.2
  181. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  182. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  183. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  184. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  185. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  186. int residual_color_transform_flag; ///< residual_colour_transform_flag
  187. }SPS;
  188. /**
  189. * Picture parameter set
  190. */
  191. typedef struct PPS{
  192. unsigned int sps_id;
  193. int cabac; ///< entropy_coding_mode_flag
  194. int pic_order_present; ///< pic_order_present_flag
  195. int slice_group_count; ///< num_slice_groups_minus1 + 1
  196. int mb_slice_group_map_type;
  197. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  198. int weighted_pred; ///< weighted_pred_flag
  199. int weighted_bipred_idc;
  200. int init_qp; ///< pic_init_qp_minus26 + 26
  201. int init_qs; ///< pic_init_qs_minus26 + 26
  202. int chroma_qp_index_offset[2];
  203. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  204. int constrained_intra_pred; ///< constrained_intra_pred_flag
  205. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  206. int transform_8x8_mode; ///< transform_8x8_mode_flag
  207. uint8_t scaling_matrix4[6][16];
  208. uint8_t scaling_matrix8[2][64];
  209. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  210. int chroma_qp_diff;
  211. }PPS;
  212. /**
  213. * Memory management control operation opcode.
  214. */
  215. typedef enum MMCOOpcode{
  216. MMCO_END=0,
  217. MMCO_SHORT2UNUSED,
  218. MMCO_LONG2UNUSED,
  219. MMCO_SHORT2LONG,
  220. MMCO_SET_MAX_LONG,
  221. MMCO_RESET,
  222. MMCO_LONG,
  223. } MMCOOpcode;
  224. /**
  225. * Memory management control operation.
  226. */
  227. typedef struct MMCO{
  228. MMCOOpcode opcode;
  229. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  230. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  231. } MMCO;
  232. /**
  233. * H264Context
  234. */
  235. typedef struct H264Context{
  236. MpegEncContext s;
  237. H264DSPContext h264dsp;
  238. int chroma_qp[2]; //QPc
  239. int qp_thresh; ///< QP threshold to skip loopfilter
  240. int prev_mb_skipped;
  241. int next_mb_skipped;
  242. //prediction stuff
  243. int chroma_pred_mode;
  244. int intra16x16_pred_mode;
  245. int topleft_mb_xy;
  246. int top_mb_xy;
  247. int topright_mb_xy;
  248. int left_mb_xy[2];
  249. int topleft_type;
  250. int top_type;
  251. int topright_type;
  252. int left_type[2];
  253. const uint8_t * left_block;
  254. int topleft_partition;
  255. int8_t intra4x4_pred_mode_cache[5*8];
  256. int8_t (*intra4x4_pred_mode);
  257. H264PredContext hpc;
  258. unsigned int topleft_samples_available;
  259. unsigned int top_samples_available;
  260. unsigned int topright_samples_available;
  261. unsigned int left_samples_available;
  262. uint8_t (*top_borders[2])[16+2*8];
  263. /**
  264. * non zero coeff count cache.
  265. * is 64 if not available.
  266. */
  267. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
  268. /*
  269. .UU.YYYY
  270. .UU.YYYY
  271. .vv.YYYY
  272. .VV.YYYY
  273. */
  274. uint8_t (*non_zero_count)[32];
  275. /**
  276. * Motion vector cache.
  277. */
  278. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  279. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  280. #define LIST_NOT_USED -1 //FIXME rename?
  281. #define PART_NOT_AVAILABLE -2
  282. /**
  283. * is 1 if the specific list MV&references are set to 0,0,-2.
