You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4318 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** @name Overlap conditions for Advanced Profile */
  192. //@{
  193. enum COTypes {
  194. CONDOVER_NONE = 0,
  195. CONDOVER_ALL,
  196. CONDOVER_SELECT
  197. };
  198. //@}
  199. /** The VC1 Context
  200. * @fixme Change size wherever another size is more efficient
  201. * Many members are only used for Advanced Profile
  202. */
  203. typedef struct VC1Context{
  204. MpegEncContext s;
  205. int bits;
  206. /** Simple/Main Profile sequence header */
  207. //@{
  208. int res_sm; ///< reserved, 2b
  209. int res_x8; ///< reserved
  210. int multires; ///< frame-level RESPIC syntax element present
  211. int res_fasttx; ///< reserved, always 1
  212. int res_transtab; ///< reserved, always 0
  213. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  214. ///< at frame level
  215. int res_rtm_flag; ///< reserved, set to 1
  216. int reserved; ///< reserved
  217. //@}
  218. /** Advanced Profile */
  219. //@{
  220. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  221. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  222. int postprocflag; ///< Per-frame processing suggestion flag present
  223. int broadcast; ///< TFF/RFF present
  224. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  225. int tfcntrflag; ///< TFCNTR present
  226. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  227. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  228. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  229. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  230. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  231. int hrd_param_flag; ///< Presence of Hypothetical Reference
  232. ///< Decoder parameters
  233. int psf; ///< Progressive Segmented Frame
  234. //@}
  235. /** Sequence header data for all Profiles
  236. * TODO: choose between ints, uint8_ts and monobit flags
  237. */
  238. //@{
  239. int profile; ///< 2bits, Profile
  240. int frmrtq_postproc; ///< 3bits,
  241. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  242. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  243. int extended_mv; ///< Ext MV in P/B (not in Simple)
  244. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  245. int vstransform; ///< variable-size [48]x[48] transform type + info
  246. int overlap; ///< overlapped transforms in use
  247. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  248. int finterpflag; ///< INTERPFRM present
  249. //@}
  250. /** Frame decoding info for all profiles */
  251. //@{
  252. uint8_t mv_mode; ///< MV coding monde
  253. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  254. int k_x; ///< Number of bits for MVs (depends on MV range)
  255. int k_y; ///< Number of bits for MVs (depends on MV range)
  256. int range_x, range_y; ///< MV range
  257. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  258. /** pquant parameters */
  259. //@{
  260. uint8_t dquantfrm;
  261. uint8_t dqprofile;
  262. uint8_t dqsbedge;
  263. uint8_t dqbilevel;
  264. //@}
  265. /** AC coding set indexes
  266. * @see 8.1.1.10, p(1)10
  267. */
  268. //@{
  269. int c_ac_table_index; ///< Chroma index from ACFRM element
  270. int y_ac_table_index; ///< Luma index from AC2FRM element
  271. //@}
  272. int ttfrm; ///< Transform type info present at frame level
  273. uint8_t ttmbf; ///< Transform type flag
  274. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  275. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  276. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  277. int pqindex; ///< raw pqindex used in coding set selection
  278. int a_avail, c_avail;
  279. uint8_t *mb_type_base, *mb_type[3];
  280. /** Luma compensation parameters */
  281. //@{
  282. uint8_t lumscale;
  283. uint8_t lumshift;
  284. //@}
  285. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  286. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  287. uint8_t respic; ///< Frame-level flag for resized images
  288. int buffer_fullness; ///< HRD info
  289. /** Ranges:
  290. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  291. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  292. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  293. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  294. */
  295. uint8_t mvrange;
  296. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  297. VLC *cbpcy_vlc; ///< CBPCY VLC table
  298. int tt_index; ///< Index for Transform Type tables
  299. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  300. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  301. int mv_type_is_raw; ///< mv type mb plane is not coded
  302. int dmb_is_raw; ///< direct mb plane is raw
  303. int skip_is_raw; ///< skip mb plane is not coded
  304. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  305. int rnd; ///< rounding control
  306. /** Frame decoding info for S/M profiles only */
  307. //@{
  308. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  309. uint8_t interpfrm;
  310. //@}
  311. /** Frame decoding info for Advanced profile */
  312. //@{
  313. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  314. uint8_t numpanscanwin;
  315. uint8_t tfcntr;
  316. uint8_t rptfrm, tff, rff;
  317. uint16_t topleftx;
  318. uint16_t toplefty;
  319. uint16_t bottomrightx;
  320. uint16_t bottomrighty;
  321. uint8_t uvsamp;
  322. uint8_t postproc;
  323. int hrd_num_leaky_buckets;
  324. uint8_t bit_rate_exponent;
  325. uint8_t buffer_size_exponent;
  326. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  327. int acpred_is_raw;
  328. uint8_t* over_flags_plane; ///< Overflags bitplane
  329. int overflg_is_raw;
  330. uint8_t condover;
  331. uint16_t *hrd_rate, *hrd_buffer;
  332. uint8_t *hrd_fullness;
  333. uint8_t range_mapy_flag;
  334. uint8_t range_mapuv_flag;
  335. uint8_t range_mapy;
  336. uint8_t range_mapuv;
  337. //@}
  338. int p_frame_skipped;
  339. int bi_type;
  340. } VC1Context;
  341. /**
  342. * Get unary code of limited length
  343. * @fixme FIXME Slow and ugly
  344. * @param gb GetBitContext
  345. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  346. * @param[in] len Maximum length
  347. * @return Unary length/index
  348. */
  349. static int get_prefix(GetBitContext *gb, int stop, int len)
  350. {
  351. #if 1
  352. int i;
  353. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  354. return i;
  355. /* int i = 0, tmp = !stop;
  356. while (i != len && tmp != stop)
  357. {
  358. tmp = get_bits(gb, 1);
  359. i++;
  360. }
  361. if (i == len && tmp != stop) return len+1;
  362. return i;*/
  363. #else
  364. unsigned int buf;
  365. int log;
  366. OPEN_READER(re, gb);
  367. UPDATE_CACHE(re, gb);
  368. buf=GET_CACHE(re, gb); //Still not sure
  369. if (stop) buf = ~buf;
  370. log= av_log2(-buf); //FIXME: -?
  371. if (log < limit){
  372. LAST_SKIP_BITS(re, gb, log+1);
  373. CLOSE_READER(re, gb);
  374. return log;
  375. }
  376. LAST_SKIP_BITS(re, gb, limit);
  377. CLOSE_READER(re, gb);
  378. return limit;
  379. #endif
  380. }
  381. static inline int decode210(GetBitContext *gb){
  382. int n;
  383. n = get_bits1(gb);
  384. if (n == 1)
  385. return 0;
  386. else
  387. return 2 - get_bits1(gb);
  388. }
  389. /**
  390. * Init VC-1 specific tables and VC1Context members
  391. * @param v The VC1Context to initialize
  392. * @return Status
  393. */
  394. static int vc1_init_common(VC1Context *v)
  395. {
  396. static int done = 0;
  397. int i = 0;
  398. v->hrd_rate = v->hrd_buffer = NULL;
  399. /* VLC tables */
  400. if(!done)
  401. {
  402. done = 1;
  403. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  404. vc1_bfraction_bits, 1, 1,
  405. vc1_bfraction_codes, 1, 1, 1);
  406. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  407. vc1_norm2_bits, 1, 1,
  408. vc1_norm2_codes, 1, 1, 1);
  409. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  410. vc1_norm6_bits, 1, 1,
  411. vc1_norm6_codes, 2, 2, 1);
  412. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  413. vc1_imode_bits, 1, 1,
  414. vc1_imode_codes, 1, 1, 1);
  415. for (i=0; i<3; i++)
  416. {
  417. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  418. vc1_ttmb_bits[i], 1, 1,
  419. vc1_ttmb_codes[i], 2, 2, 1);
  420. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  421. vc1_ttblk_bits[i], 1, 1,
  422. vc1_ttblk_codes[i], 1, 1, 1);
  423. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  424. vc1_subblkpat_bits[i], 1, 1,
  425. vc1_subblkpat_codes[i], 1, 1, 1);
  426. }
  427. for(i=0; i<4; i++)
  428. {
  429. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  430. vc1_4mv_block_pattern_bits[i], 1, 1,
  431. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  432. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  433. vc1_cbpcy_p_bits[i], 1, 1,
  434. vc1_cbpcy_p_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  436. vc1_mv_diff_bits[i], 1, 1,
  437. vc1_mv_diff_codes[i], 2, 2, 1);
  438. }
  439. for(i=0; i<8; i++)
  440. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  441. &vc1_ac_tables[i][0][1], 8, 4,
  442. &vc1_ac_tables[i][0][0], 8, 4, 1);
  443. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  444. &ff_msmp4_mb_i_table[0][1], 4, 2,
  445. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  446. }
  447. /* Other defaults */
  448. v->pq = -1;
  449. v->mvrange = 0; /* 7.1.1.18, p80 */
  450. return 0;
  451. }
  452. /***********************************************************************/
  453. /**
  454. * @defgroup bitplane VC9 Bitplane decoding
  455. * @see 8.7, p56
  456. * @{
  457. */
  458. /** @addtogroup bitplane
  459. * Imode types
  460. * @{
  461. */
  462. enum Imode {
  463. IMODE_RAW,
  464. IMODE_NORM2,
  465. IMODE_DIFF2,
  466. IMODE_NORM6,
  467. IMODE_DIFF6,
  468. IMODE_ROWSKIP,
  469. IMODE_COLSKIP
  470. };
  471. /** @} */ //imode defines
  472. /** Decode rows by checking if they are skipped
  473. * @param plane Buffer to store decoded bits
  474. * @param[in] width Width of this buffer
  475. * @param[in] height Height of this buffer
  476. * @param[in] stride of this buffer
  477. */
  478. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  479. int x, y;
  480. for (y=0; y<height; y++){
  481. if (!get_bits(gb, 1)) //rowskip
  482. memset(plane, 0, width);
  483. else
  484. for (x=0; x<width; x++)
  485. plane[x] = get_bits(gb, 1);
  486. plane += stride;
  487. }
  488. }
  489. /** Decode columns by checking if they are skipped
  490. * @param plane Buffer to store decoded bits
  491. * @param[in] width Width of this buffer
  492. * @param[in] height Height of this buffer
  493. * @param[in] stride of this buffer
  494. * @fixme FIXME: Optimize
  495. */
  496. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  497. int x, y;
  498. for (x=0; x<width; x++){
  499. if (!get_bits(gb, 1)) //colskip
  500. for (y=0; y<height; y++)
  501. plane[y*stride] = 0;
  502. else
  503. for (y=0; y<height; y++)
  504. plane[y*stride] = get_bits(gb, 1);
  505. plane ++;
  506. }
  507. }
  508. /** Decode a bitplane's bits
  509. * @param bp Bitplane where to store the decode bits
  510. * @param v VC-1 context for bit reading and logging
  511. * @return Status
  512. * @fixme FIXME: Optimize
  513. */
  514. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  515. {
  516. GetBitContext *gb = &v->s.gb;
  517. int imode, x, y, code, offset;
  518. uint8_t invert, *planep = data;
  519. int width, height, stride;
  520. width = v->s.mb_width;
  521. height = v->s.mb_height;
  522. stride = v->s.mb_stride;
  523. invert = get_bits(gb, 1);
  524. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  525. *raw_flag = 0;
  526. switch (imode)
  527. {
  528. case IMODE_RAW:
  529. //Data is actually read in the MB layer (same for all tests == "raw")
  530. *raw_flag = 1; //invert ignored
  531. return invert;
  532. case IMODE_DIFF2:
  533. case IMODE_NORM2:
  534. if ((height * width) & 1)
  535. {
  536. *planep++ = get_bits(gb, 1);
  537. offset = 1;
  538. }
  539. else offset = 0;
  540. // decode bitplane as one long line
  541. for (y = offset; y < height * width; y += 2) {
  542. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  543. *planep++ = code & 1;
  544. offset++;
  545. if(offset == width) {
  546. offset = 0;
  547. planep += stride - width;
  548. }
  549. *planep++ = code >> 1;
  550. offset++;
  551. if(offset == width) {
  552. offset = 0;
  553. planep += stride - width;
  554. }
  555. }
  556. break;
  557. case IMODE_DIFF6:
  558. case IMODE_NORM6:
  559. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  560. for(y = 0; y < height; y+= 3) {
  561. for(x = width & 1; x < width; x += 2) {
  562. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  563. if(code < 0){
  564. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  565. return -1;
  566. }
  567. planep[x + 0] = (code >> 0) & 1;
  568. planep[x + 1] = (code >> 1) & 1;
  569. planep[x + 0 + stride] = (code >> 2) & 1;
  570. planep[x + 1 + stride] = (code >> 3) & 1;
  571. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  572. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  573. }
  574. planep += stride * 3;
  575. }
  576. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  577. } else { // 3x2
  578. planep += (height & 1) * stride;
  579. for(y = height & 1; y < height; y += 2) {
  580. for(x = width % 3; x < width; x += 3) {
  581. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  582. if(code < 0){
  583. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  584. return -1;
  585. }
  586. planep[x + 0] = (code >> 0) & 1;
  587. planep[x + 1] = (code >> 1) & 1;
  588. planep[x + 2] = (code >> 2) & 1;
  589. planep[x + 0 + stride] = (code >> 3) & 1;
  590. planep[x + 1 + stride] = (code >> 4) & 1;
  591. planep[x + 2 + stride] = (code >> 5) & 1;
  592. }
  593. planep += stride * 2;
  594. }
  595. x = width % 3;
  596. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  597. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  598. }
  599. break;
  600. case IMODE_ROWSKIP:
  601. decode_rowskip(data, width, height, stride, &v->s.gb);
  602. break;
  603. case IMODE_COLSKIP:
  604. decode_colskip(data, width, height, stride, &v->s.gb);
  605. break;
  606. default: break;
  607. }
  608. /* Applying diff operator */
  609. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  610. {
  611. planep = data;
  612. planep[0] ^= invert;
  613. for (x=1; x<width; x++)
  614. planep[x] ^= planep[x-1];
  615. for (y=1; y<height; y++)
  616. {
  617. planep += stride;
  618. planep[0] ^= planep[-stride];
  619. for (x=1; x<width; x++)
  620. {
  621. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  622. else planep[x] ^= planep[x-1];
  623. }
  624. }
  625. }
  626. else if (invert)
  627. {
  628. planep = data;
  629. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  630. }
  631. return (imode<<1) + invert;
  632. }
  633. /** @} */ //Bitplane group
  634. /***********************************************************************/
  635. /** VOP Dquant decoding
  636. * @param v VC-1 Context
  637. */
  638. static int vop_dquant_decoding(VC1Context *v)
  639. {
  640. GetBitContext *gb = &v->s.gb;
  641. int pqdiff;
  642. //variable size
  643. if (v->dquant == 2)
  644. {
  645. pqdiff = get_bits(gb, 3);
  646. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  647. else v->altpq = v->pq + pqdiff + 1;
  648. }
  649. else
  650. {
  651. v->dquantfrm = get_bits(gb, 1);
  652. if ( v->dquantfrm )
  653. {
  654. v->dqprofile = get_bits(gb, 2);
  655. switch (v->dqprofile)
  656. {
  657. case DQPROFILE_SINGLE_EDGE:
  658. case DQPROFILE_DOUBLE_EDGES:
  659. v->dqsbedge = get_bits(gb, 2);
  660. break;
  661. case DQPROFILE_ALL_MBS:
  662. v->dqbilevel = get_bits(gb, 1);
  663. default: break; //Forbidden ?
