You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1123 lines
40KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
  45. * http://www.geocities.com/SiliconValley/8682/aud3.txt
  46. * http://openquicktime.sourceforge.net/plugins.htm
  47. * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
  48. * http://www.cs.ucla.edu/~leec/mediabench/applications.html
  49. * SoX source code http://home.sprynet.com/~cbagwell/sox.html
  50. *
  51. * CD-ROM XA:
  52. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
  53. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
  54. * readstr http://www.geocities.co.jp/Playtown/2004/
  55. */
  56. /* These are for CD-ROM XA ADPCM */
  57. static const int xa_adpcm_table[5][2] = {
  58. { 0, 0 },
  59. { 60, 0 },
  60. { 115, -52 },
  61. { 98, -55 },
  62. { 122, -60 }
  63. };
  64. static const int ea_adpcm_table[] = {
  65. 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
  66. 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
  67. };
  68. // padded to zero where table size is less then 16
  69. static const int swf_index_tables[4][16] = {
  70. /*2*/ { -1, 2 },
  71. /*3*/ { -1, -1, 2, 4 },
  72. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  73. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  74. };
  75. /* end of tables */
  76. typedef struct ADPCMDecodeContext {
  77. ADPCMChannelStatus status[6];
  78. } ADPCMDecodeContext;
  79. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  80. {
  81. ADPCMDecodeContext *c = avctx->priv_data;
  82. unsigned int max_channels = 2;
  83. switch(avctx->codec->id) {
  84. case CODEC_ID_ADPCM_EA_R1:
  85. case CODEC_ID_ADPCM_EA_R2:
  86. case CODEC_ID_ADPCM_EA_R3:
  87. case CODEC_ID_ADPCM_EA_XAS:
  88. max_channels = 6;
  89. break;
  90. }
  91. if(avctx->channels > max_channels){
  92. return -1;
  93. }
  94. switch(avctx->codec->id) {
  95. case CODEC_ID_ADPCM_CT:
  96. c->status[0].step = c->status[1].step = 511;
  97. break;
  98. case CODEC_ID_ADPCM_IMA_WAV:
  99. if (avctx->bits_per_coded_sample != 4) {
  100. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  101. return -1;
  102. }
  103. break;
  104. case CODEC_ID_ADPCM_IMA_WS:
  105. if (avctx->extradata && avctx->extradata_size == 2 * 4) {
  106. c->status[0].predictor = AV_RL32(avctx->extradata);
  107. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  108. }
  109. break;
  110. default:
  111. break;
  112. }
  113. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  114. return 0;
  115. }
  116. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  117. {
  118. int step_index;
  119. int predictor;
  120. int sign, delta, diff, step;
  121. step = ff_adpcm_step_table[c->step_index];
  122. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  123. if (step_index < 0) step_index = 0;
  124. else if (step_index > 88) step_index = 88;
  125. sign = nibble & 8;
  126. delta = nibble & 7;
  127. /* perform direct multiplication instead of series of jumps proposed by
  128. * the reference ADPCM implementation since modern CPUs can do the mults
  129. * quickly enough */
  130. diff = ((2 * delta + 1) * step) >> shift;
  131. predictor = c->predictor;
  132. if (sign) predictor -= diff;
  133. else predictor += diff;
  134. c->predictor = av_clip_int16(predictor);
  135. c->step_index = step_index;
  136. return (short)c->predictor;
  137. }
  138. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  139. {
  140. int step_index;
  141. int predictor;
  142. int diff, step;
  143. step = ff_adpcm_step_table[c->step_index];
  144. step_index = c->step_index + ff_adpcm_index_table[nibble];
  145. step_index = av_clip(step_index, 0, 88);
  146. diff = step >> 3;
  147. if (nibble & 4) diff += step;
  148. if (nibble & 2) diff += step >> 1;
  149. if (nibble & 1) diff += step >> 2;
  150. if (nibble & 8)
  151. predictor = c->predictor - diff;
  152. else
  153. predictor = c->predictor + diff;
  154. c->predictor = av_clip_int16(predictor);
  155. c->step_index = step_index;
  156. return c->predictor;
  157. }
  158. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
  159. {
  160. int predictor;
  161. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  162. predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  163. c->sample2 = c->sample1;