  284. */
  285. int mv_cache_clean[2];
  286. /**
  287. * number of neighbors (top and/or left) that used 8x8 dct
  288. */
  289. int neighbor_transform_size;
  290. /**
  291. * block_offset[ 0..23] for frame macroblocks
  292. * block_offset[24..47] for field macroblocks
  293. */
  294. int block_offset[2*(16+8)];
  295. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  296. uint32_t *mb2br_xy;
  297. int b_stride; //FIXME use s->b4_stride
  298. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  299. int mb_uvlinesize;
  300. int emu_edge_width;
  301. int emu_edge_height;
  302. SPS sps; ///< current sps
  303. /**
  304. * current pps
  305. */
  306. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  307. uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
  308. uint32_t dequant8_buffer[2][52][64];
  309. uint32_t (*dequant4_coeff[6])[16];
  310. uint32_t (*dequant8_coeff[2])[64];
  311. int slice_num;
  312. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  313. int slice_type;
  314. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  315. int slice_type_fixed;
  316. //interlacing specific flags
  317. int mb_aff_frame;
  318. int mb_field_decoding_flag;
  319. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  320. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  321. //Weighted pred stuff
  322. int use_weight;
  323. int use_weight_chroma;
  324. int luma_log2_weight_denom;
  325. int chroma_log2_weight_denom;
  326. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  327. int luma_weight[48][2][2];
  328. int chroma_weight[48][2][2][2];
  329. int implicit_weight[48][48];
  330. int direct_spatial_mv_pred;
  331. int col_parity;
  332. int col_fieldoff;
  333. int dist_scale_factor[16];
  334. int dist_scale_factor_field[2][32];
  335. int map_col_to_list0[2][16+32];
  336. int map_col_to_list0_field[2][2][16+32];
  337. /**
  338. * num_ref_idx_l0/1_active_minus1 + 1
  339. */
  340. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  341. unsigned int list_count;
  342. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  343. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  344. Reordered version of default_ref_list
  345. according to picture reordering in slice header */
  346. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  347. //data partitioning
  348. GetBitContext intra_gb;
  349. GetBitContext inter_gb;
  350. GetBitContext *intra_gb_ptr;
  351. GetBitContext *inter_gb_ptr;
  352. DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
  353. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  354. /**
  355. * Cabac
  356. */
  357. CABACContext cabac;
  358. uint8_t cabac_state[460];
  359. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  360. uint16_t *cbp_table;
  361. int cbp;
  362. int top_cbp;
  363. int left_cbp;
  364. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  365. uint8_t *chroma_pred_mode_table;
  366. int last_qscale_diff;
  367. uint8_t (*mvd_table[2])[2];
  368. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  369. uint8_t *direct_table;
  370. uint8_t direct_cache[5*8];
  371. uint8_t zigzag_scan[16];
  372. uint8_t zigzag_scan8x8[64];
  373. uint8_t zigzag_scan8x8_cavlc[64];
  374. uint8_t field_scan[16];
  375. uint8_t field_scan8x8[64];
  376. uint8_t field_scan8x8_cavlc[64];
  377. const uint8_t *zigzag_scan_q0;
  378. const uint8_t *zigzag_scan8x8_q0;
  379. const uint8_t *zigzag_scan8x8_cavlc_q0;
  380. const uint8_t *field_scan_q0;
  381. const uint8_t *field_scan8x8_q0;
  382. const uint8_t *field_scan8x8_cavlc_q0;
  383. int x264_build;
  384. int mb_xy;
  385. int is_complex;
  386. //deblock
  387. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  388. int slice_alpha_c0_offset;
  389. int slice_beta_offset;
  390. //=============================================================
  391. //Things below are not used in the MB or more inner code
  392. int nal_ref_idc;
  393. int nal_unit_type;
  394. uint8_t *rbsp_buffer[2];
  395. unsigned int rbsp_buffer_size[2];
  396. /**
  397. * Used to parse AVC variant of h264
  398. */
  399. int is_avc; ///< this flag is != 0 if codec is avc1
  400. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  401. SPS *sps_buffers[MAX_SPS_COUNT];
  402. PPS *pps_buffers[MAX_PPS_COUNT];
  403. int dequant_coeff_pps; ///< reinit tables when pps changes
  404. uint16_t *slice_table_base;
  405. //POC stuff
  406. int poc_lsb;
  407. int poc_msb;
  408. int delta_poc_bottom;
  409. int delta_poc[2];
  410. int frame_num;
  411. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  412. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  413. int frame_num_offset; ///< for POC type 2
  414. int prev_frame_num_offset; ///< for POC type 2
  415. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  416. /**
  417. * frame_num for frames or 2*frame_num+1 for field pics.
  418. */
  419. int curr_pic_num;
  420. /**
  421. * max_frame_num or 2*max_frame_num for field pics.
  422. */
  423. int max_pic_num;
  424. int redundant_pic_count;
  425. Picture *short_ref[32];
  426. Picture *long_ref[32];
  427. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  428. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  429. int outputed_poc;
  430. /**
  431. * memory management control operations buffer.