  664. }
  665. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  666. {
  667. pqdiff = get_bits(gb, 3);
  668. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  669. else v->altpq = v->pq + pqdiff + 1;
  670. }
  671. }
  672. }
  673. return 0;
  674. }
  675. /** Put block onto picture
  676. */
  677. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  678. {
  679. uint8_t *Y;
  680. int ys, us, vs;
  681. DSPContext *dsp = &v->s.dsp;
  682. if(v->rangeredfrm) {
  683. int i, j, k;
  684. for(k = 0; k < 6; k++)
  685. for(j = 0; j < 8; j++)
  686. for(i = 0; i < 8; i++)
  687. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  688. }
  689. ys = v->s.current_picture.linesize[0];
  690. us = v->s.current_picture.linesize[1];
  691. vs = v->s.current_picture.linesize[2];
  692. Y = v->s.dest[0];
  693. dsp->put_pixels_clamped(block[0], Y, ys);
  694. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  695. Y += ys * 8;
  696. dsp->put_pixels_clamped(block[2], Y, ys);
  697. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  698. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  699. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  700. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  701. }
  702. }
  703. /** Do motion compensation over 1 macroblock
  704. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  705. */
  706. static void vc1_mc_1mv(VC1Context *v, int dir)
  707. {
  708. MpegEncContext *s = &v->s;
  709. DSPContext *dsp = &v->s.dsp;
  710. uint8_t *srcY, *srcU, *srcV;
  711. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  712. if(!v->s.last_picture.data[0])return;
  713. mx = s->mv[dir][0][0];
  714. my = s->mv[dir][0][1];
  715. // store motion vectors for further use in B frames
  716. if(s->pict_type == P_TYPE) {
  717. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  718. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  719. }
  720. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  721. uvmy = (my + ((my & 3) == 3)) >> 1;
  722. if(!dir) {
  723. srcY = s->last_picture.data[0];
  724. srcU = s->last_picture.data[1];
  725. srcV = s->last_picture.data[2];
  726. } else {
  727. srcY = s->next_picture.data[0];
  728. srcU = s->next_picture.data[1];
  729. srcV = s->next_picture.data[2];
  730. }
  731. src_x = s->mb_x * 16 + (mx >> 2);
  732. src_y = s->mb_y * 16 + (my >> 2);
  733. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  734. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  735. src_x = clip( src_x, -16, s->mb_width * 16);
  736. src_y = clip( src_y, -16, s->mb_height * 16);
  737. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  738. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  739. srcY += src_y * s->linesize + src_x;
  740. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  741. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  742. /* for grayscale we should not try to read from unknown area */
  743. if(s->flags & CODEC_FLAG_GRAY) {
  744. srcU = s->edge_emu_buffer + 18 * s->linesize;
  745. srcV = s->edge_emu_buffer + 18 * s->linesize;
  746. }
  747. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  748. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  749. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  750. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  751. srcY -= s->mspel * (1 + s->linesize);
  752. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  753. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  754. srcY = s->edge_emu_buffer;
  755. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  756. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  757. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  758. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  759. srcU = uvbuf;
  760. srcV = uvbuf + 16;
  761. /* if we deal with range reduction we need to scale source blocks */
  762. if(v->rangeredfrm) {
  763. int i, j;
  764. uint8_t *src, *src2;
  765. src = srcY;
  766. for(j = 0; j < 17 + s->mspel*2; j++) {
  767. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  768. src += s->linesize;
  769. }
  770. src = srcU; src2 = srcV;
  771. for(j = 0; j < 9; j++) {
  772. for(i = 0; i < 9; i++) {
  773. src[i] = ((src[i] - 128) >> 1) + 128;
  774. src2[i] = ((src2[i] - 128) >> 1) + 128;
  775. }
  776. src += s->uvlinesize;
  777. src2 += s->uvlinesize;
  778. }
  779. }
  780. /* if we deal with intensity compensation we need to scale source blocks */
  781. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  782. int i, j;
  783. uint8_t *src, *src2;
  784. src = srcY;
  785. for(j = 0; j < 17 + s->mspel*2; j++) {
  786. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  787. src += s->linesize;
  788. }
  789. src = srcU; src2 = srcV;
  790. for(j = 0; j < 9; j++) {
  791. for(i = 0; i < 9; i++) {
  792. src[i] = v->lutuv[src[i]];
  793. src2[i] = v->lutuv[src2[i]];
  794. }
  795. src += s->uvlinesize;
  796. src2 += s->uvlinesize;
  797. }
  798. }
  799. srcY += s->mspel * (1 + s->linesize);
  800. }
  801. if(v->fastuvmc) {
  802. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  803. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  804. }
  805. if(s->mspel) {
  806. dxy = ((my & 3) << 2) | (mx & 3);
  807. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  808. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  809. srcY += s->linesize * 8;
  810. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  811. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  812. } else { // hpel mc - always used for luma
  813. dxy = (my & 2) | ((mx & 2) >> 1);
  814. if(!v->rnd)
  815. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  816. else
  817. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  818. }
  819. if(s->flags & CODEC_FLAG_GRAY) return;
  820. /* Chroma MC always uses qpel bilinear */
  821. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  822. uvmx = (uvmx&3)<<1;
  823. uvmy = (uvmy&3)<<1;
  824. if(!v->rnd){
  825. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  826. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  827. }else{
  828. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  829. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  830. }
  831. }
  832. /** Do motion compensation for 4-MV macroblock - luminance block
  833. */
  834. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  835. {
  836. MpegEncContext *s = &v->s;
  837. DSPContext *dsp = &v->s.dsp;
  838. uint8_t *srcY;
  839. int dxy, mx, my, src_x, src_y;
  840. int off;
  841. if(!v->s.last_picture.data[0])return;
  842. mx = s->mv[0][n][0];
  843. my = s->mv[0][n][1];
  844. srcY = s->last_picture.data[0];
  845. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  846. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  847. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  848. src_x = clip( src_x, -16, s->mb_width * 16);
  849. src_y = clip( src_y, -16, s->mb_height * 16);
  850. srcY += src_y * s->linesize + src_x;
  851. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  852. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  853. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  854. srcY -= s->mspel * (1 + s->linesize);
  855. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  856. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  857. srcY = s->edge_emu_buffer;
  858. /* if we deal with range reduction we need to scale source blocks */
  859. if(v->rangeredfrm) {
  860. int i, j;
  861. uint8_t *src;
  862. src = srcY;
  863. for(j = 0; j < 9 + s->mspel*2; j++) {
  864. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  865. src += s->linesize;
  866. }
  867. }
  868. /* if we deal with intensity compensation we need to scale source blocks */
  869. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  870. int i, j;
  871. uint8_t *src;
  872. src = srcY;
  873. for(j = 0; j < 9 + s->mspel*2; j++) {
  874. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  875. src += s->linesize;
  876. }
  877. }
  878. srcY += s->mspel * (1 + s->linesize);
  879. }
  880. if(s->mspel) {
  881. dxy = ((my & 3) << 2) | (mx & 3);
  882. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  883. } else { // hpel mc - always used for luma
  884. dxy = (my & 2) | ((mx & 2) >> 1);
  885. if(!v->rnd)
  886. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  887. else
  888. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  889. }
  890. }
  891. static inline int median4(int a, int b, int c, int d)
  892. {
  893. if(a < b) {
  894. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  895. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  896. } else {
  897. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  898. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  899. }
  900. }
  901. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  902. */
  903. static void vc1_mc_4mv_chroma(VC1Context *v)
  904. {
  905. MpegEncContext *s = &v->s;
  906. DSPContext *dsp = &v->s.dsp;
  907. uint8_t *srcU, *srcV;
  908. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  909. int i, idx, tx = 0, ty = 0;
  910. int mvx[4], mvy[4], intra[4];
  911. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  912. if(!v->s.last_picture.data[0])return;
  913. if(s->flags & CODEC_FLAG_GRAY) return;
  914. for(i = 0; i < 4; i++) {
  915. mvx[i] = s->mv[0][i][0];
  916. mvy[i] = s->mv[0][i][1];
  917. intra[i] = v->mb_type[0][s->block_index[i]];
  918. }
  919. /* calculate chroma MV vector from four luma MVs */
  920. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  921. if(!idx) { // all blocks are inter
  922. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  923. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  924. } else if(count[idx] == 1) { // 3 inter blocks
  925. switch(idx) {
  926. case 0x1:
  927. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  928. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  929. break;
  930. case 0x2:
  931. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  932. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  933. break;
  934. case 0x4:
  935. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  936. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  937. break;
  938. case 0x8:
  939. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  940. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  941. break;
  942. }
  943. } else if(count[idx] == 2) {
  944. int t1 = 0, t2 = 0;
  945. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  946. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  947. tx = (mvx[t1] + mvx[t2]) / 2;
  948. ty = (mvy[t1] + mvy[t2]) / 2;
  949. } else
  950. return; //no need to do MC for inter blocks
  951. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  952. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  953. uvmx = (tx + ((tx&3) == 3)) >> 1;
  954. uvmy = (ty + ((ty&3) == 3)) >> 1;
  955. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  956. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  957. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  958. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  959. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  960. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  961. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  962. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  963. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  964. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  965. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  966. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  967. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  968. srcU = s->edge_emu_buffer;
  969. srcV = s->edge_emu_buffer + 16;
  970. /* if we deal with range reduction we need to scale source blocks */
  971. if(v->rangeredfrm) {
  972. int i, j;
  973. uint8_t *src, *src2;
  974. src = srcU; src2 = srcV;
  975. for(j = 0; j < 9; j++) {
  976. for(i = 0; i < 9; i++) {
  977. src[i] = ((src[i] - 128) >> 1) + 128;
  978. src2[i] = ((src2[i] - 128) >> 1) + 128;
  979. }
  980. src += s->uvlinesize;
  981. src2 += s->uvlinesize;
  982. }
  983. }
  984. /* if we deal with intensity compensation we need to scale source blocks */
  985. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  986. int i, j;
  987. uint8_t *src, *src2;
  988. src = srcU; src2 = srcV;
  989. for(j = 0; j < 9; j++) {
  990. for(i = 0; i < 9; i++) {
  991. src[i] = v->lutuv[src[i]];
  992. src2[i] = v->lutuv[src2[i]];
  993. }
  994. src += s->uvlinesize;
  995. src2 += s->uvlinesize;
  996. }
  997. }
  998. }
  999. if(v->fastuvmc) {
  1000. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1001. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1002. }
  1003. /* Chroma MC always uses qpel bilinear */