  164. c->sample1 = av_clip_int16(predictor);
  165. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  166. if (c->idelta < 16) c->idelta = 16;
  167. return c->sample1;
  168. }
  169. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  170. {
  171. int sign, delta, diff;
  172. int new_step;
  173. sign = nibble & 8;
  174. delta = nibble & 7;
  175. /* perform direct multiplication instead of series of jumps proposed by
  176. * the reference ADPCM implementation since modern CPUs can do the mults
  177. * quickly enough */
  178. diff = ((2 * delta + 1) * c->step) >> 3;
  179. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  180. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  181. c->predictor = av_clip_int16(c->predictor);
  182. /* calculate new step and clamp it to range 511..32767 */
  183. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  184. c->step = av_clip(new_step, 511, 32767);
  185. return (short)c->predictor;
  186. }
  187. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  188. {
  189. int sign, delta, diff;
  190. sign = nibble & (1<<(size-1));
  191. delta = nibble & ((1<<(size-1))-1);
  192. diff = delta << (7 + c->step + shift);
  193. /* clamp result */
  194. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  195. /* calculate new step */
  196. if (delta >= (2*size - 3) && c->step < 3)
  197. c->step++;
  198. else if (delta == 0 && c->step > 0)
  199. c->step--;
  200. return (short) c->predictor;
  201. }
  202. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  203. {
  204. if(!c->step) {
  205. c->predictor = 0;
  206. c->step = 127;
  207. }
  208. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  209. c->predictor = av_clip_int16(c->predictor);
  210. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  211. c->step = av_clip(c->step, 127, 24567);
  212. return c->predictor;
  213. }
  214. static void xa_decode(short *out, const unsigned char *in,
  215. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  216. {
  217. int i, j;
  218. int shift,filter,f0,f1;
  219. int s_1,s_2;
  220. int d,s,t;
  221. for(i=0;i<4;i++) {
  222. shift = 12 - (in[4+i*2] & 15);
  223. filter = in[4+i*2] >> 4;
  224. f0 = xa_adpcm_table[filter][0];
  225. f1 = xa_adpcm_table[filter][1];
  226. s_1 = left->sample1;
  227. s_2 = left->sample2;
  228. for(j=0;j<28;j++) {
  229. d = in[16+i+j*4];
  230. t = (signed char)(d<<4)>>4;
  231. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  232. s_2 = s_1;
  233. s_1 = av_clip_int16(s);
  234. *out = s_1;
  235. out += inc;
  236. }
  237. if (inc==2) { /* stereo */
  238. left->sample1 = s_1;
  239. left->sample2 = s_2;
  240. s_1 = right->sample1;
  241. s_2 = right->sample2;
  242. out = out + 1 - 28*2;
  243. }
  244. shift = 12 - (in[5+i*2] & 15);
  245. filter = in[5+i*2] >> 4;
  246. f0 = xa_adpcm_table[filter][0];
  247. f1 = xa_adpcm_table[filter][1];
  248. for(j=0;j<28;j++) {
  249. d = in[16+i+j*4];
  250. t = (signed char)d >> 4;
  251. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  252. s_2 = s_1;
  253. s_1 = av_clip_int16(s);
  254. *out = s_1;
  255. out += inc;
  256. }
  257. if (inc==2) { /* stereo */
  258. right->sample1 = s_1;
  259. right->sample2 = s_2;
  260. out -= 1;
  261. } else {
  262. left->sample1 = s_1;
  263. left->sample2 = s_2;
  264. }
  265. }
  266. }
  267. /* DK3 ADPCM support macro */
  268. #define DK3_GET_NEXT_NIBBLE() \
  269. if (decode_top_nibble_next) \
  270. { \
  271. nibble = last_byte >> 4; \
  272. decode_top_nibble_next = 0; \
  273. } \
  274. else \
  275. { \
  276. last_byte = *src++; \
  277. if (src >= buf + buf_size) break; \
  278. nibble = last_byte & 0x0F; \
  279. decode_top_nibble_next = 1; \
  280. }
  281. static int adpcm_decode_frame(AVCodecContext *avctx,
  282. void *data, int *data_size,
  283. AVPacket *avpkt)
  284. {
  285. const uint8_t *buf = avpkt->data;
  286. int buf_size = avpkt->size;
  287. ADPCMDecodeContext *c = avctx->priv_data;
  288. ADPCMChannelStatus *cs;
  289. int n, m, channel, i;
  290. int block_predictor[2];
  291. short *samples;
  292. short *samples_end;
  293. const uint8_t *src;
  294. int st; /* stereo */
  295. /* DK3 ADPCM accounting variables */
  296. unsigned char last_byte = 0;