  432. */
  433. MMCO mmco[MAX_MMCO_COUNT];
  434. int mmco_index;
  435. int long_ref_count; ///< number of actual long term references
  436. int short_ref_count; ///< number of actual short term references
  437. int cabac_init_idc;
  438. /**
  439. * @defgroup multithreading Members for slice based multithreading
  440. * @{
  441. */
  442. struct H264Context *thread_context[MAX_THREADS];
  443. /**
  444. * current slice number, used to initalize slice_num of each thread/context
  445. */
  446. int current_slice;
  447. /**
  448. * Max number of threads / contexts.
  449. * This is equal to AVCodecContext.thread_count unless
  450. * multithreaded decoding is impossible, in which case it is
  451. * reduced to 1.
  452. */
  453. int max_contexts;
  454. /**
  455. * 1 if the single thread fallback warning has already been
  456. * displayed, 0 otherwise.
  457. */
  458. int single_decode_warning;
  459. int last_slice_type;
  460. /** @} */
  461. /**
  462. * pic_struct in picture timing SEI message
  463. */
  464. SEI_PicStructType sei_pic_struct;
  465. /**
  466. * Complement sei_pic_struct
  467. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  468. * However, soft telecined frames may have these values.
  469. * This is used in an attempt to flag soft telecine progressive.
  470. */
  471. int prev_interlaced_frame;
  472. /**
  473. * Bit set of clock types for fields/frames in picture timing SEI message.
  474. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  475. * interlaced).
  476. */
  477. int sei_ct_type;
  478. /**
  479. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  480. */
  481. int sei_dpb_output_delay;
  482. /**
  483. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  484. */
  485. int sei_cpb_removal_delay;
  486. /**
  487. * recovery_frame_cnt from SEI message
  488. *
  489. * Set to -1 if no recovery point SEI message found or to number of frames
  490. * before playback synchronizes. Frames having recovery point are key
  491. * frames.
  492. */
  493. int sei_recovery_frame_cnt;
  494. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  495. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  496. // Timestamp stuff
  497. int sei_buffering_period_present; ///< Buffering period SEI flag
  498. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  499. //SVQ3 specific fields
  500. int halfpel_flag;
  501. int thirdpel_flag;
  502. int unknown_svq3_flag;
  503. int next_slice_index;
  504. uint32_t svq3_watermark_key;
  505. }H264Context;
  506. extern const uint8_t ff_h264_chroma_qp[52];
  507. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  508. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  509. /**
  510. * Decode SEI
  511. */
  512. int ff_h264_decode_sei(H264Context *h);
  513. /**
  514. * Decode SPS
  515. */
  516. int ff_h264_decode_seq_parameter_set(H264Context *h);
  517. /**
  518. * Decode PPS
  519. */
  520. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  521. /**
  522. * Decodes a network abstraction layer unit.
  523. * @param consumed is the number of bytes used as input
  524. * @param length is the length of the array
  525. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  526. * @returns decoded bytes, might be src+1 if no escapes
  527. */
  528. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  529. /**
  530. * identifies the exact end of the bitstream
  531. * @return the length of the trailing, or 0 if damaged
  532. */
  533. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  534. /**
  535. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  536. */
  537. av_cold void ff_h264_free_context(H264Context *h);
  538. /**
  539. * reconstructs bitstream slice_type.
  540. */
  541. int ff_h264_get_slice_type(const H264Context *h);
  542. /**
  543. * allocates tables.
  544. * needs width/height
  545. */
  546. int ff_h264_alloc_tables(H264Context *h);
  547. /**
  548. * fills the default_ref_list.
  549. */
  550. int ff_h264_fill_default_ref_list(H264Context *h);
  551. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  552. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  553. void ff_h264_remove_all_refs(H264Context *h);
  554. /**
  555. * Executes the reference picture marking (memory management control operations).