  1004. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1005. uvmx = (uvmx&3)<<1;
  1006. uvmy = (uvmy&3)<<1;
  1007. if(!v->rnd){
  1008. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1009. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1010. }else{
  1011. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1012. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1013. }
  1014. }
  1015. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1016. /**
  1017. * Decode Simple/Main Profiles sequence header
  1018. * @see Figure 7-8, p16-17
  1019. * @param avctx Codec context
  1020. * @param gb GetBit context initialized from Codec context extra_data
  1021. * @return Status
  1022. */
  1023. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1024. {
  1025. VC1Context *v = avctx->priv_data;
  1026. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1027. v->profile = get_bits(gb, 2);
  1028. if (v->profile == 2)
  1029. {
  1030. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1031. return -1;
  1032. }
  1033. if (v->profile == PROFILE_ADVANCED)
  1034. {
  1035. return decode_sequence_header_adv(v, gb);
  1036. }
  1037. else
  1038. {
  1039. v->res_sm = get_bits(gb, 2); //reserved
  1040. if (v->res_sm)
  1041. {
  1042. av_log(avctx, AV_LOG_ERROR,
  1043. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1044. return -1;
  1045. }
  1046. }
  1047. // (fps-2)/4 (->30)
  1048. v->frmrtq_postproc = get_bits(gb, 3); //common
  1049. // (bitrate-32kbps)/64kbps
  1050. v->bitrtq_postproc = get_bits(gb, 5); //common
  1051. v->s.loop_filter = get_bits(gb, 1); //common
  1052. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1053. {
  1054. av_log(avctx, AV_LOG_ERROR,
  1055. "LOOPFILTER shell not be enabled in simple profile\n");
  1056. }
  1057. v->res_x8 = get_bits(gb, 1); //reserved
  1058. if (v->res_x8)
  1059. {
  1060. av_log(avctx, AV_LOG_ERROR,
  1061. "1 for reserved RES_X8 is forbidden\n");
  1062. //return -1;
  1063. }
  1064. v->multires = get_bits(gb, 1);
  1065. v->res_fasttx = get_bits(gb, 1);
  1066. if (!v->res_fasttx)
  1067. {
  1068. av_log(avctx, AV_LOG_ERROR,
  1069. "0 for reserved RES_FASTTX is forbidden\n");
  1070. //return -1;
  1071. }
  1072. v->fastuvmc = get_bits(gb, 1); //common
  1073. if (!v->profile && !v->fastuvmc)
  1074. {
  1075. av_log(avctx, AV_LOG_ERROR,
  1076. "FASTUVMC unavailable in Simple Profile\n");
  1077. return -1;
  1078. }
  1079. v->extended_mv = get_bits(gb, 1); //common
  1080. if (!v->profile && v->extended_mv)
  1081. {
  1082. av_log(avctx, AV_LOG_ERROR,
  1083. "Extended MVs unavailable in Simple Profile\n");
  1084. return -1;
  1085. }
  1086. v->dquant = get_bits(gb, 2); //common
  1087. v->vstransform = get_bits(gb, 1); //common
  1088. v->res_transtab = get_bits(gb, 1);
  1089. if (v->res_transtab)
  1090. {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "1 for reserved RES_TRANSTAB is forbidden\n");
  1093. return -1;
  1094. }
  1095. v->overlap = get_bits(gb, 1); //common
  1096. v->s.resync_marker = get_bits(gb, 1);
  1097. v->rangered = get_bits(gb, 1);
  1098. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1099. {
  1100. av_log(avctx, AV_LOG_INFO,
  1101. "RANGERED should be set to 0 in simple profile\n");
  1102. }
  1103. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1104. v->quantizer_mode = get_bits(gb, 2); //common
  1105. v->finterpflag = get_bits(gb, 1); //common
  1106. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1107. if (!v->res_rtm_flag)
  1108. {
  1109. // av_log(avctx, AV_LOG_ERROR,
  1110. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1111. av_log(avctx, AV_LOG_ERROR,
  1112. "Old WMV3 version detected, only I-frames will be decoded\n");
  1113. //return -1;
  1114. }
  1115. av_log(avctx, AV_LOG_DEBUG,
  1116. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1117. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1118. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1119. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1120. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1121. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1122. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1123. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1124. );
  1125. return 0;
  1126. }
  1127. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1128. {
  1129. v->res_rtm_flag = 1;
  1130. v->level = get_bits(gb, 3);
  1131. if(v->level >= 5)
  1132. {
  1133. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1134. }
  1135. v->chromaformat = get_bits(gb, 2);
  1136. if (v->chromaformat != 1)
  1137. {
  1138. av_log(v->s.avctx, AV_LOG_ERROR,
  1139. "Only 4:2:0 chroma format supported\n");
  1140. return -1;
  1141. }
  1142. // (fps-2)/4 (->30)
  1143. v->frmrtq_postproc = get_bits(gb, 3); //common
  1144. // (bitrate-32kbps)/64kbps
  1145. v->bitrtq_postproc = get_bits(gb, 5); //common
  1146. v->postprocflag = get_bits(gb, 1); //common
  1147. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1148. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1149. v->broadcast = get_bits1(gb);
  1150. v->interlace = get_bits1(gb);
  1151. v->tfcntrflag = get_bits1(gb);
  1152. v->finterpflag = get_bits1(gb);
  1153. get_bits1(gb); // reserved
  1154. v->psf = get_bits1(gb);
  1155. if(v->psf) { //PsF, 6.1.13
  1156. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1157. return -1;
  1158. }
  1159. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1160. int w, h, ar = 0;
  1161. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1162. w = get_bits(gb, 14);
  1163. h = get_bits(gb, 14);
  1164. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1165. //TODO: store aspect ratio in AVCodecContext
  1166. if(get_bits1(gb))
  1167. ar = get_bits(gb, 4);
  1168. if(ar == 15) {
  1169. w = get_bits(gb, 8);
  1170. h = get_bits(gb, 8);
  1171. }
  1172. if(get_bits1(gb)){ //framerate stuff
  1173. if(get_bits1(gb)) {
  1174. get_bits(gb, 16);
  1175. } else {
  1176. get_bits(gb, 8);
  1177. get_bits(gb, 4);
  1178. }
  1179. }
  1180. if(get_bits1(gb)){
  1181. v->color_prim = get_bits(gb, 8);
  1182. v->transfer_char = get_bits(gb, 8);
  1183. v->matrix_coef = get_bits(gb, 8);
  1184. }
  1185. }
  1186. v->hrd_param_flag = get_bits1(gb);
  1187. if(v->hrd_param_flag) {
  1188. int i;
  1189. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1190. get_bits(gb, 4); //bitrate exponent
  1191. get_bits(gb, 4); //buffer size exponent
  1192. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1193. get_bits(gb, 16); //hrd_rate[n]
  1194. get_bits(gb, 16); //hrd_buffer[n]
  1195. }
  1196. }
  1197. return 0;
  1198. }
  1199. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1200. {
  1201. VC1Context *v = avctx->priv_data;
  1202. int i;
  1203. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1204. get_bits1(gb); // broken link
  1205. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1206. v->panscanflag = get_bits1(gb);
  1207. get_bits1(gb); // refdist flag
  1208. v->s.loop_filter = get_bits1(gb);
  1209. v->fastuvmc = get_bits1(gb);
  1210. v->extended_mv = get_bits1(gb);
  1211. v->dquant = get_bits(gb, 2);
  1212. v->vstransform = get_bits1(gb);
  1213. v->overlap = get_bits1(gb);
  1214. v->quantizer_mode = get_bits(gb, 2);
  1215. if(v->hrd_param_flag){
  1216. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1217. get_bits(gb, 8); //hrd_full[n]
  1218. }
  1219. }
  1220. if(get_bits1(gb)){
  1221. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1222. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1223. }
  1224. if(v->extended_mv)
  1225. v->extended_dmv = get_bits1(gb);
  1226. if(get_bits1(gb)) {
  1227. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1228. skip_bits(gb, 3); // Y range, ignored for now
  1229. }
  1230. if(get_bits1(gb)) {
  1231. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1232. skip_bits(gb, 3); // UV range, ignored for now
  1233. }
  1234. return 0;
  1235. }
  1236. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1237. {
  1238. int pqindex, lowquant, status;
  1239. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1240. skip_bits(gb, 2); //framecnt unused
  1241. v->rangeredfrm = 0;
  1242. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1243. v->s.pict_type = get_bits(gb, 1);
  1244. if (v->s.avctx->max_b_frames) {
  1245. if (!v->s.pict_type) {
  1246. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1247. else v->s.pict_type = B_TYPE;
  1248. } else v->s.pict_type = P_TYPE;
  1249. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1250. v->bi_type = 0;
  1251. if(v->s.pict_type == B_TYPE) {
  1252. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1253. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1254. if(v->bfraction == 0) {
  1255. v->s.pict_type = BI_TYPE;
  1256. }
  1257. }
  1258. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1259. get_bits(gb, 7); // skip buffer fullness
  1260. /* calculate RND */
  1261. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1262. v->rnd = 1;
  1263. if(v->s.pict_type == P_TYPE)
  1264. v->rnd ^= 1;
  1265. /* Quantizer stuff */
  1266. pqindex = get_bits(gb, 5);
  1267. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1268. v->pq = pquant_table[0][pqindex];
  1269. else
  1270. v->pq = pquant_table[1][pqindex];
  1271. v->pquantizer = 1;
  1272. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1273. v->pquantizer = pqindex < 9;
  1274. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1275. v->pquantizer = 0;
  1276. v->pqindex = pqindex;
  1277. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1278. else v->halfpq = 0;
  1279. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1280. v->pquantizer = get_bits(gb, 1);
  1281. v->dquantfrm = 0;
  1282. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1283. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1284. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1285. v->range_x = 1 << (v->k_x - 1);
  1286. v->range_y = 1 << (v->k_y - 1);
  1287. if (v->profile == PROFILE_ADVANCED)
  1288. {
  1289. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1290. }
  1291. else
  1292. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1293. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1294. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1295. switch(v->s.pict_type) {
  1296. case P_TYPE:
  1297. if (v->pq < 5) v->tt_index = 0;
  1298. else if(v->pq < 13) v->tt_index = 1;
  1299. else v->tt_index = 2;
  1300. lowquant = (v->pq > 12) ? 0 : 1;
  1301. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1302. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1303. {
  1304. int scale, shift, i;
  1305. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1306. v->lumscale = get_bits(gb, 6);
  1307. v->lumshift = get_bits(gb, 6);
  1308. /* fill lookup tables for intensity compensation */
  1309. if(!v->lumscale) {
  1310. scale = -64;
  1311. shift = (255 - v->lumshift * 2) << 6;
  1312. if(v->lumshift > 31)
  1313. shift += 128 << 6;
  1314. } else {
  1315. scale = v->lumscale + 32;
  1316. if(v->lumshift > 31)
  1317. shift = (v->lumshift - 64) << 6;
  1318. else
  1319. shift = v->lumshift << 6;
  1320. }
  1321. for(i = 0; i < 256; i++) {
  1322. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1323. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1324. }
  1325. }
  1326. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1327. v->s.quarter_sample = 0;
  1328. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1329. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1330. v->s.quarter_sample = 0;
  1331. else
  1332. v->s.quarter_sample = 1;
  1333. } else
  1334. v->s.quarter_sample = 1;
  1335. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1336. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1337. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1338. || v->mv_mode == MV_PMODE_MIXED_MV)
  1339. {
  1340. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1341. if (status < 0) return -1;
  1342. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1343. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1344. } else {
  1345. v->mv_type_is_raw = 0;
  1346. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1347. }
  1348. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1349. if (status < 0) return -1;
  1350. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1351. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1352. /* Hopefully this is correct for P frames */
  1353. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1354. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1355. if (v->dquant)
  1356. {
  1357. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1358. vop_dquant_decoding(v);
  1359. }
  1360. v->ttfrm = 0; //FIXME Is that so ?