  297. unsigned char nibble;
  298. int decode_top_nibble_next = 0;
  299. int diff_channel;
  300. /* EA ADPCM state variables */
  301. uint32_t samples_in_chunk;
  302. int32_t previous_left_sample, previous_right_sample;
  303. int32_t current_left_sample, current_right_sample;
  304. int32_t next_left_sample, next_right_sample;
  305. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  306. uint8_t shift_left, shift_right;
  307. int count1, count2;
  308. int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
  309. if (!buf_size)
  310. return 0;
  311. //should protect all 4bit ADPCM variants
  312. //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
  313. //
  314. if(*data_size/4 < buf_size + 8)
  315. return -1;
  316. samples = data;
  317. samples_end= samples + *data_size/2;
  318. *data_size= 0;
  319. src = buf;
  320. st = avctx->channels == 2 ? 1 : 0;
  321. switch(avctx->codec->id) {
  322. case CODEC_ID_ADPCM_IMA_QT:
  323. n = buf_size - 2*avctx->channels;
  324. for (channel = 0; channel < avctx->channels; channel++) {
  325. int16_t predictor;
  326. int step_index;
  327. cs = &(c->status[channel]);
  328. /* (pppppp) (piiiiiii) */
  329. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  330. predictor = AV_RB16(src);
  331. step_index = predictor & 0x7F;
  332. predictor &= 0xFF80;
  333. src += 2;
  334. if (cs->step_index == step_index) {
  335. int diff = (int)predictor - cs->predictor;
  336. if (diff < 0)
  337. diff = - diff;
  338. if (diff > 0x7f)
  339. goto update;
  340. } else {
  341. update:
  342. cs->step_index = step_index;
  343. cs->predictor = predictor;
  344. }
  345. if (cs->step_index > 88){
  346. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  347. cs->step_index = 88;
  348. }
  349. samples = (short*)data + channel;
  350. for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
  351. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
  352. samples += avctx->channels;
  353. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
  354. samples += avctx->channels;
  355. src ++;
  356. }
  357. }
  358. if (st)
  359. samples--;
  360. break;
  361. case CODEC_ID_ADPCM_IMA_WAV:
  362. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  363. buf_size = avctx->block_align;
  364. // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
  365. for(i=0; i<avctx->channels; i++){
  366. cs = &(c->status[i]);
  367. cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
  368. cs->step_index = *src++;
  369. if (cs->step_index > 88){
  370. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  371. cs->step_index = 88;
  372. }
  373. if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
  374. }
  375. while(src < buf + buf_size){
  376. for(m=0; m<4; m++){
  377. for(i=0; i<=st; i++)
  378. *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
  379. for(i=0; i<=st; i++)
  380. *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
  381. src++;
  382. }
  383. src += 4*st;
  384. }
  385. break;
  386. case CODEC_ID_ADPCM_4XM:
  387. cs = &(c->status[0]);
  388. c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
  389. if(st){
  390. c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
  391. }
  392. c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
  393. if(st){
  394. c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
  395. }
  396. if (cs->step_index < 0) cs->step_index = 0;
  397. if (cs->step_index > 88) cs->step_index = 88;
  398. m= (buf_size - (src - buf))>>st;
  399. for(i=0; i<m; i++) {
  400. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
  401. if (st)
  402. *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
  403. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
  404. if (st)
  405. *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
  406. }
  407. src += m<<st;
  408. break;
  409. case CODEC_ID_ADPCM_MS:
  410. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  411. buf_size = avctx->block_align;
  412. n = buf_size - 7 * avctx->channels;
  413. if (n < 0)
  414. return -1;
  415. block_predictor[0] = av_clip(*src++, 0, 6);
  416. block_predictor[1] = 0;
  417. if (st)
  418. block_predictor[1] = av_clip(*src++, 0, 6);
  419. c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
  420. if (st){