  556. */
  557. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  558. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  559. /**
  560. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  561. */
  562. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  563. /**
  564. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  565. */
  566. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  567. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  568. void ff_h264_hl_decode_mb(H264Context *h);
  569. int ff_h264_frame_start(H264Context *h);
  570. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  571. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  572. av_cold void ff_h264_decode_init_vlc(void);
  573. /**
  574. * decodes a macroblock
  575. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  576. */
  577. int ff_h264_decode_mb_cavlc(H264Context *h);
  578. /**
  579. * decodes a CABAC coded macroblock
  580. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  581. */
  582. int ff_h264_decode_mb_cabac(H264Context *h);
  583. void ff_h264_init_cabac_states(H264Context *h);
  584. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  585. void ff_h264_direct_ref_list_init(H264Context * const h);
  586. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  587. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  588. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  589. /**
  590. * Reset SEI values at the beginning of the frame.
  591. *
  592. * @param h H.264 context.
  593. */
  594. void ff_h264_reset_sei(H264Context *h);
  595. /*
  596. o-o o-o
  597. / / /
  598. o-o o-o
  599. ,---'
  600. o-o o-o
  601. / / /
  602. o-o o-o
  603. */
  604. //This table must be here because scan8[constant] must be known at compiletime
  605. static const uint8_t scan8[16 + 2*4]={
  606. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  607. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  608. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  609. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  610. 1+1*8, 2+1*8,
  611. 1+2*8, 2+2*8,
  612. 1+4*8, 2+4*8,
  613. 1+5*8, 2+5*8,
  614. };
  615. static av_always_inline uint32_t pack16to32(int a, int b){
  616. #if HAVE_BIGENDIAN
  617. return (b&0xFFFF) + (a<<16);
  618. #else
  619. return (a&0xFFFF) + (b<<16);
  620. #endif
  621. }
  622. static av_always_inline uint16_t pack8to16(int a, int b){
  623. #if HAVE_BIGENDIAN
  624. return (b&0xFF) + (a<<8);
  625. #else
  626. return (a&0xFF) + (b<<8);
  627. #endif
  628. }
  629. /**
  630. * gets the chroma qp.
  631. */
  632. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  633. return h->pps.chroma_qp_table[t][qscale];
  634. }
  635. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  636. static void fill_decode_neighbors(H264Context *h, int mb_type){
  637. MpegEncContext * const s = &h->s;
  638. const int mb_xy= h->mb_xy;
  639. int topleft_xy, top_xy, topright_xy, left_xy[2];
  640. static const uint8_t left_block_options[4][16]={
  641. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  642. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  643. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  644. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  645. };
  646. h->topleft_partition= -1;
  647. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  648. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  649. * stuff, I can't imagine that these complex rules are worth it. */
  650. topleft_xy = top_xy - 1;
  651. topright_xy= top_xy + 1;
  652. left_xy[1] = left_xy[0] = mb_xy-1;
  653. h->left_block = left_block_options[0];
  654. if(FRAME_MBAFF){
  655. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  656. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  657. if(s->mb_y&1){
  658. if (left_mb_field_flag != curr_mb_field_flag) {
  659. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  660. if (curr_mb_field_flag) {
  661. left_xy[1] += s->mb_stride;
  662. h->left_block = left_block_options[3];
  663. } else {
  664. topleft_xy += s->mb_stride;
  665. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  666. h->topleft_partition = 0;
  667. h->left_block = left_block_options[1];
  668. }
  669. }
  670. }else{
  671. if(curr_mb_field_flag){
  672. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  673. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  674. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  675. }
  676. if (left_mb_field_flag != curr_mb_field_flag) {
  677. if (curr_mb_field_flag) {
  678. left_xy[1] += s->mb_stride;
  679. h->left_block = left_block_options[3];
  680. } else {
  681. h->left_block = left_block_options[2];
  682. }
  683. }
  684. }
  685. }
  686. h->topleft_mb_xy = topleft_xy;
  687. h->top_mb_xy = top_xy;
  688. h->topright_mb_xy= topright_xy;
  689. h->left_mb_xy[0] = left_xy[0];
  690. h->left_mb_xy[1] = left_xy[1];
  691. //FIXME do we need all in the context?