  1361. if (v->vstransform)
  1362. {
  1363. v->ttmbf = get_bits(gb, 1);
  1364. if (v->ttmbf)
  1365. {
  1366. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1367. }
  1368. } else {
  1369. v->ttmbf = 1;
  1370. v->ttfrm = TT_8X8;
  1371. }
  1372. break;
  1373. case B_TYPE:
  1374. if (v->pq < 5) v->tt_index = 0;
  1375. else if(v->pq < 13) v->tt_index = 1;
  1376. else v->tt_index = 2;
  1377. lowquant = (v->pq > 12) ? 0 : 1;
  1378. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1379. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1380. v->s.mspel = v->s.quarter_sample;
  1381. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1382. if (status < 0) return -1;
  1383. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1384. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1385. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1386. if (status < 0) return -1;
  1387. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1388. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1389. v->s.mv_table_index = get_bits(gb, 2);
  1390. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1391. if (v->dquant)
  1392. {
  1393. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1394. vop_dquant_decoding(v);
  1395. }
  1396. v->ttfrm = 0;
  1397. if (v->vstransform)
  1398. {
  1399. v->ttmbf = get_bits(gb, 1);
  1400. if (v->ttmbf)
  1401. {
  1402. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1403. }
  1404. } else {
  1405. v->ttmbf = 1;
  1406. v->ttfrm = TT_8X8;
  1407. }
  1408. break;
  1409. }
  1410. /* AC Syntax */
  1411. v->c_ac_table_index = decode012(gb);
  1412. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1413. {
  1414. v->y_ac_table_index = decode012(gb);
  1415. }
  1416. /* DC Syntax */
  1417. v->s.dc_table_index = get_bits(gb, 1);
  1418. if(v->s.pict_type == BI_TYPE) {
  1419. v->s.pict_type = B_TYPE;
  1420. v->bi_type = 1;
  1421. }
  1422. return 0;
  1423. }
  1424. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1425. {
  1426. int fcm;
  1427. int pqindex, lowquant;
  1428. int status;
  1429. v->p_frame_skipped = 0;
  1430. if(v->interlace)
  1431. fcm = decode012(gb);
  1432. switch(get_prefix(gb, 0, 4)) {
  1433. case 0:
  1434. v->s.pict_type = P_TYPE;
  1435. break;
  1436. case 1:
  1437. v->s.pict_type = B_TYPE;
  1438. return -1;
  1439. // break;
  1440. case 2:
  1441. v->s.pict_type = I_TYPE;
  1442. break;
  1443. case 3:
  1444. v->s.pict_type = BI_TYPE;
  1445. break;
  1446. case 4:
  1447. v->s.pict_type = P_TYPE; // skipped pic
  1448. v->p_frame_skipped = 1;
  1449. return 0;
  1450. }
  1451. if(v->tfcntrflag)
  1452. get_bits(gb, 8);
  1453. if(v->broadcast) {
  1454. if(!v->interlace || v->panscanflag) {
  1455. get_bits(gb, 2);
  1456. } else {
  1457. get_bits1(gb);
  1458. get_bits1(gb);
  1459. }
  1460. }
  1461. if(v->panscanflag) {
  1462. //...
  1463. }
  1464. v->rnd = get_bits1(gb);
  1465. if(v->interlace)
  1466. v->uvsamp = get_bits1(gb);
  1467. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1468. pqindex = get_bits(gb, 5);
  1469. v->pqindex = pqindex;
  1470. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1471. v->pq = pquant_table[0][pqindex];
  1472. else
  1473. v->pq = pquant_table[1][pqindex];
  1474. v->pquantizer = 1;
  1475. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1476. v->pquantizer = pqindex < 9;
  1477. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1478. v->pquantizer = 0;
  1479. v->pqindex = pqindex;
  1480. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1481. else v->halfpq = 0;
  1482. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1483. v->pquantizer = get_bits(gb, 1);
  1484. switch(v->s.pict_type) {
  1485. case I_TYPE:
  1486. case BI_TYPE:
  1487. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1488. if (status < 0) return -1;
  1489. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1490. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1491. v->condover = CONDOVER_NONE;
  1492. if(v->overlap && v->pq <= 8) {
  1493. v->condover = decode012(gb);
  1494. if(v->condover == CONDOVER_SELECT) {
  1495. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1496. if (status < 0) return -1;
  1497. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1498. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1499. }
  1500. }
  1501. break;
  1502. case P_TYPE:
  1503. if(v->postprocflag)
  1504. v->postproc = get_bits1(gb);
  1505. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1506. else v->mvrange = 0;
  1507. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1508. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1509. v->range_x = 1 << (v->k_x - 1);
  1510. v->range_y = 1 << (v->k_y - 1);
  1511. if (v->pq < 5) v->tt_index = 0;
  1512. else if(v->pq < 13) v->tt_index = 1;
  1513. else v->tt_index = 2;
  1514. lowquant = (v->pq > 12) ? 0 : 1;
  1515. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1516. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1517. {
  1518. int scale, shift, i;
  1519. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1520. v->lumscale = get_bits(gb, 6);
  1521. v->lumshift = get_bits(gb, 6);
  1522. /* fill lookup tables for intensity compensation */
  1523. if(!v->lumscale) {
  1524. scale = -64;
  1525. shift = (255 - v->lumshift * 2) << 6;
  1526. if(v->lumshift > 31)
  1527. shift += 128 << 6;
  1528. } else {
  1529. scale = v->lumscale + 32;
  1530. if(v->lumshift > 31)
  1531. shift = (v->lumshift - 64) << 6;
  1532. else
  1533. shift = v->lumshift << 6;
  1534. }
  1535. for(i = 0; i < 256; i++) {
  1536. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1537. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1538. }
  1539. }
  1540. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1541. v->s.quarter_sample = 0;
  1542. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1543. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1544. v->s.quarter_sample = 0;
  1545. else
  1546. v->s.quarter_sample = 1;
  1547. } else
  1548. v->s.quarter_sample = 1;
  1549. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1550. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1551. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1552. || v->mv_mode == MV_PMODE_MIXED_MV)
  1553. {
  1554. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1555. if (status < 0) return -1;
  1556. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1557. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1558. } else {
  1559. v->mv_type_is_raw = 0;
  1560. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1561. }
  1562. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1563. if (status < 0) return -1;
  1564. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1565. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1566. /* Hopefully this is correct for P frames */
  1567. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1568. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1569. if (v->dquant)
  1570. {
  1571. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1572. vop_dquant_decoding(v);
  1573. }
  1574. v->ttfrm = 0; //FIXME Is that so ?
  1575. if (v->vstransform)
  1576. {
  1577. v->ttmbf = get_bits(gb, 1);
  1578. if (v->ttmbf)
  1579. {
  1580. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1581. }
  1582. } else {
  1583. v->ttmbf = 1;
  1584. v->ttfrm = TT_8X8;
  1585. }
  1586. break;
  1587. }
  1588. /* AC Syntax */
  1589. v->c_ac_table_index = decode012(gb);
  1590. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1591. {
  1592. v->y_ac_table_index = decode012(gb);
  1593. }
  1594. /* DC Syntax */
  1595. v->s.dc_table_index = get_bits(gb, 1);
  1596. if (v->s.pict_type == I_TYPE && v->dquant) {
  1597. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1598. vop_dquant_decoding(v);
  1599. }
  1600. v->bi_type = 0;
  1601. if(v->s.pict_type == BI_TYPE) {
  1602. v->s.pict_type = B_TYPE;
  1603. v->bi_type = 1;
  1604. }
  1605. return 0;
  1606. }
  1607. /***********************************************************************/
  1608. /**
  1609. * @defgroup block VC-1 Block-level functions
  1610. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1611. * @{
  1612. */
  1613. /**
  1614. * @def GET_MQUANT
  1615. * @brief Get macroblock-level quantizer scale
  1616. */
  1617. #define GET_MQUANT() \
  1618. if (v->dquantfrm) \
  1619. { \
  1620. int edges = 0; \
  1621. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1622. { \
  1623. if (v->dqbilevel) \
  1624. { \
  1625. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1626. } \
  1627. else \
  1628. { \
  1629. mqdiff = get_bits(gb, 3); \
  1630. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1631. else mquant = get_bits(gb, 5); \
  1632. } \
  1633. } \
  1634. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1635. edges = 1 << v->dqsbedge; \
  1636. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1637. edges = (3 << v->dqsbedge) % 15; \
  1638. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1639. edges = 15; \
  1640. if((edges&1) && !s->mb_x) \
  1641. mquant = v->altpq; \
  1642. if((edges&2) && s->first_slice_line) \
  1643. mquant = v->altpq; \
  1644. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1645. mquant = v->altpq; \
  1646. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1647. mquant = v->altpq; \
  1648. }
  1649. /**
  1650. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1651. * @brief Get MV differentials
  1652. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1653. * @param _dmv_x Horizontal differential for decoded MV
  1654. * @param _dmv_y Vertical differential for decoded MV
  1655. */
  1656. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1657. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1658. VC1_MV_DIFF_VLC_BITS, 2); \
  1659. if (index > 36) \
  1660. { \
  1661. mb_has_coeffs = 1; \
  1662. index -= 37; \
  1663. } \
  1664. else mb_has_coeffs = 0; \
  1665. s->mb_intra = 0; \
  1666. if (!index) { _dmv_x = _dmv_y = 0; } \
  1667. else if (index == 35) \
  1668. { \
  1669. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1670. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1671. } \
  1672. else if (index == 36) \
  1673. { \
  1674. _dmv_x = 0; \
  1675. _dmv_y = 0; \
  1676. s->mb_intra = 1; \
  1677. } \
  1678. else \
  1679. { \
  1680. index1 = index%6; \
  1681. if (!s->quarter_sample && index1 == 5) val = 1; \
  1682. else val = 0; \
  1683. if(size_table[index1] - val > 0) \
  1684. val = get_bits(gb, size_table[index1] - val); \
  1685. else val = 0; \
  1686. sign = 0 - (val&1); \
  1687. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1688. \
  1689. index1 = index/6; \
  1690. if (!s->quarter_sample && index1 == 5) val = 1; \
  1691. else val = 0; \
  1692. if(size_table[index1] - val > 0) \
  1693. val = get_bits(gb, size_table[index1] - val); \
  1694. else val = 0; \
  1695. sign = 0 - (val&1); \
  1696. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1697. }
  1698. /** Predict and set motion vector
  1699. */
  1700. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1701. {
  1702. int xy, wrap, off = 0;
  1703. int16_t *A, *B, *C;
  1704. int px, py;
  1705. int sum;
  1706. /* scale MV difference to be quad-pel */
  1707. dmv_x <<= 1 - s->quarter_sample;
  1708. dmv_y <<= 1 - s->quarter_sample;
  1709. wrap = s->b8_stride;
  1710. xy = s->block_index[n];
  1711. if(s->mb_intra){
  1712. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1713. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1714. if(mv1) { /* duplicate motion data for 1-MV block */
  1715. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1716. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1717. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1718. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1719. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1720. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1721. }
  1722. return;
  1723. }
  1724. C = s->current_picture.motion_val[0][xy - 1];
  1725. A = s->current_picture.motion_val[0][xy - wrap];
  1726. if(mv1)
  1727. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1728. else {
  1729. //in 4-MV mode different blocks have different B predictor position
  1730. switch(n){
  1731. case 0:
  1732. off = (s->mb_x > 0) ? -1 : 1;
  1733. break;
  1734. case 1:
  1735. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1736. break;
  1737. case 2:
  1738. off = 1;
  1739. break;
  1740. case 3:
  1741. off = -1;
  1742. }
  1743. }
  1744. B = s->current_picture.motion_val[0][xy - wrap + off];
  1745. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1746. if(s->mb_width == 1) {
  1747. px = A[0];
  1748. py = A[1];
  1749. } else {
  1750. px = mid_pred(A[0], B[0], C[0]);
  1751. py = mid_pred(A[1], B[1], C[1]);
  1752. }
  1753. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1754. px = C[0];
  1755. py = C[1];
  1756. } else {
  1757. px = py = 0;
  1758. }
  1759. /* Pullback MV as specified in 8.3.5.3.4 */
  1760. {
  1761. int qx, qy, X, Y;
  1762. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1763. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1764. X = (s->mb_width << 6) - 4;
  1765. Y = (s->mb_height << 6) - 4;
  1766. if(mv1) {
  1767. if(qx + px < -60) px = -60 - qx;
  1768. if(qy + py < -60) py = -60 - qy;
  1769. } else {
  1770. if(qx + px < -28) px = -28 - qx;