  421. c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
  422. }
  423. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[0]];
  424. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[0]];
  425. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[1]];
  426. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[1]];
  427. c->status[0].sample1 = bytestream_get_le16(&src);
  428. if (st) c->status[1].sample1 = bytestream_get_le16(&src);
  429. c->status[0].sample2 = bytestream_get_le16(&src);
  430. if (st) c->status[1].sample2 = bytestream_get_le16(&src);
  431. *samples++ = c->status[0].sample2;
  432. if (st) *samples++ = c->status[1].sample2;
  433. *samples++ = c->status[0].sample1;
  434. if (st) *samples++ = c->status[1].sample1;
  435. for(;n>0;n--) {
  436. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
  437. *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
  438. src ++;
  439. }
  440. break;
  441. case CODEC_ID_ADPCM_IMA_DK4:
  442. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  443. buf_size = avctx->block_align;
  444. c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
  445. c->status[0].step_index = *src++;
  446. src++;
  447. *samples++ = c->status[0].predictor;
  448. if (st) {
  449. c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
  450. c->status[1].step_index = *src++;
  451. src++;
  452. *samples++ = c->status[1].predictor;
  453. }
  454. while (src < buf + buf_size) {
  455. /* take care of the top nibble (always left or mono channel) */
  456. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  457. src[0] >> 4, 3);
  458. /* take care of the bottom nibble, which is right sample for
  459. * stereo, or another mono sample */
  460. if (st)
  461. *samples++ = adpcm_ima_expand_nibble(&c->status[1],
  462. src[0] & 0x0F, 3);
  463. else
  464. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  465. src[0] & 0x0F, 3);
  466. src++;
  467. }
  468. break;
  469. case CODEC_ID_ADPCM_IMA_DK3:
  470. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  471. buf_size = avctx->block_align;
  472. if(buf_size + 16 > (samples_end - samples)*3/8)
  473. return -1;
  474. c->status[0].predictor = (int16_t)AV_RL16(src + 10);
  475. c->status[1].predictor = (int16_t)AV_RL16(src + 12);
  476. c->status[0].step_index = src[14];
  477. c->status[1].step_index = src[15];
  478. /* sign extend the predictors */
  479. src += 16;
  480. diff_channel = c->status[1].predictor;
  481. /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
  482. * the buffer is consumed */
  483. while (1) {
  484. /* for this algorithm, c->status[0] is the sum channel and
  485. * c->status[1] is the diff channel */
  486. /* process the first predictor of the sum channel */
  487. DK3_GET_NEXT_NIBBLE();
  488. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  489. /* process the diff channel predictor */
  490. DK3_GET_NEXT_NIBBLE();
  491. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  492. /* process the first pair of stereo PCM samples */
  493. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  494. *samples++ = c->status[0].predictor + c->status[1].predictor;
  495. *samples++ = c->status[0].predictor - c->status[1].predictor;
  496. /* process the second predictor of the sum channel */
  497. DK3_GET_NEXT_NIBBLE();
  498. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  499. /* process the second pair of stereo PCM samples */
  500. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  501. *samples++ = c->status[0].predictor + c->status[1].predictor;
  502. *samples++ = c->status[0].predictor - c->status[1].predictor;
  503. }
  504. break;
  505. case CODEC_ID_ADPCM_IMA_ISS:
  506. c->status[0].predictor = (int16_t)AV_RL16(src + 0);
  507. c->status[0].step_index = src[2];
  508. src += 4;
  509. if(st) {
  510. c->status[1].predictor = (int16_t)AV_RL16(src + 0);
  511. c->status[1].step_index = src[2];
  512. src += 4;
  513. }
  514. while (src < buf + buf_size) {
  515. if (st) {
  516. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  517. src[0] >> 4 , 3);
  518. *samples++ = adpcm_ima_expand_nibble(&c->status[1],
  519. src[0] & 0x0F, 3);
  520. } else {
  521. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  522. src[0] & 0x0F, 3);