  692. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  693. h->top_type = s->current_picture.mb_type[top_xy] ;
  694. h->topright_type= s->current_picture.mb_type[topright_xy];
  695. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  696. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  697. if(FMO){
  698. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  699. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  700. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  701. }else{
  702. if(h->slice_table[topleft_xy ] != h->slice_num){
  703. h->topleft_type = 0;
  704. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  705. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  706. }
  707. }
  708. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  709. }
  710. static void fill_decode_caches(H264Context *h, int mb_type){
  711. MpegEncContext * const s = &h->s;
  712. int topleft_xy, top_xy, topright_xy, left_xy[2];
  713. int topleft_type, top_type, topright_type, left_type[2];
  714. const uint8_t * left_block= h->left_block;
  715. int i;
  716. topleft_xy = h->topleft_mb_xy ;
  717. top_xy = h->top_mb_xy ;
  718. topright_xy = h->topright_mb_xy;
  719. left_xy[0] = h->left_mb_xy[0] ;
  720. left_xy[1] = h->left_mb_xy[1] ;
  721. topleft_type = h->topleft_type ;
  722. top_type = h->top_type ;
  723. topright_type= h->topright_type ;
  724. left_type[0] = h->left_type[0] ;
  725. left_type[1] = h->left_type[1] ;
  726. if(!IS_SKIP(mb_type)){
  727. if(IS_INTRA(mb_type)){
  728. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  729. h->topleft_samples_available=
  730. h->top_samples_available=
  731. h->left_samples_available= 0xFFFF;
  732. h->topright_samples_available= 0xEEEA;
  733. if(!(top_type & type_mask)){
  734. h->topleft_samples_available= 0xB3FF;
  735. h->top_samples_available= 0x33FF;
  736. h->topright_samples_available= 0x26EA;
  737. }
  738. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  739. if(IS_INTERLACED(mb_type)){
  740. if(!(left_type[0] & type_mask)){
  741. h->topleft_samples_available&= 0xDFFF;
  742. h->left_samples_available&= 0x5FFF;
  743. }
  744. if(!(left_type[1] & type_mask)){
  745. h->topleft_samples_available&= 0xFF5F;
  746. h->left_samples_available&= 0xFF5F;
  747. }
  748. }else{
  749. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  750. assert(left_xy[0] == left_xy[1]);
  751. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  752. h->topleft_samples_available&= 0xDF5F;
  753. h->left_samples_available&= 0x5F5F;
  754. }
  755. }
  756. }else{
  757. if(!(left_type[0] & type_mask)){
  758. h->topleft_samples_available&= 0xDF5F;
  759. h->left_samples_available&= 0x5F5F;
  760. }
  761. }
  762. if(!(topleft_type & type_mask))
  763. h->topleft_samples_available&= 0x7FFF;
  764. if(!(topright_type & type_mask))
  765. h->topright_samples_available&= 0xFBFF;
  766. if(IS_INTRA4x4(mb_type)){
  767. if(IS_INTRA4x4(top_type)){
  768. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  769. }else{
  770. h->intra4x4_pred_mode_cache[4+8*0]=
  771. h->intra4x4_pred_mode_cache[5+8*0]=
  772. h->intra4x4_pred_mode_cache[6+8*0]=
  773. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  774. }
  775. for(i=0; i<2; i++){
  776. if(IS_INTRA4x4(left_type[i])){
  777. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  778. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  779. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  780. }else{
  781. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  782. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  783. }
  784. }
  785. }
  786. }
  787. /*
  788. 0 . T T. T T T T
  789. 1 L . .L . . . .
  790. 2 L . .L . . . .
  791. 3 . T TL . . . .
  792. 4 L . .L . . . .
  793. 5 L . .. . . . .