  1771. if(qy + py < -28) py = -28 - qy;
  1772. }
  1773. if(qx + px > X) px = X - qx;
  1774. if(qy + py > Y) py = Y - qy;
  1775. }
  1776. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1777. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1778. if(is_intra[xy - wrap])
  1779. sum = ABS(px) + ABS(py);
  1780. else
  1781. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1782. if(sum > 32) {
  1783. if(get_bits1(&s->gb)) {
  1784. px = A[0];
  1785. py = A[1];
  1786. } else {
  1787. px = C[0];
  1788. py = C[1];
  1789. }
  1790. } else {
  1791. if(is_intra[xy - 1])
  1792. sum = ABS(px) + ABS(py);
  1793. else
  1794. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1795. if(sum > 32) {
  1796. if(get_bits1(&s->gb)) {
  1797. px = A[0];
  1798. py = A[1];
  1799. } else {
  1800. px = C[0];
  1801. py = C[1];
  1802. }
  1803. }
  1804. }
  1805. }
  1806. /* store MV using signed modulus of MV range defined in 4.11 */
  1807. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1808. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1809. if(mv1) { /* duplicate motion data for 1-MV block */
  1810. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1811. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1812. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1813. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1814. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1815. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1816. }
  1817. }
  1818. /** Motion compensation for direct or interpolated blocks in B-frames
  1819. */
  1820. static void vc1_interp_mc(VC1Context *v)
  1821. {
  1822. MpegEncContext *s = &v->s;
  1823. DSPContext *dsp = &v->s.dsp;
  1824. uint8_t *srcY, *srcU, *srcV;
  1825. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1826. if(!v->s.next_picture.data[0])return;
  1827. mx = s->mv[1][0][0];
  1828. my = s->mv[1][0][1];
  1829. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1830. uvmy = (my + ((my & 3) == 3)) >> 1;
  1831. srcY = s->next_picture.data[0];
  1832. srcU = s->next_picture.data[1];
  1833. srcV = s->next_picture.data[2];
  1834. src_x = s->mb_x * 16 + (mx >> 2);
  1835. src_y = s->mb_y * 16 + (my >> 2);
  1836. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1837. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1838. src_x = clip( src_x, -16, s->mb_width * 16);
  1839. src_y = clip( src_y, -16, s->mb_height * 16);
  1840. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1841. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1842. srcY += src_y * s->linesize + src_x;
  1843. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1844. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1845. /* for grayscale we should not try to read from unknown area */
  1846. if(s->flags & CODEC_FLAG_GRAY) {
  1847. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1848. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1849. }
  1850. if(v->rangeredfrm
  1851. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1852. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1853. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1854. srcY -= s->mspel * (1 + s->linesize);
  1855. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1856. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1857. srcY = s->edge_emu_buffer;
  1858. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1859. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1860. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1861. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1862. srcU = uvbuf;
  1863. srcV = uvbuf + 16;
  1864. /* if we deal with range reduction we need to scale source blocks */
  1865. if(v->rangeredfrm) {
  1866. int i, j;
  1867. uint8_t *src, *src2;
  1868. src = srcY;
  1869. for(j = 0; j < 17 + s->mspel*2; j++) {
  1870. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1871. src += s->linesize;
  1872. }
  1873. src = srcU; src2 = srcV;
  1874. for(j = 0; j < 9; j++) {
  1875. for(i = 0; i < 9; i++) {
  1876. src[i] = ((src[i] - 128) >> 1) + 128;
  1877. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1878. }
  1879. src += s->uvlinesize;
  1880. src2 += s->uvlinesize;
  1881. }
  1882. }
  1883. srcY += s->mspel * (1 + s->linesize);
  1884. }
  1885. if(v->fastuvmc) {
  1886. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1887. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1888. }
  1889. mx >>= 1;
  1890. my >>= 1;
  1891. dxy = ((my & 1) << 1) | (mx & 1);
  1892. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1893. if(s->flags & CODEC_FLAG_GRAY) return;
  1894. /* Chroma MC always uses qpel blilinear */
  1895. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1896. uvmx = (uvmx&3)<<1;
  1897. uvmy = (uvmy&3)<<1;
  1898. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1899. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1900. }
  1901. static always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1902. {
  1903. int n = bfrac;
  1904. #if B_FRACTION_DEN==256
  1905. if(inv)
  1906. n -= 256;
  1907. if(!qs)
  1908. return 2 * ((value * n + 255) >> 9);
  1909. return (value * n + 128) >> 8;
  1910. #else
  1911. if(inv)
  1912. n -= B_FRACTION_DEN;
  1913. if(!qs)
  1914. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1915. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1916. #endif
  1917. }
  1918. /** Reconstruct motion vector for B-frame and do motion compensation
  1919. */
  1920. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1921. {
  1922. int t;
  1923. //XXX: more elegant solution is possible
  1924. t = v->s.mv[0][0][0];
  1925. v->s.mv[0][0][0] = v->s.mv[1][0][0];
  1926. v->s.mv[1][0][0] = t;
  1927. t = v->s.mv[0][0][1];
  1928. v->s.mv[0][0][1] = v->s.mv[1][0][1];
  1929. v->s.mv[1][0][1] = t;
  1930. if(direct) {
  1931. vc1_mc_1mv(v, 0);
  1932. vc1_interp_mc(v);
  1933. return;
  1934. }
  1935. if(mode == BMV_TYPE_INTERPOLATED) {
  1936. vc1_mc_1mv(v, 0);
  1937. vc1_interp_mc(v);
  1938. return;
  1939. }
  1940. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1941. }
  1942. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1943. {
  1944. MpegEncContext *s = &v->s;
  1945. int xy, wrap, off = 0;
  1946. int16_t *A, *B, *C;
  1947. int px, py;
  1948. int sum;
  1949. int r_x, r_y;
  1950. const uint8_t *is_intra = v->mb_type[0];
  1951. r_x = v->range_x;
  1952. r_y = v->range_y;
  1953. /* scale MV difference to be quad-pel */
  1954. dmv_x[0] <<= 1 - s->quarter_sample;
  1955. dmv_y[0] <<= 1 - s->quarter_sample;
  1956. dmv_x[1] <<= 1 - s->quarter_sample;
  1957. dmv_y[1] <<= 1 - s->quarter_sample;
  1958. wrap = s->b8_stride;
  1959. xy = s->block_index[0];
  1960. if(s->mb_intra) {
  1961. s->current_picture.motion_val[0][xy][0] =
  1962. s->current_picture.motion_val[0][xy][1] =
  1963. s->current_picture.motion_val[1][xy][0] =
  1964. s->current_picture.motion_val[1][xy][1] = 0;
  1965. return;
  1966. }
  1967. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1968. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1969. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1970. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1971. if(direct) {
  1972. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1973. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1974. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1975. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1976. return;
  1977. }
  1978. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1979. C = s->current_picture.motion_val[0][xy - 2];
  1980. A = s->current_picture.motion_val[0][xy - wrap*2];
  1981. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1982. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1983. if(!s->first_slice_line) { // predictor A is not out of bounds
  1984. if(s->mb_width == 1) {
  1985. px = A[0];
  1986. py = A[1];
  1987. } else {
  1988. px = mid_pred(A[0], B[0], C[0]);
  1989. py = mid_pred(A[1], B[1], C[1]);
  1990. }
  1991. } else if(s->mb_x) { // predictor C is not out of bounds
  1992. px = C[0];
  1993. py = C[1];
  1994. } else {
  1995. px = py = 0;
  1996. }
  1997. /* Pullback MV as specified in 8.3.5.3.4 */
  1998. {
  1999. int qx, qy, X, Y;
  2000. if(v->profile < PROFILE_ADVANCED) {
  2001. qx = (s->mb_x << 5);
  2002. qy = (s->mb_y << 5);
  2003. X = (s->mb_width << 5) - 4;
  2004. Y = (s->mb_height << 5) - 4;
  2005. if(qx + px < -28) px = -28 - qx;
  2006. if(qy + py < -28) py = -28 - qy;
  2007. if(qx + px > X) px = X - qx;
  2008. if(qy + py > Y) py = Y - qy;
  2009. } else {
  2010. qx = (s->mb_x << 6);
  2011. qy = (s->mb_y << 6);
  2012. X = (s->mb_width << 6) - 4;
  2013. Y = (s->mb_height << 6) - 4;
  2014. if(qx + px < -60) px = -60 - qx;
  2015. if(qy + py < -60) py = -60 - qy;
  2016. if(qx + px > X) px = X - qx;
  2017. if(qy + py > Y) py = Y - qy;
  2018. }
  2019. }
  2020. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2021. if(0 && !s->first_slice_line && s->mb_x) {
  2022. if(is_intra[xy - wrap])
  2023. sum = ABS(px) + ABS(py);
  2024. else
  2025. sum = ABS(px - A[0]) + ABS(py - A[1]);
  2026. if(sum > 32) {
  2027. if(get_bits1(&s->gb)) {
  2028. px = A[0];
  2029. py = A[1];
  2030. } else {
  2031. px = C[0];
  2032. py = C[1];
  2033. }
  2034. } else {
  2035. if(is_intra[xy - 2])
  2036. sum = ABS(px) + ABS(py);
  2037. else
  2038. sum = ABS(px - C[0]) + ABS(py - C[1]);
  2039. if(sum > 32) {
  2040. if(get_bits1(&s->gb)) {
  2041. px = A[0];
  2042. py = A[1];
  2043. } else {
  2044. px = C[0];
  2045. py = C[1];
  2046. }
  2047. }
  2048. }
  2049. }
  2050. /* store MV using signed modulus of MV range defined in 4.11 */
  2051. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2052. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2053. }
  2054. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2055. C = s->current_picture.motion_val[1][xy - 2];
  2056. A = s->current_picture.motion_val[1][xy - wrap*2];
  2057. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2058. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2059. if(!s->first_slice_line) { // predictor A is not out of bounds
  2060. if(s->mb_width == 1) {
  2061. px = A[0];
  2062. py = A[1];
  2063. } else {
  2064. px = mid_pred(A[0], B[0], C[0]);
  2065. py = mid_pred(A[1], B[1], C[1]);
  2066. }
  2067. } else if(s->mb_x) { // predictor C is not out of bounds
  2068. px = C[0];
  2069. py = C[1];
  2070. } else {
  2071. px = py = 0;
  2072. }
  2073. /* Pullback MV as specified in 8.3.5.3.4 */
  2074. {
  2075. int qx, qy, X, Y;
  2076. if(v->profile < PROFILE_ADVANCED) {
  2077. qx = (s->mb_x << 5);
  2078. qy = (s->mb_y << 5);
  2079. X = (s->mb_width << 5) - 4;
  2080. Y = (s->mb_height << 5) - 4;
  2081. if(qx + px < -28) px = -28 - qx;
  2082. if(qy + py < -28) py = -28 - qy;
  2083. if(qx + px > X) px = X - qx;
  2084. if(qy + py > Y) py = Y - qy;
  2085. } else {
  2086. qx = (s->mb_x << 6);
  2087. qy = (s->mb_y << 6);
  2088. X = (s->mb_width << 6) - 4;
  2089. Y = (s->mb_height << 6) - 4;
  2090. if(qx + px < -60) px = -60 - qx;
  2091. if(qy + py < -60) py = -60 - qy;
  2092. if(qx + px > X) px = X - qx;
  2093. if(qy + py > Y) py = Y - qy;
  2094. }
  2095. }
  2096. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2097. if(0 && !s->first_slice_line && s->mb_x) {
  2098. if(is_intra[xy - wrap])
  2099. sum = ABS(px) + ABS(py);
  2100. else
  2101. sum = ABS(px - A[0]) + ABS(py - A[1]);
  2102. if(sum > 32) {
  2103. if(get_bits1(&s->gb)) {
  2104. px = A[0];
  2105. py = A[1];
  2106. } else {
  2107. px = C[0];
  2108. py = C[1];
  2109. }
  2110. } else {
  2111. if(is_intra[xy - 2])
  2112. sum = ABS(px) + ABS(py);
  2113. else
  2114. sum = ABS(px - C[0]) + ABS(py - C[1]);
  2115. if(sum > 32) {
  2116. if(get_bits1(&s->gb)) {
  2117. px = A[0];
  2118. py = A[1];
  2119. } else {
  2120. px = C[0];
  2121. py = C[1];
  2122. }
  2123. }
  2124. }
  2125. }
  2126. /* store MV using signed modulus of MV range defined in 4.11 */
  2127. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2128. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2129. }
  2130. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2131. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2132. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2133. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2134. }
  2135. /** Get predicted DC value for I-frames only
  2136. * prediction dir: left=0, top=1
  2137. * @param s MpegEncContext
  2138. * @param[in] n block index in the current MB
  2139. * @param dc_val_ptr Pointer to DC predictor
  2140. * @param dir_ptr Prediction direction for use in AC prediction
  2141. */
  2142. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2143. int16_t **dc_val_ptr, int *dir_ptr)
  2144. {
  2145. int a, b, c, wrap, pred, scale;
  2146. int16_t *dc_val;
  2147. static const uint16_t dcpred[32] = {
  2148. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2149. 114, 102, 93, 85, 79, 73, 68, 64,
  2150. 60, 57, 54, 51, 49, 47, 45, 43,
  2151. 41, 39, 38, 37, 35, 34, 33
  2152. };
  2153. /* find prediction - wmv3_dc_scale always used here in fact */
  2154. if (n < 4) scale = s->y_dc_scale;
  2155. else scale = s->c_dc_scale;
  2156. wrap = s->block_wrap[n];
  2157. dc_val= s->dc_val[0] + s->block_index[n];
  2158. /* B A
  2159. * C X
  2160. */
  2161. c = dc_val[ - 1];
  2162. b = dc_val[ - 1 - wrap];