  523. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  524. src[0] >> 4 , 3);
  525. }
  526. src++;
  527. }
  528. break;
  529. case CODEC_ID_ADPCM_IMA_WS:
  530. /* no per-block initialization; just start decoding the data */
  531. while (src < buf + buf_size) {
  532. if (st) {
  533. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  534. src[0] >> 4 , 3);
  535. *samples++ = adpcm_ima_expand_nibble(&c->status[1],
  536. src[0] & 0x0F, 3);
  537. } else {
  538. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  539. src[0] >> 4 , 3);
  540. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  541. src[0] & 0x0F, 3);
  542. }
  543. src++;
  544. }
  545. break;
  546. case CODEC_ID_ADPCM_XA:
  547. while (buf_size >= 128) {
  548. xa_decode(samples, src, &c->status[0], &c->status[1],
  549. avctx->channels);
  550. src += 128;
  551. samples += 28 * 8;
  552. buf_size -= 128;
  553. }
  554. break;
  555. case CODEC_ID_ADPCM_IMA_EA_EACS:
  556. samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
  557. if (samples_in_chunk > buf_size-4-(8<<st)) {
  558. src += buf_size - 4;
  559. break;
  560. }
  561. for (i=0; i<=st; i++)
  562. c->status[i].step_index = bytestream_get_le32(&src);
  563. for (i=0; i<=st; i++)
  564. c->status[i].predictor = bytestream_get_le32(&src);
  565. for (; samples_in_chunk; samples_in_chunk--, src++) {
  566. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  567. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  568. }
  569. break;
  570. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  571. for (; src < buf+buf_size; src++) {
  572. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  573. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  574. }
  575. break;
  576. case CODEC_ID_ADPCM_EA:
  577. if (buf_size < 12 || AV_RL32(src) > (buf_size - 12)/30*28) {
  578. src += buf_size;
  579. break;
  580. }
  581. samples_in_chunk = AV_RL32(src);
  582. src += 4;
  583. current_left_sample = (int16_t)bytestream_get_le16(&src);
  584. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  585. current_right_sample = (int16_t)bytestream_get_le16(&src);
  586. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  587. for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
  588. coeff1l = ea_adpcm_table[ *src >> 4 ];
  589. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  590. coeff1r = ea_adpcm_table[*src & 0x0F];
  591. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  592. src++;
  593. shift_left = (*src >> 4 ) + 8;
  594. shift_right = (*src & 0x0F) + 8;
  595. src++;
  596. for (count2 = 0; count2 < 28; count2++) {
  597. next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
  598. next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
  599. src++;
  600. next_left_sample = (next_left_sample +
  601. (current_left_sample * coeff1l) +
  602. (previous_left_sample * coeff2l) + 0x80) >> 8;
  603. next_right_sample = (next_right_sample +
  604. (current_right_sample * coeff1r) +
  605. (previous_right_sample * coeff2r) + 0x80) >> 8;
  606. previous_left_sample = current_left_sample;
  607. current_left_sample = av_clip_int16(next_left_sample);
  608. previous_right_sample = current_right_sample;
  609. current_right_sample = av_clip_int16(next_right_sample);
  610. *samples++ = (unsigned short)current_left_sample;
  611. *samples++ = (unsigned short)current_right_sample;
  612. }
  613. }
  614. if (src - buf == buf_size - 2)
  615. src += 2; // Skip terminating 0x0000
  616. break;
  617. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  618. for(channel = 0; channel < avctx->channels; channel++) {
  619. for (i=0; i<2; i++)
  620. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  621. shift[channel] = (*src & 0x0F) + 8;
  622. src++;
  623. }
  624. for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
  625. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  626. for(channel = 0; channel < avctx->channels; channel++) {
  627. int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
  628. sample = (sample +
  629. c->status[channel].sample1 * coeff[channel][0] +
  630. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  631. c->status[channel].sample2 = c->status[channel].sample1;
  632. c->status[channel].sample1 = av_clip_int16(sample);