  794. */
  795. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  796. if(top_type){
  797. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  798. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  799. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  800. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  801. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  802. }else {
  803. h->non_zero_count_cache[1+8*0]=
  804. h->non_zero_count_cache[2+8*0]=
  805. h->non_zero_count_cache[1+8*3]=
  806. h->non_zero_count_cache[2+8*3]=
  807. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  808. }
  809. for (i=0; i<2; i++) {
  810. if(left_type[i]){
  811. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  812. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  813. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  814. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  815. }else{
  816. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  817. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  818. h->non_zero_count_cache[0+8*1 + 8*i]=
  819. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  820. }
  821. }
  822. if( CABAC ) {
  823. // top_cbp
  824. if(top_type) {
  825. h->top_cbp = h->cbp_table[top_xy];
  826. } else {
  827. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  828. }
  829. // left_cbp
  830. if (left_type[0]) {
  831. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  832. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  833. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  834. } else {
  835. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  836. }
  837. }
  838. }
  839. #if 1
  840. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  841. int list;
  842. for(list=0; list<h->list_count; list++){
  843. if(!USES_LIST(mb_type, list)){
  844. /*if(!h->mv_cache_clean[list]){
  845. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  846. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  847. h->mv_cache_clean[list]= 1;
  848. }*/
  849. continue;
  850. }
  851. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  852. h->mv_cache_clean[list]= 0;
  853. if(USES_LIST(top_type, list)){
  854. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  855. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  856. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  857. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  858. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  859. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  860. }else{
  861. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  862. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  863. }
  864. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  865. for(i=0; i<2; i++){
  866. int cache_idx = scan8[0] - 1 + i*2*8;
  867. if(USES_LIST(left_type[i], list)){
  868. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  869. const int b8_xy= 4*left_xy[i] + 1;
  870. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  871. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  872. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  873. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  874. }else{
  875. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  876. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  877. h->ref_cache[list][cache_idx ]=
  878. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  879. }
  880. }
  881. }else{
  882. if(USES_LIST(left_type[0], list)){
  883. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  884. const int b8_xy= 4*left_xy[0] + 1;
  885. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  886. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  887. }else{
  888. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  889. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  890. }
  891. }
  892. if(USES_LIST(topright_type, list)){
  893. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  894. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  895. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  896. }else{
  897. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  898. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  899. }
  900. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  901. if(USES_LIST(topleft_type, list)){
  902. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  903. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  904. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  905. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  906. }else{
  907. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  908. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  909. }
  910. }
  911. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  912. continue;
  913. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  914. h->ref_cache[list][scan8[4 ]] =
  915. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  916. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  917. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  918. if( CABAC ) {
  919. /* XXX beurk, Load mvd */
  920. if(USES_LIST(top_type, list)){
  921. const int b_xy= h->mb2br_xy[top_xy];
  922. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  923. }else{
  924. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  925. }
  926. if(USES_LIST(left_type[0], list)){
  927. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  928. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  929. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  930. }else{
  931. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  932. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  933. }
  934. if(USES_LIST(left_type[1], list)){
  935. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  936. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  937. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  938. }else{
  939. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  940. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  941. }
  942. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  943. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  944. if(h->slice_type_nos == FF_B_TYPE){
  945. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  946. if(IS_DIRECT(top_type)){
  947. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  948. }else if(IS_8X8(top_type)){
  949. int b8_xy = 4*top_xy;
  950. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  951. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  952. }else{
  953. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  954. }
  955. if(IS_DIRECT(left_type[0]))
  956. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  957. else if(IS_8X8(left_type[0]))
  958. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  959. else
  960. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  961. if(IS_DIRECT(left_type[1]))
  962. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  963. else if(IS_8X8(left_type[1]))
  964. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  965. else
  966. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  967. }
  968. }
  969. }
  970. if(FRAME_MBAFF){
  971. #define MAP_MVS\
  972. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  973. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  974. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  975. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  976. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  977. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  978. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  979. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  980. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  981. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  982. if(MB_FIELD){
  983. #define MAP_F2F(idx, mb_type)\
  984. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  985. h->ref_cache[list][idx] <<= 1;\
  986. h->mv_cache[list][idx][1] /= 2;\
  987. h->mvd_cache[list][idx][1] >>=1;\
  988. }
  989. MAP_MVS
  990. #undef MAP_F2F
  991. }else{
  992. #define MAP_F2F(idx, mb_type)\
  993. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  994. h->ref_cache[list][idx] >>= 1;\
  995. h->mv_cache[list][idx][1] <<= 1;\
  996. h->mvd_cache[list][idx][1] <<= 1;\
  997. }
  998. MAP_MVS
  999. #undef MAP_F2F
  1000. }
  1001. }
  1002. }
  1003. }
  1004. #endif
  1005. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1006. }
  1007. /**
  1008. *
  1009. * @returns non zero if the loop filter can be skiped
  1010. */
  1011. static int fill_filter_caches(H264Context *h, int mb_type){
  1012. MpegEncContext * const s = &h->s;
  1013. const int mb_xy= h->mb_xy;
  1014. int top_xy, left_xy[2];
  1015. int top_type, left_type[2];
  1016. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  1017. //FIXME deblocking could skip the intra and nnz parts.