  2163. a = dc_val[ - wrap];
  2164. if (pq < 9 || !overlap)
  2165. {
  2166. /* Set outer values */
  2167. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2168. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2169. }
  2170. else
  2171. {
  2172. /* Set outer values */
  2173. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2174. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2175. }
  2176. if (abs(a - b) <= abs(b - c)) {
  2177. pred = c;
  2178. *dir_ptr = 1;//left
  2179. } else {
  2180. pred = a;
  2181. *dir_ptr = 0;//top
  2182. }
  2183. /* update predictor */
  2184. *dc_val_ptr = &dc_val[0];
  2185. return pred;
  2186. }
  2187. /** Get predicted DC value
  2188. * prediction dir: left=0, top=1
  2189. * @param s MpegEncContext
  2190. * @param[in] n block index in the current MB
  2191. * @param dc_val_ptr Pointer to DC predictor
  2192. * @param dir_ptr Prediction direction for use in AC prediction
  2193. */
  2194. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2195. int a_avail, int c_avail,
  2196. int16_t **dc_val_ptr, int *dir_ptr)
  2197. {
  2198. int a, b, c, wrap, pred, scale;
  2199. int16_t *dc_val;
  2200. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2201. int q1, q2 = 0;
  2202. /* find prediction - wmv3_dc_scale always used here in fact */
  2203. if (n < 4) scale = s->y_dc_scale;
  2204. else scale = s->c_dc_scale;
  2205. wrap = s->block_wrap[n];
  2206. dc_val= s->dc_val[0] + s->block_index[n];
  2207. /* B A
  2208. * C X
  2209. */
  2210. c = dc_val[ - 1];
  2211. b = dc_val[ - 1 - wrap];
  2212. a = dc_val[ - wrap];
  2213. /* scale predictors if needed */
  2214. q1 = s->current_picture.qscale_table[mb_pos];
  2215. if(c_avail && (n!= 1 && n!=3)) {
  2216. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2217. if(q2 && q2 != q1)
  2218. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2219. }
  2220. if(a_avail && (n!= 2 && n!=3)) {
  2221. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2222. if(q2 && q2 != q1)
  2223. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2224. }
  2225. if(a_avail && c_avail && (n!=3)) {
  2226. int off = mb_pos;
  2227. if(n != 1) off--;
  2228. if(n != 2) off -= s->mb_stride;
  2229. q2 = s->current_picture.qscale_table[off];
  2230. if(q2 && q2 != q1)
  2231. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2232. }
  2233. if(a_avail && c_avail) {
  2234. if(abs(a - b) <= abs(b - c)) {
  2235. pred = c;
  2236. *dir_ptr = 1;//left
  2237. } else {
  2238. pred = a;
  2239. *dir_ptr = 0;//top
  2240. }
  2241. } else if(a_avail) {
  2242. pred = a;
  2243. *dir_ptr = 0;//top
  2244. } else if(c_avail) {
  2245. pred = c;
  2246. *dir_ptr = 1;//left
  2247. } else {
  2248. pred = 0;
  2249. *dir_ptr = 1;//left
  2250. }
  2251. /* update predictor */
  2252. *dc_val_ptr = &dc_val[0];
  2253. return pred;
  2254. }
  2255. /**
  2256. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2257. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2258. * @{
  2259. */
  2260. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2261. {
  2262. int xy, wrap, pred, a, b, c;
  2263. xy = s->block_index[n];
  2264. wrap = s->b8_stride;
  2265. /* B C
  2266. * A X
  2267. */
  2268. a = s->coded_block[xy - 1 ];
  2269. b = s->coded_block[xy - 1 - wrap];
  2270. c = s->coded_block[xy - wrap];
  2271. if (b == c) {
  2272. pred = a;
  2273. } else {
  2274. pred = c;
  2275. }
  2276. /* store value */
  2277. *coded_block_ptr = &s->coded_block[xy];
  2278. return pred;
  2279. }
  2280. /**
  2281. * Decode one AC coefficient
  2282. * @param v The VC1 context
  2283. * @param last Last coefficient
  2284. * @param skip How much zero coefficients to skip
  2285. * @param value Decoded AC coefficient value
  2286. * @see 8.1.3.4
  2287. */
  2288. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2289. {
  2290. GetBitContext *gb = &v->s.gb;
  2291. int index, escape, run = 0, level = 0, lst = 0;
  2292. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2293. if (index != vc1_ac_sizes[codingset] - 1) {
  2294. run = vc1_index_decode_table[codingset][index][0];
  2295. level = vc1_index_decode_table[codingset][index][1];
  2296. lst = index >= vc1_last_decode_table[codingset];
  2297. if(get_bits(gb, 1))
  2298. level = -level;
  2299. } else {
  2300. escape = decode210(gb);
  2301. if (escape != 2) {
  2302. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2303. run = vc1_index_decode_table[codingset][index][0];
  2304. level = vc1_index_decode_table[codingset][index][1];
  2305. lst = index >= vc1_last_decode_table[codingset];
  2306. if(escape == 0) {
  2307. if(lst)
  2308. level += vc1_last_delta_level_table[codingset][run];
  2309. else
  2310. level += vc1_delta_level_table[codingset][run];
  2311. } else {
  2312. if(lst)
  2313. run += vc1_last_delta_run_table[codingset][level] + 1;
  2314. else
  2315. run += vc1_delta_run_table[codingset][level] + 1;
  2316. }
  2317. if(get_bits(gb, 1))
  2318. level = -level;
  2319. } else {
  2320. int sign;
  2321. lst = get_bits(gb, 1);
  2322. if(v->s.esc3_level_length == 0) {
  2323. if(v->pq < 8 || v->dquantfrm) { // table 59
  2324. v->s.esc3_level_length = get_bits(gb, 3);
  2325. if(!v->s.esc3_level_length)
  2326. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2327. } else { //table 60
  2328. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2329. }
  2330. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2331. }
  2332. run = get_bits(gb, v->s.esc3_run_length);
  2333. sign = get_bits(gb, 1);
  2334. level = get_bits(gb, v->s.esc3_level_length);
  2335. if(sign)
  2336. level = -level;
  2337. }
  2338. }
  2339. *last = lst;
  2340. *skip = run;
  2341. *value = level;
  2342. }
  2343. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2344. * @param v VC1Context
  2345. * @param block block to decode
  2346. * @param coded are AC coeffs present or not
  2347. * @param codingset set of VLC to decode data
  2348. */
  2349. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2350. {
  2351. GetBitContext *gb = &v->s.gb;
  2352. MpegEncContext *s = &v->s;
  2353. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2354. int run_diff, i;
  2355. int16_t *dc_val;
  2356. int16_t *ac_val, *ac_val2;
  2357. int dcdiff;
  2358. /* Get DC differential */
  2359. if (n < 4) {
  2360. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2361. } else {
  2362. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2363. }
  2364. if (dcdiff < 0){
  2365. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2366. return -1;
  2367. }
  2368. if (dcdiff)
  2369. {
  2370. if (dcdiff == 119 /* ESC index value */)
  2371. {
  2372. /* TODO: Optimize */
  2373. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2374. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2375. else dcdiff = get_bits(gb, 8);
  2376. }
  2377. else
  2378. {
  2379. if (v->pq == 1)
  2380. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2381. else if (v->pq == 2)
  2382. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2383. }
  2384. if (get_bits(gb, 1))
  2385. dcdiff = -dcdiff;
  2386. }
  2387. /* Prediction */
  2388. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2389. *dc_val = dcdiff;
  2390. /* Store the quantized DC coeff, used for prediction */
  2391. if (n < 4) {
  2392. block[0] = dcdiff * s->y_dc_scale;
  2393. } else {
  2394. block[0] = dcdiff * s->c_dc_scale;
  2395. }
  2396. /* Skip ? */
  2397. run_diff = 0;
  2398. i = 0;
  2399. if (!coded) {
  2400. goto not_coded;
  2401. }
  2402. //AC Decoding
  2403. i = 1;
  2404. {
  2405. int last = 0, skip, value;
  2406. const int8_t *zz_table;
  2407. int scale;
  2408. int k;
  2409. scale = v->pq * 2 + v->halfpq;
  2410. if(v->s.ac_pred) {
  2411. if(!dc_pred_dir)
  2412. zz_table = vc1_horizontal_zz;
  2413. else
  2414. zz_table = vc1_vertical_zz;
  2415. } else
  2416. zz_table = vc1_normal_zz;
  2417. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2418. ac_val2 = ac_val;
  2419. if(dc_pred_dir) //left
  2420. ac_val -= 16;
  2421. else //top
  2422. ac_val -= 16 * s->block_wrap[n];
  2423. while (!last) {
  2424. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2425. i += skip;
  2426. if(i > 63)
  2427. break;
  2428. block[zz_table[i++]] = value;
  2429. }
  2430. /* apply AC prediction if needed */
  2431. if(s->ac_pred) {
  2432. if(dc_pred_dir) { //left
  2433. for(k = 1; k < 8; k++)
  2434. block[k << 3] += ac_val[k];
  2435. } else { //top
  2436. for(k = 1; k < 8; k++)
  2437. block[k] += ac_val[k + 8];
  2438. }
  2439. }
  2440. /* save AC coeffs for further prediction */
  2441. for(k = 1; k < 8; k++) {
  2442. ac_val2[k] = block[k << 3];
  2443. ac_val2[k + 8] = block[k];
  2444. }
  2445. /* scale AC coeffs */
  2446. for(k = 1; k < 64; k++)
  2447. if(block[k]) {
  2448. block[k] *= scale;
  2449. if(!v->pquantizer)
  2450. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2451. }
  2452. if(s->ac_pred) i = 63;
  2453. }
  2454. not_coded:
  2455. if(!coded) {
  2456. int k, scale;
  2457. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2458. ac_val2 = ac_val;
  2459. scale = v->pq * 2 + v->halfpq;
  2460. memset(ac_val2, 0, 16 * 2);
  2461. if(dc_pred_dir) {//left
  2462. ac_val -= 16;
  2463. if(s->ac_pred)
  2464. memcpy(ac_val2, ac_val, 8 * 2);
  2465. } else {//top
  2466. ac_val -= 16 * s->block_wrap[n];
  2467. if(s->ac_pred)
  2468. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2469. }
  2470. /* apply AC prediction if needed */
  2471. if(s->ac_pred) {
  2472. if(dc_pred_dir) { //left
  2473. for(k = 1; k < 8; k++) {
  2474. block[k << 3] = ac_val[k] * scale;
  2475. if(!v->pquantizer && block[k << 3])
  2476. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2477. }
  2478. } else { //top
  2479. for(k = 1; k < 8; k++) {
  2480. block[k] = ac_val[k + 8] * scale;
  2481. if(!v->pquantizer && block[k])
  2482. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2483. }
  2484. }
  2485. i = 63;
  2486. }
  2487. }
  2488. s->block_last_index[n] = i;
  2489. return 0;
  2490. }
  2491. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2492. * @param v VC1Context
  2493. * @param block block to decode
  2494. * @param coded are AC coeffs present or not
  2495. * @param codingset set of VLC to decode data
  2496. */
  2497. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2498. {
  2499. GetBitContext *gb = &v->s.gb;
  2500. MpegEncContext *s = &v->s;
  2501. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2502. int run_diff, i;
  2503. int16_t *dc_val;
  2504. int16_t *ac_val, *ac_val2;
  2505. int dcdiff;
  2506. int a_avail = v->a_avail, c_avail = v->c_avail;
  2507. int use_pred = s->ac_pred;
  2508. int scale;
  2509. int q1, q2 = 0;
  2510. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2511. /* Get DC differential */
  2512. if (n < 4) {
  2513. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2514. } else {
  2515. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2516. }
  2517. if (dcdiff < 0){
  2518. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2519. return -1;
  2520. }
  2521. if (dcdiff)
  2522. {
  2523. if (dcdiff == 119 /* ESC index value */)
  2524. {
  2525. /* TODO: Optimize */
  2526. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2527. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2528. else dcdiff = get_bits(gb, 8);
  2529. }
  2530. else
  2531. {
  2532. if (mquant == 1)
  2533. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2534. else if (mquant == 2)
  2535. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2536. }
  2537. if (get_bits(gb, 1))
  2538. dcdiff = -dcdiff;
  2539. }
  2540. /* Prediction */
  2541. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2542. *dc_val = dcdiff;
  2543. /* Store the quantized DC coeff, used for prediction */
  2544. if (n < 4) {
  2545. block[0] = dcdiff * s->y_dc_scale;
  2546. } else {
  2547. block[0] = dcdiff * s->c_dc_scale;
  2548. }
  2549. /* Skip ? */
  2550. run_diff = 0;
  2551. i = 0;
  2552. //AC Decoding
  2553. i = 1;
  2554. /* check if AC is needed at all and adjust direction if needed */
  2555. if(!a_avail) dc_pred_dir = 1;
  2556. if(!c_avail) dc_pred_dir = 0;
  2557. if(!a_avail && !c_avail) use_pred = 0;
  2558. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2559. ac_val2 = ac_val;
  2560. scale = mquant * 2 + v->halfpq;
  2561. if(dc_pred_dir) //left
  2562. ac_val -= 16;
  2563. else //top
  2564. ac_val -= 16 * s->block_wrap[n];
  2565. q1 = s->current_picture.qscale_table[mb_pos];
  2566. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2567. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2568. if(n && n<4) q2 = q1;
  2569. if(coded) {
  2570. int last = 0, skip, value;
  2571. const int8_t *zz_table;
  2572. int k;
  2573. if(v->s.ac_pred) {
  2574. if(!dc_pred_dir)
  2575. zz_table = vc1_horizontal_zz;
  2576. else
  2577. zz_table = vc1_vertical_zz;
  2578. } else
  2579. zz_table = vc1_normal_zz;
  2580. while (!last) {
  2581. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2582. i += skip;
  2583. if(i > 63)
  2584. break;
  2585. block[zz_table[i++]] = value;
  2586. }
  2587. /* apply AC prediction if needed */
  2588. if(use_pred) {
  2589. /* scale predictors if needed*/
  2590. if(q2 && q1!=q2) {
  2591. q1 = q1 * 2 - 1;
  2592. q2 = q2 * 2 - 1;
  2593. if(dc_pred_dir) { //left
  2594. for(k = 1; k < 8; k++)