  633. *samples++ = c->status[channel].sample1;
  634. }
  635. }
  636. src+=avctx->channels;
  637. }
  638. break;
  639. case CODEC_ID_ADPCM_EA_R1:
  640. case CODEC_ID_ADPCM_EA_R2:
  641. case CODEC_ID_ADPCM_EA_R3: {
  642. /* channel numbering
  643. 2chan: 0=fl, 1=fr
  644. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  645. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  646. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  647. int32_t previous_sample, current_sample, next_sample;
  648. int32_t coeff1, coeff2;
  649. uint8_t shift;
  650. unsigned int channel;
  651. uint16_t *samplesC;
  652. const uint8_t *srcC;
  653. const uint8_t *src_end = buf + buf_size;
  654. samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
  655. : bytestream_get_le32(&src)) / 28;
  656. if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
  657. 28*samples_in_chunk*avctx->channels > samples_end-samples) {
  658. src += buf_size - 4;
  659. break;
  660. }
  661. for (channel=0; channel<avctx->channels; channel++) {
  662. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  663. : bytestream_get_le32(&src))
  664. + (avctx->channels-channel-1) * 4;
  665. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  666. srcC = src + offset;
  667. samplesC = samples + channel;
  668. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  669. current_sample = (int16_t)bytestream_get_le16(&srcC);
  670. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  671. } else {
  672. current_sample = c->status[channel].predictor;
  673. previous_sample = c->status[channel].prev_sample;
  674. }
  675. for (count1=0; count1<samples_in_chunk; count1++) {
  676. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  677. srcC++;
  678. if (srcC > src_end - 30*2) break;
  679. current_sample = (int16_t)bytestream_get_be16(&srcC);
  680. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  681. for (count2=0; count2<28; count2++) {
  682. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  683. samplesC += avctx->channels;
  684. }
  685. } else {
  686. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  687. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  688. shift = (*srcC++ & 0x0F) + 8;
  689. if (srcC > src_end - 14) break;
  690. for (count2=0; count2<28; count2++) {
  691. if (count2 & 1)
  692. next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
  693. else
  694. next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
  695. next_sample += (current_sample * coeff1) +
  696. (previous_sample * coeff2);
  697. next_sample = av_clip_int16(next_sample >> 8);
  698. previous_sample = current_sample;
  699. current_sample = next_sample;
  700. *samplesC = current_sample;
  701. samplesC += avctx->channels;
  702. }
  703. }
  704. }
  705. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  706. c->status[channel].predictor = current_sample;
  707. c->status[channel].prev_sample = previous_sample;
  708. }
  709. }
  710. src = src + buf_size - (4 + 4*avctx->channels);
  711. samples += 28 * samples_in_chunk * avctx->channels;
  712. break;
  713. }
  714. case CODEC_ID_ADPCM_EA_XAS:
  715. if (samples_end-samples < 32*4*avctx->channels
  716. || buf_size < (4+15)*4*avctx->channels) {
  717. src += buf_size;
  718. break;
  719. }
  720. for (channel=0; channel<avctx->channels; channel++) {
  721. int coeff[2][4], shift[4];
  722. short *s2, *s = &samples[channel];
  723. for (n=0; n<4; n++, s+=32*avctx->channels) {
  724. for (i=0; i<2; i++)
  725. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  726. shift[n] = (src[2]&0x0F) + 8;
  727. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  728. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  729. }
  730. for (m=2; m<32; m+=2) {
  731. s = &samples[m*avctx->channels + channel];
  732. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  733. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  734. int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
  735. int pred = s2[-1*avctx->channels] * coeff[0][n]
  736. + s2[-2*avctx->channels] * coeff[1][n];
  737. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  738. }
  739. }
  740. }
  741. }
  742. samples += 32*4*avctx->channels;
  743. break;
  744. case CODEC_ID_ADPCM_IMA_AMV:
  745. case CODEC_ID_ADPCM_IMA_SMJPEG:
  746. c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
  747. c->status[0].step_index = bytestream_get_le16(&src);
  748. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  749. src+=4;
  750. while (src < buf + buf_size) {
  751. char hi, lo;
  752. lo = *src & 0x0F;
  753. hi = *src >> 4;
  754. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  755. FFSWAP(char, hi, lo);
  756. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  757. lo, 3);
  758. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  759. hi, 3);
  760. src++;
  761. }
  762. break;
  763. case CODEC_ID_ADPCM_CT:
  764. while (src < buf + buf_size) {
  765. if (st) {
  766. *samples++ = adpcm_ct_expand_nibble(&c->status[0],
  767. src[0] >> 4);
  768. *samples++ = adpcm_ct_expand_nibble(&c->status[1],
  769. src[0] & 0x0F);
  770. } else {
  771. *samples++ = adpcm_ct_expand_nibble(&c->status[0],
  772. src[0] >> 4);
  773. *samples++ = adpcm_ct_expand_nibble(&c->status[0],
  774. src[0] & 0x0F);
  775. }
  776. src++;
  777. }
  778. break;
  779. case CODEC_ID_ADPCM_SBPRO_4:
  780. case CODEC_ID_ADPCM_SBPRO_3:
  781. case CODEC_ID_ADPCM_SBPRO_2:
  782. if (!c->status[0].step_index) {
  783. /* the first byte is a raw sample */
  784. *samples++ = 128 * (*src++ - 0x80);
  785. if (st)
  786. *samples++ = 128 * (*src++ - 0x80);
  787. c->status[0].step_index = 1;
  788. }
  789. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  790. while (src < buf + buf_size) {
  791. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  792. src[0] >> 4, 4, 0);
  793. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  794. src[0] & 0x0F, 4, 0);
  795. src++;
  796. }
  797. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  798. while (src < buf + buf_size && samples + 2 < samples_end) {
  799. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  800. src[0] >> 5 , 3, 0);
  801. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  802. (src[0] >> 2) & 0x07, 3, 0);
  803. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  804. src[0] & 0x03, 2, 0);
  805. src++;
  806. }
  807. } else {
  808. while (src < buf + buf_size && samples + 3 < samples_end) {
  809. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  810. src[0] >> 6 , 2, 2);
  811. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  812. (src[0] >> 4) & 0x03, 2, 2);
  813. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  814. (src[0] >> 2) & 0x03, 2, 2);
  815. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  816. src[0] & 0x03, 2, 2);
  817. src++;
  818. }
  819. }
  820. break;
  821. case CODEC_ID_ADPCM_SWF:
  822. {
  823. GetBitContext gb;
  824. const int *table;
  825. int k0, signmask, nb_bits, count;
  826. int size = buf_size*8;
  827. init_get_bits(&gb, buf, size);
  828. //read bits & initial values
  829. nb_bits = get_bits(&gb, 2)+2;
  830. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  831. table = swf_index_tables[nb_bits-2];
  832. k0 = 1 << (nb_bits-2);
  833. signmask = 1 << (nb_bits-1);
  834. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  835. for (i = 0; i < avctx->channels; i++) {
  836. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  837. c->status[i].step_index = get_bits(&gb, 6);
  838. }
  839. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  840. int i;
  841. for (i = 0; i < avctx->channels; i++) {
  842. // similar to IMA adpcm
  843. int delta = get_bits(&gb, nb_bits);
  844. int step = ff_adpcm_step_table[c->status[i].step_index];
  845. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  846. int k = k0;
  847. do {
  848. if (delta & k)
  849. vpdiff += step;
  850. step >>= 1;
  851. k >>= 1;
  852. } while(k);
  853. vpdiff += step;
  854. if (delta & signmask)
  855. c->status[i].predictor -= vpdiff;
  856. else
  857. c->status[i].predictor += vpdiff;
  858. c->status[i].step_index += table[delta & (~signmask)];
  859. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  860. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  861. *samples++ = c->status[i].predictor;
  862. if (samples >= samples_end) {
  863. av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
  864. return -1;
  865. }
  866. }
  867. }
  868. }
  869. src += buf_size;
  870. break;
  871. }