  1018. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1019. * stuff, I can't imagine that these complex rules are worth it. */
  1020. left_xy[1] = left_xy[0] = mb_xy-1;
  1021. if(FRAME_MBAFF){
  1022. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  1023. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1024. if(s->mb_y&1){
  1025. if (left_mb_field_flag != curr_mb_field_flag) {
  1026. left_xy[0] -= s->mb_stride;
  1027. }
  1028. }else{
  1029. if(curr_mb_field_flag){
  1030. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1031. }
  1032. if (left_mb_field_flag != curr_mb_field_flag) {
  1033. left_xy[1] += s->mb_stride;
  1034. }
  1035. }
  1036. }
  1037. h->top_mb_xy = top_xy;
  1038. h->left_mb_xy[0] = left_xy[0];
  1039. h->left_mb_xy[1] = left_xy[1];
  1040. {
  1041. //for sufficiently low qp, filtering wouldn't do anything
  1042. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1043. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1044. int qp = s->current_picture.qscale_table[mb_xy];
  1045. if(qp <= qp_thresh
  1046. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1047. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1048. if(!FRAME_MBAFF)
  1049. return 1;
  1050. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1051. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1052. return 1;
  1053. }
  1054. }
  1055. top_type = s->current_picture.mb_type[top_xy] ;
  1056. left_type[0] = s->current_picture.mb_type[left_xy[0]];
  1057. left_type[1] = s->current_picture.mb_type[left_xy[1]];
  1058. if(h->deblocking_filter == 2){
  1059. if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
  1060. if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0;
  1061. }else{
  1062. if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
  1063. if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0;
  1064. }
  1065. h->top_type = top_type ;
  1066. h->left_type[0]= left_type[0];
  1067. h->left_type[1]= left_type[1];
  1068. if(IS_INTRA(mb_type))
  1069. return 0;
  1070. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1071. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1072. AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
  1073. AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
  1074. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  1075. h->cbp= h->cbp_table[mb_xy];
  1076. {
  1077. int list;
  1078. for(list=0; list<h->list_count; list++){
  1079. int8_t *ref;
  1080. int y, b_stride;
  1081. int16_t (*mv_dst)[2];
  1082. int16_t (*mv_src)[2];
  1083. if(!USES_LIST(mb_type, list)){
  1084. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  1085. AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1086. AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1087. AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1088. AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1089. continue;
  1090. }
  1091. ref = &s->current_picture.ref_index[list][4*mb_xy];
  1092. {
  1093. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1094. AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1095. AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1096. ref += 2;
  1097. AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1098. AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1099. }
  1100. b_stride = h->b_stride;
  1101. mv_dst = &h->mv_cache[list][scan8[0]];
  1102. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  1103. for(y=0; y<4; y++){
  1104. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  1105. }
  1106. }
  1107. }
  1108. /*
  1109. 0 . T T. T T T T
  1110. 1 L . .L . . . .
  1111. 2 L . .L . . . .
  1112. 3 . T TL . . . .
  1113. 4 L . .L . . . .
  1114. 5 L . .. . . . .
  1115. */
  1116. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  1117. if(top_type){
  1118. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  1119. }
  1120. if(left_type[0]){
  1121. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  1122. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  1123. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  1124. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  1125. }
  1126. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  1127. if(!CABAC && h->pps.transform_8x8_mode){
  1128. if(IS_8x8DCT(top_type)){
  1129. h->non_zero_count_cache[4+8*0]=
  1130. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  1131. h->non_zero_count_cache[6+8*0]=
  1132. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  1133. }
  1134. if(IS_8x8DCT(left_type[0])){
  1135. h->non_zero_count_cache[3+8*1]=
  1136. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  1137. }
  1138. if(IS_8x8DCT(left_type[1])){
  1139. h->non_zero_count_cache[3+8*3]=
  1140. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  1141. }
  1142. if(IS_8x8DCT(mb_type)){
  1143. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  1144. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  1145. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  1146. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  1147. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  1148. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  1149. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  1150. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  1151. }
  1152. }
  1153. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  1154. int list;
  1155. for(list=0; list<h->list_count; list++){
  1156. if(USES_LIST(top_type, list)){
  1157. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1158. const int b8_xy= 4*top_xy + 2;
  1159. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1160. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  1161. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  1162. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  1163. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  1164. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  1165. }else{
  1166. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  1167. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1168. }
  1169. if(!IS_INTERLACED(mb_type^left_type[0])){
  1170. if(USES_LIST(left_type[0], list)){
  1171. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1172. const int b8_xy= 4*left_xy[0] + 1;
  1173. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1174. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
  1175. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
  1176. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
  1177. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
  1178. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1179. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
  1180. h->ref_cache[list][scan8[0] - 1 +16 ]=
  1181. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
  1182. }else{
  1183. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
  1184. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
  1185. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
  1186. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
  1187. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1188. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  1189. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  1190. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  1191. }
  1192. }
  1193. }
  1194. }
  1195. return 0;
  1196. }
  1197. /**
  1198. * gets the predicted intra4x4 prediction mode.