  2595. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2596. } else { //top
  2597. for(k = 1; k < 8; k++)
  2598. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2599. }
  2600. } else {
  2601. if(dc_pred_dir) { //left
  2602. for(k = 1; k < 8; k++)
  2603. block[k << 3] += ac_val[k];
  2604. } else { //top
  2605. for(k = 1; k < 8; k++)
  2606. block[k] += ac_val[k + 8];
  2607. }
  2608. }
  2609. }
  2610. /* save AC coeffs for further prediction */
  2611. for(k = 1; k < 8; k++) {
  2612. ac_val2[k] = block[k << 3];
  2613. ac_val2[k + 8] = block[k];
  2614. }
  2615. /* scale AC coeffs */
  2616. for(k = 1; k < 64; k++)
  2617. if(block[k]) {
  2618. block[k] *= scale;
  2619. if(!v->pquantizer)
  2620. block[k] += (block[k] < 0) ? -mquant : mquant;
  2621. }
  2622. if(use_pred) i = 63;
  2623. } else { // no AC coeffs
  2624. int k;
  2625. memset(ac_val2, 0, 16 * 2);
  2626. if(dc_pred_dir) {//left
  2627. if(use_pred) {
  2628. memcpy(ac_val2, ac_val, 8 * 2);
  2629. if(q2 && q1!=q2) {
  2630. q1 = q1 * 2 - 1;
  2631. q2 = q2 * 2 - 1;
  2632. for(k = 1; k < 8; k++)
  2633. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2634. }
  2635. }
  2636. } else {//top
  2637. if(use_pred) {
  2638. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2639. if(q2 && q1!=q2) {
  2640. q1 = q1 * 2 - 1;
  2641. q2 = q2 * 2 - 1;
  2642. for(k = 1; k < 8; k++)
  2643. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2644. }
  2645. }
  2646. }
  2647. /* apply AC prediction if needed */
  2648. if(use_pred) {
  2649. if(dc_pred_dir) { //left
  2650. for(k = 1; k < 8; k++) {
  2651. block[k << 3] = ac_val2[k] * scale;
  2652. if(!v->pquantizer && block[k << 3])
  2653. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2654. }
  2655. } else { //top
  2656. for(k = 1; k < 8; k++) {
  2657. block[k] = ac_val2[k + 8] * scale;
  2658. if(!v->pquantizer && block[k])
  2659. block[k] += (block[k] < 0) ? -mquant : mquant;
  2660. }
  2661. }
  2662. i = 63;
  2663. }
  2664. }
  2665. s->block_last_index[n] = i;
  2666. return 0;
  2667. }
  2668. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2669. * @param v VC1Context
  2670. * @param block block to decode
  2671. * @param coded are AC coeffs present or not
  2672. * @param mquant block quantizer
  2673. * @param codingset set of VLC to decode data
  2674. */
  2675. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2676. {
  2677. GetBitContext *gb = &v->s.gb;
  2678. MpegEncContext *s = &v->s;
  2679. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2680. int run_diff, i;
  2681. int16_t *dc_val;
  2682. int16_t *ac_val, *ac_val2;
  2683. int dcdiff;
  2684. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2685. int a_avail = v->a_avail, c_avail = v->c_avail;
  2686. int use_pred = s->ac_pred;
  2687. int scale;
  2688. int q1, q2 = 0;
  2689. /* XXX: Guard against dumb values of mquant */
  2690. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2691. /* Set DC scale - y and c use the same */
  2692. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2693. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2694. /* Get DC differential */
  2695. if (n < 4) {
  2696. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2697. } else {
  2698. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2699. }
  2700. if (dcdiff < 0){
  2701. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2702. return -1;
  2703. }
  2704. if (dcdiff)
  2705. {
  2706. if (dcdiff == 119 /* ESC index value */)
  2707. {
  2708. /* TODO: Optimize */
  2709. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2710. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2711. else dcdiff = get_bits(gb, 8);
  2712. }
  2713. else
  2714. {
  2715. if (mquant == 1)
  2716. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2717. else if (mquant == 2)
  2718. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2719. }
  2720. if (get_bits(gb, 1))
  2721. dcdiff = -dcdiff;
  2722. }
  2723. /* Prediction */
  2724. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2725. *dc_val = dcdiff;
  2726. /* Store the quantized DC coeff, used for prediction */
  2727. if (n < 4) {
  2728. block[0] = dcdiff * s->y_dc_scale;
  2729. } else {
  2730. block[0] = dcdiff * s->c_dc_scale;
  2731. }
  2732. /* Skip ? */
  2733. run_diff = 0;
  2734. i = 0;
  2735. //AC Decoding
  2736. i = 1;
  2737. /* check if AC is needed at all and adjust direction if needed */
  2738. if(!a_avail) dc_pred_dir = 1;
  2739. if(!c_avail) dc_pred_dir = 0;
  2740. if(!a_avail && !c_avail) use_pred = 0;
  2741. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2742. ac_val2 = ac_val;
  2743. scale = mquant * 2 + v->halfpq;
  2744. if(dc_pred_dir) //left
  2745. ac_val -= 16;
  2746. else //top
  2747. ac_val -= 16 * s->block_wrap[n];
  2748. q1 = s->current_picture.qscale_table[mb_pos];
  2749. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2750. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2751. if(n && n<4) q2 = q1;
  2752. if(coded) {
  2753. int last = 0, skip, value;
  2754. const int8_t *zz_table;
  2755. int k;
  2756. zz_table = vc1_simple_progressive_8x8_zz;
  2757. while (!last) {
  2758. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2759. i += skip;
  2760. if(i > 63)
  2761. break;
  2762. block[zz_table[i++]] = value;
  2763. }
  2764. /* apply AC prediction if needed */
  2765. if(use_pred) {
  2766. /* scale predictors if needed*/
  2767. if(q2 && q1!=q2) {
  2768. q1 = q1 * 2 - 1;
  2769. q2 = q2 * 2 - 1;
  2770. if(dc_pred_dir) { //left
  2771. for(k = 1; k < 8; k++)
  2772. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2773. } else { //top
  2774. for(k = 1; k < 8; k++)
  2775. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2776. }
  2777. } else {
  2778. if(dc_pred_dir) { //left
  2779. for(k = 1; k < 8; k++)
  2780. block[k << 3] += ac_val[k];
  2781. } else { //top
  2782. for(k = 1; k < 8; k++)
  2783. block[k] += ac_val[k + 8];
  2784. }
  2785. }
  2786. }
  2787. /* save AC coeffs for further prediction */
  2788. for(k = 1; k < 8; k++) {
  2789. ac_val2[k] = block[k << 3];
  2790. ac_val2[k + 8] = block[k];
  2791. }
  2792. /* scale AC coeffs */
  2793. for(k = 1; k < 64; k++)
  2794. if(block[k]) {
  2795. block[k] *= scale;
  2796. if(!v->pquantizer)
  2797. block[k] += (block[k] < 0) ? -mquant : mquant;
  2798. }
  2799. if(use_pred) i = 63;
  2800. } else { // no AC coeffs
  2801. int k;
  2802. memset(ac_val2, 0, 16 * 2);
  2803. if(dc_pred_dir) {//left
  2804. if(use_pred) {
  2805. memcpy(ac_val2, ac_val, 8 * 2);
  2806. if(q2 && q1!=q2) {
  2807. q1 = q1 * 2 - 1;
  2808. q2 = q2 * 2 - 1;
  2809. for(k = 1; k < 8; k++)
  2810. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2811. }
  2812. }
  2813. } else {//top
  2814. if(use_pred) {
  2815. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2816. if(q2 && q1!=q2) {
  2817. q1 = q1 * 2 - 1;
  2818. q2 = q2 * 2 - 1;
  2819. for(k = 1; k < 8; k++)
  2820. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2821. }
  2822. }
  2823. }
  2824. /* apply AC prediction if needed */
  2825. if(use_pred) {
  2826. if(dc_pred_dir) { //left
  2827. for(k = 1; k < 8; k++) {
  2828. block[k << 3] = ac_val2[k] * scale;
  2829. if(!v->pquantizer && block[k << 3])
  2830. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2831. }
  2832. } else { //top
  2833. for(k = 1; k < 8; k++) {
  2834. block[k] = ac_val2[k + 8] * scale;
  2835. if(!v->pquantizer && block[k])
  2836. block[k] += (block[k] < 0) ? -mquant : mquant;
  2837. }
  2838. }
  2839. i = 63;
  2840. }
  2841. }
  2842. s->block_last_index[n] = i;
  2843. return 0;
  2844. }
  2845. /** Decode P block
  2846. */
  2847. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2848. {
  2849. MpegEncContext *s = &v->s;
  2850. GetBitContext *gb = &s->gb;
  2851. int i, j;
  2852. int subblkpat = 0;
  2853. int scale, off, idx, last, skip, value;
  2854. int ttblk = ttmb & 7;
  2855. if(ttmb == -1) {
  2856. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2857. }
  2858. if(ttblk == TT_4X4) {
  2859. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2860. }
  2861. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2862. subblkpat = decode012(gb);
  2863. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2864. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2865. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2866. }
  2867. scale = 2 * mquant + v->halfpq;
  2868. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2869. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2870. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2871. ttblk = TT_8X4;
  2872. }
  2873. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2874. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2875. ttblk = TT_4X8;
  2876. }
  2877. switch(ttblk) {
  2878. case TT_8X8:
  2879. i = 0;
  2880. last = 0;
  2881. while (!last) {
  2882. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2883. i += skip;
  2884. if(i > 63)
  2885. break;
  2886. idx = vc1_simple_progressive_8x8_zz[i++];
  2887. block[idx] = value * scale;
  2888. if(!v->pquantizer)
  2889. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2890. }
  2891. s->dsp.vc1_inv_trans_8x8(block);
  2892. break;
  2893. case TT_4X4:
  2894. for(j = 0; j < 4; j++) {
  2895. last = subblkpat & (1 << (3 - j));
  2896. i = 0;
  2897. off = (j & 1) * 4 + (j & 2) * 16;
  2898. while (!last) {
  2899. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2900. i += skip;
  2901. if(i > 15)
  2902. break;
  2903. idx = vc1_simple_progressive_4x4_zz[i++];
  2904. block[idx + off] = value * scale;
  2905. if(!v->pquantizer)
  2906. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2907. }
  2908. if(!(subblkpat & (1 << (3 - j))))
  2909. s->dsp.vc1_inv_trans_4x4(block, j);
  2910. }
  2911. break;
  2912. case TT_8X4:
  2913. for(j = 0; j < 2; j++) {
  2914. last = subblkpat & (1 << (1 - j));
  2915. i = 0;
  2916. off = j * 32;
  2917. while (!last) {
  2918. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2919. i += skip;
  2920. if(i > 31)
  2921. break;
  2922. if(v->profile < PROFILE_ADVANCED)
  2923. idx = vc1_simple_progressive_8x4_zz[i++];
  2924. else
  2925. idx = vc1_adv_progressive_8x4_zz[i++];
  2926. block[idx + off] = value * scale;
  2927. if(!v->pquantizer)
  2928. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2929. }
  2930. if(!(subblkpat & (1 << (1 - j))))
  2931. s->dsp.vc1_inv_trans_8x4(block, j);
  2932. }
  2933. break;
  2934. case TT_4X8:
  2935. for(j = 0; j < 2; j++) {
  2936. last = subblkpat & (1 << (1 - j));
  2937. i = 0;
  2938. off = j * 4;
  2939. while (!last) {
  2940. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2941. i += skip;
  2942. if(i > 31)
  2943. break;
  2944. if(v->profile < PROFILE_ADVANCED)
  2945. idx = vc1_simple_progressive_4x8_zz[i++];
  2946. else
  2947. idx = vc1_adv_progressive_4x8_zz[i++];
  2948. block[idx + off] = value * scale;
  2949. if(!v->pquantizer)
  2950. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2951. }
  2952. if(!(subblkpat & (1 << (1 - j))))
  2953. s->dsp.vc1_inv_trans_4x8(block, j);
  2954. }
  2955. break;
  2956. }
  2957. return 0;
  2958. }
  2959. /** Decode one P-frame MB (in Simple/Main profile)
  2960. */
  2961. static int vc1_decode_p_mb(VC1Context *v)
  2962. {
  2963. MpegEncContext *s = &v->s;
  2964. GetBitContext *gb = &s->gb;
  2965. int i, j;
  2966. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2967. int cbp; /* cbp decoding stuff */
  2968. int mqdiff, mquant; /* MB quantization */
  2969. int ttmb = v->ttfrm; /* MB Transform type */
  2970. int status;
  2971. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2972. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2973. int mb_has_coeffs = 1; /* last_flag */
  2974. int dmv_x, dmv_y; /* Differential MV components */
  2975. int index, index1; /* LUT indices */
  2976. int val, sign; /* temp values */
  2977. int first_block = 1;
  2978. int dst_idx, off;
  2979. int skipped, fourmv;
  2980. mquant = v->pq; /* Loosy initialization */
  2981. if (v->mv_type_is_raw)
  2982. fourmv = get_bits1(gb);
  2983. else
  2984. fourmv = v->mv_type_mb_plane[mb_pos];
  2985. if (v->skip_is_raw)
  2986. skipped = get_bits1(gb);
  2987. else
  2988. skipped = v->s.mbskip_table[mb_pos];
  2989. s->dsp.clear_blocks(s->block[0]);
  2990. if (!fourmv) /* 1MV mode */
  2991. {
  2992. if (!skipped)
  2993. {
  2994. GET_MVDATA(dmv_x, dmv_y);
  2995. if (s->mb_intra) {
  2996. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2997. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2998. }
  2999. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3000. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3001. /* FIXME Set DC val for inter block ? */
  3002. if (s->mb_intra && !mb_has_coeffs)
  3003. {
  3004. GET_MQUANT();
  3005. s->ac_pred = get_bits(gb, 1);
  3006. cbp = 0;
  3007. }
  3008. else if (mb_has_coeffs)
  3009. {
  3010. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3011. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3012. GET_MQUANT();
  3013. }
  3014. else
  3015. {
  3016. mquant = v->pq;
  3017. cbp = 0;
  3018. }
  3019. s->current_picture.qscale_table[mb_pos] = mquant;
  3020. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3021. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3022. VC1_TTMB_VLC_BITS, 2);
  3023. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3024. dst_idx = 0;