  872. case CODEC_ID_ADPCM_YAMAHA:
  873. while (src < buf + buf_size) {
  874. if (st) {
  875. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
  876. src[0] & 0x0F);
  877. *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
  878. src[0] >> 4 );
  879. } else {
  880. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
  881. src[0] & 0x0F);
  882. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
  883. src[0] >> 4 );
  884. }
  885. src++;
  886. }
  887. break;
  888. case CODEC_ID_ADPCM_THP:
  889. {
  890. int table[2][16];
  891. unsigned int samplecnt;
  892. int prev[2][2];
  893. int ch;
  894. if (buf_size < 80) {
  895. av_log(avctx, AV_LOG_ERROR, "frame too small\n");
  896. return -1;
  897. }
  898. src+=4;
  899. samplecnt = bytestream_get_be32(&src);
  900. for (i = 0; i < 32; i++)
  901. table[0][i] = (int16_t)bytestream_get_be16(&src);
  902. /* Initialize the previous sample. */
  903. for (i = 0; i < 4; i++)
  904. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  905. if (samplecnt >= (samples_end - samples) / (st + 1)) {
  906. av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
  907. return -1;
  908. }
  909. for (ch = 0; ch <= st; ch++) {
  910. samples = (unsigned short *) data + ch;
  911. /* Read in every sample for this channel. */
  912. for (i = 0; i < samplecnt / 14; i++) {
  913. int index = (*src >> 4) & 7;
  914. unsigned int exp = 28 - (*src++ & 15);
  915. int factor1 = table[ch][index * 2];
  916. int factor2 = table[ch][index * 2 + 1];
  917. /* Decode 14 samples. */
  918. for (n = 0; n < 14; n++) {
  919. int32_t sampledat;
  920. if(n&1) sampledat= *src++ <<28;
  921. else sampledat= (*src&0xF0)<<24;
  922. sampledat = ((prev[ch][0]*factor1
  923. + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
  924. *samples = av_clip_int16(sampledat);
  925. prev[ch][1] = prev[ch][0];
  926. prev[ch][0] = *samples++;
  927. /* In case of stereo, skip one sample, this sample
  928. is for the other channel. */
  929. samples += st;
  930. }
  931. }
  932. }
  933. /* In the previous loop, in case stereo is used, samples is
  934. increased exactly one time too often. */
  935. samples -= st;
  936. break;
  937. }
  938. default:
  939. return -1;
  940. }
  941. *data_size = (uint8_t *)samples - (uint8_t *)data;
  942. return src - buf;
  943. }
  944. #define ADPCM_DECODER(id,name,long_name_) \
  945. AVCodec ff_ ## name ## _decoder = { \
  946. #name, \
  947. AVMEDIA_TYPE_AUDIO, \
  948. id, \
  949. sizeof(ADPCMDecodeContext), \
  950. adpcm_decode_init, \
  951. NULL, \
  952. NULL, \
  953. adpcm_decode_frame, \
  954. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  955. }
  956. /* Note: Do not forget to add new entries to the Makefile as well. */
  957. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  958. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  959. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  960. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  961. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  962. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  963. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  964. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  965. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  966. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  967. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  968. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  969. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  970. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  971. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  972. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  973. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  974. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  975. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  976. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  977. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  978. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  979. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  980. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  981. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  982. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");