  1199. */
  1200. static inline int pred_intra_mode(H264Context *h, int n){
  1201. const int index8= scan8[n];
  1202. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1203. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1204. const int min= FFMIN(left, top);
  1205. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1206. if(min<0) return DC_PRED;
  1207. else return min;
  1208. }
  1209. static inline void write_back_non_zero_count(H264Context *h){
  1210. const int mb_xy= h->mb_xy;
  1211. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1212. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1213. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1214. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1215. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1216. }
  1217. static inline void write_back_motion(H264Context *h, int mb_type){
  1218. MpegEncContext * const s = &h->s;
  1219. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1220. const int b8_xy= 4*h->mb_xy;
  1221. int list;
  1222. if(!USES_LIST(mb_type, 0))
  1223. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1224. for(list=0; list<h->list_count; list++){
  1225. int y, b_stride;
  1226. int16_t (*mv_dst)[2];
  1227. int16_t (*mv_src)[2];
  1228. if(!USES_LIST(mb_type, list))
  1229. continue;
  1230. b_stride = h->b_stride;
  1231. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1232. mv_src = &h->mv_cache[list][scan8[0]];
  1233. for(y=0; y<4; y++){
  1234. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1235. }
  1236. if( CABAC ) {
  1237. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1238. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1239. if(IS_SKIP(mb_type))
  1240. AV_ZERO128(mvd_dst);
  1241. else{
  1242. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1243. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1244. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1245. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1246. }
  1247. }
  1248. {
  1249. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1250. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1251. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1252. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1253. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1254. }
  1255. }
  1256. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1257. if(IS_8X8(mb_type)){
  1258. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1259. direct_table[1] = h->sub_mb_type[1]>>1;
  1260. direct_table[2] = h->sub_mb_type[2]>>1;
  1261. direct_table[3] = h->sub_mb_type[3]>>1;
  1262. }
  1263. }
  1264. }
  1265. static inline int get_dct8x8_allowed(H264Context *h){
  1266. if(h->sps.direct_8x8_inference_flag)
  1267. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1268. else
  1269. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1270. }
  1271. /**
  1272. * decodes a P_SKIP or B_SKIP macroblock
  1273. */
  1274. static void decode_mb_skip(H264Context *h){
  1275. MpegEncContext * const s = &h->s;
  1276. const int mb_xy= h->mb_xy;
  1277. int mb_type=0;
  1278. memset(h->non_zero_count[mb_xy], 0, 32);
  1279. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1280. if(MB_FIELD)
  1281. mb_type|= MB_TYPE_INTERLACED;
  1282. if( h->slice_type_nos == FF_B_TYPE )
  1283. {
  1284. // just for fill_caches. pred_direct_motion will set the real mb_type
  1285. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1286. if(h->direct_spatial_mv_pred){
  1287. fill_decode_neighbors(h, mb_type);
  1288. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1289. }
  1290. ff_h264_pred_direct_motion(h, &mb_type);
  1291. mb_type|= MB_TYPE_SKIP;
  1292. }
  1293. else
  1294. {
  1295. int mx, my;
  1296. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1297. fill_decode_neighbors(h, mb_type);
  1298. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1299. pred_pskip_motion(h, &mx, &my);
  1300. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1301. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1302. }
  1303. write_back_motion(h, mb_type);
  1304. s->current_picture.mb_type[mb_xy]= mb_type;
  1305. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1306. h->slice_table[ mb_xy ]= h->slice_num;
  1307. h->prev_mb_skipped= 1;
  1308. }
  1309. #include "h264_mvpred.h" //For pred_pskip_motion()
  1310. #endif /* AVCODEC_H264_H */