  3025. for (i=0; i<6; i++)
  3026. {
  3027. s->dc_val[0][s->block_index[i]] = 0;
  3028. dst_idx += i >> 2;
  3029. val = ((cbp >> (5 - i)) & 1);
  3030. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3031. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3032. if(s->mb_intra) {
  3033. /* check if prediction blocks A and C are available */
  3034. v->a_avail = v->c_avail = 0;
  3035. if(i == 2 || i == 3 || !s->first_slice_line)
  3036. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3037. if(i == 1 || i == 3 || s->mb_x)
  3038. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3039. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3040. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3041. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3042. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3043. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3044. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3045. if(v->pq >= 9 && v->overlap) {
  3046. if(v->a_avail)
  3047. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  3048. if(v->c_avail)
  3049. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  3050. }
  3051. } else if(val) {
  3052. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3053. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3054. first_block = 0;
  3055. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3056. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3057. }
  3058. }
  3059. }
  3060. else //Skipped
  3061. {
  3062. s->mb_intra = 0;
  3063. for(i = 0; i < 6; i++) {
  3064. v->mb_type[0][s->block_index[i]] = 0;
  3065. s->dc_val[0][s->block_index[i]] = 0;
  3066. }
  3067. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3068. s->current_picture.qscale_table[mb_pos] = 0;
  3069. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3070. vc1_mc_1mv(v, 0);
  3071. return 0;
  3072. }
  3073. } //1MV mode
  3074. else //4MV mode
  3075. {
  3076. if (!skipped /* unskipped MB */)
  3077. {
  3078. int intra_count = 0, coded_inter = 0;
  3079. int is_intra[6], is_coded[6];
  3080. /* Get CBPCY */
  3081. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3082. for (i=0; i<6; i++)
  3083. {
  3084. val = ((cbp >> (5 - i)) & 1);
  3085. s->dc_val[0][s->block_index[i]] = 0;
  3086. s->mb_intra = 0;
  3087. if(i < 4) {
  3088. dmv_x = dmv_y = 0;
  3089. s->mb_intra = 0;
  3090. mb_has_coeffs = 0;
  3091. if(val) {
  3092. GET_MVDATA(dmv_x, dmv_y);
  3093. }
  3094. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3095. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3096. intra_count += s->mb_intra;
  3097. is_intra[i] = s->mb_intra;
  3098. is_coded[i] = mb_has_coeffs;
  3099. }
  3100. if(i&4){
  3101. is_intra[i] = (intra_count >= 3);
  3102. is_coded[i] = val;
  3103. }
  3104. if(i == 4) vc1_mc_4mv_chroma(v);
  3105. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3106. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3107. }
  3108. // if there are no coded blocks then don't do anything more
  3109. if(!intra_count && !coded_inter) return 0;
  3110. dst_idx = 0;
  3111. GET_MQUANT();
  3112. s->current_picture.qscale_table[mb_pos] = mquant;
  3113. /* test if block is intra and has pred */
  3114. {
  3115. int intrapred = 0;
  3116. for(i=0; i<6; i++)
  3117. if(is_intra[i]) {
  3118. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3119. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3120. intrapred = 1;
  3121. break;
  3122. }
  3123. }
  3124. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3125. else s->ac_pred = 0;
  3126. }
  3127. if (!v->ttmbf && coded_inter)
  3128. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3129. for (i=0; i<6; i++)
  3130. {
  3131. dst_idx += i >> 2;
  3132. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3133. s->mb_intra = is_intra[i];
  3134. if (is_intra[i]) {
  3135. /* check if prediction blocks A and C are available */
  3136. v->a_avail = v->c_avail = 0;
  3137. if(i == 2 || i == 3 || !s->first_slice_line)
  3138. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3139. if(i == 1 || i == 3 || s->mb_x)
  3140. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3141. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3142. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3143. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3144. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3145. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3146. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3147. if(v->pq >= 9 && v->overlap) {
  3148. if(v->a_avail)
  3149. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  3150. if(v->c_avail)
  3151. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  3152. }
  3153. } else if(is_coded[i]) {
  3154. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3155. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3156. first_block = 0;
  3157. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3158. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3159. }
  3160. }
  3161. return status;
  3162. }
  3163. else //Skipped MB
  3164. {
  3165. s->mb_intra = 0;
  3166. s->current_picture.qscale_table[mb_pos] = 0;
  3167. for (i=0; i<6; i++) {
  3168. v->mb_type[0][s->block_index[i]] = 0;
  3169. s->dc_val[0][s->block_index[i]] = 0;
  3170. }
  3171. for (i=0; i<4; i++)
  3172. {
  3173. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3174. vc1_mc_4mv_luma(v, i);
  3175. }
  3176. vc1_mc_4mv_chroma(v);
  3177. s->current_picture.qscale_table[mb_pos] = 0;
  3178. return 0;
  3179. }
  3180. }
  3181. /* Should never happen */
  3182. return -1;
  3183. }
  3184. /** Decode one B-frame MB (in Main profile)
  3185. */
  3186. static void vc1_decode_b_mb(VC1Context *v)
  3187. {
  3188. MpegEncContext *s = &v->s;
  3189. GetBitContext *gb = &s->gb;
  3190. int i, j;
  3191. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3192. int cbp = 0; /* cbp decoding stuff */
  3193. int mqdiff, mquant; /* MB quantization */
  3194. int ttmb = v->ttfrm; /* MB Transform type */
  3195. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3196. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3197. int mb_has_coeffs = 0; /* last_flag */
  3198. int index, index1; /* LUT indices */
  3199. int val, sign; /* temp values */
  3200. int first_block = 1;
  3201. int dst_idx, off;
  3202. int skipped, direct;
  3203. int dmv_x[2], dmv_y[2];
  3204. int bmvtype = BMV_TYPE_BACKWARD;
  3205. mquant = v->pq; /* Loosy initialization */
  3206. s->mb_intra = 0;
  3207. if (v->dmb_is_raw)
  3208. direct = get_bits1(gb);
  3209. else
  3210. direct = v->direct_mb_plane[mb_pos];
  3211. if (v->skip_is_raw)
  3212. skipped = get_bits1(gb);
  3213. else
  3214. skipped = v->s.mbskip_table[mb_pos];
  3215. s->dsp.clear_blocks(s->block[0]);
  3216. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3217. for(i = 0; i < 6; i++) {
  3218. v->mb_type[0][s->block_index[i]] = 0;
  3219. s->dc_val[0][s->block_index[i]] = 0;
  3220. }
  3221. s->current_picture.qscale_table[mb_pos] = 0;
  3222. if (!direct) {
  3223. if (!skipped) {
  3224. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3225. dmv_x[1] = dmv_x[0];
  3226. dmv_y[1] = dmv_y[0];
  3227. }
  3228. if(skipped || !s->mb_intra) {
  3229. bmvtype = decode012(gb);
  3230. switch(bmvtype) {
  3231. case 0:
  3232. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3233. break;
  3234. case 1:
  3235. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3236. break;
  3237. case 2:
  3238. bmvtype = BMV_TYPE_INTERPOLATED;
  3239. dmv_x[1] = dmv_y[1] = 0;
  3240. }
  3241. }
  3242. }
  3243. for(i = 0; i < 6; i++)
  3244. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3245. if (skipped) {
  3246. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3247. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3248. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3249. return;
  3250. }
  3251. if (direct) {
  3252. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3253. GET_MQUANT();
  3254. s->mb_intra = 0;
  3255. mb_has_coeffs = 0;
  3256. s->current_picture.qscale_table[mb_pos] = mquant;
  3257. if(!v->ttmbf)
  3258. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3259. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3260. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3261. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3262. } else {
  3263. if(!mb_has_coeffs && !s->mb_intra) {
  3264. /* no coded blocks - effectively skipped */
  3265. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3266. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3267. return;
  3268. }
  3269. if(s->mb_intra && !mb_has_coeffs) {
  3270. GET_MQUANT();
  3271. s->current_picture.qscale_table[mb_pos] = mquant;
  3272. s->ac_pred = get_bits1(gb);
  3273. cbp = 0;
  3274. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3275. } else {
  3276. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3277. GET_MVDATA(dmv_x[1], dmv_y[1]);
  3278. if(!mb_has_coeffs) {
  3279. /* interpolated skipped block */
  3280. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3281. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3282. return;
  3283. }
  3284. }
  3285. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3286. if(!s->mb_intra) {
  3287. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3288. }
  3289. if(s->mb_intra)
  3290. s->ac_pred = get_bits1(gb);
  3291. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3292. GET_MQUANT();
  3293. s->current_picture.qscale_table[mb_pos] = mquant;
  3294. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3295. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3296. }
  3297. }
  3298. dst_idx = 0;
  3299. for (i=0; i<6; i++)
  3300. {
  3301. s->dc_val[0][s->block_index[i]] = 0;
  3302. dst_idx += i >> 2;
  3303. val = ((cbp >> (5 - i)) & 1);
  3304. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3305. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3306. if(s->mb_intra) {
  3307. /* check if prediction blocks A and C are available */
  3308. v->a_avail = v->c_avail = 0;
  3309. if(i == 2 || i == 3 || !s->first_slice_line)
  3310. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3311. if(i == 1 || i == 3 || s->mb_x)
  3312. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3313. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3314. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3315. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3316. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3317. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3318. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3319. } else if(val) {
  3320. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3321. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3322. first_block = 0;
  3323. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3324. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3325. }
  3326. }
  3327. }
  3328. /** Decode blocks of I-frame
  3329. */
  3330. static void vc1_decode_i_blocks(VC1Context *v)
  3331. {
  3332. int k, j;
  3333. MpegEncContext *s = &v->s;
  3334. int cbp, val;
  3335. uint8_t *coded_val;
  3336. int mb_pos;
  3337. /* select codingmode used for VLC tables selection */
  3338. switch(v->y_ac_table_index){
  3339. case 0:
  3340. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3341. break;
  3342. case 1:
  3343. v->codingset = CS_HIGH_MOT_INTRA;
  3344. break;
  3345. case 2:
  3346. v->codingset = CS_MID_RATE_INTRA;
  3347. break;
  3348. }
  3349. switch(v->c_ac_table_index){
  3350. case 0:
  3351. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3352. break;
  3353. case 1:
  3354. v->codingset2 = CS_HIGH_MOT_INTER;
  3355. break;
  3356. case 2:
  3357. v->codingset2 = CS_MID_RATE_INTER;
  3358. break;
  3359. }
  3360. /* Set DC scale - y and c use the same */
  3361. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3362. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3363. //do frame decode
  3364. s->mb_x = s->mb_y = 0;
  3365. s->mb_intra = 1;
  3366. s->first_slice_line = 1;
  3367. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3368. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3369. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3370. ff_init_block_index(s);
  3371. ff_update_block_index(s);
  3372. s->dsp.clear_blocks(s->block[0]);
  3373. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3374. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3375. s->current_picture.qscale_table[mb_pos] = v->pq;
  3376. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3377. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3378. // do actual MB decoding and displaying
  3379. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3380. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3381. for(k = 0; k < 6; k++) {
  3382. val = ((cbp >> (5 - k)) & 1);
  3383. if (k < 4) {
  3384. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3385. val = val ^ pred;
  3386. *coded_val = val;
  3387. }
  3388. cbp |= val << (5 - k);
  3389. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3390. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3391. if(v->pq >= 9 && v->overlap) {
  3392. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3393. }
  3394. }
  3395. vc1_put_block(v, s->block);
  3396. if(v->pq >= 9 && v->overlap) {
  3397. if(!s->first_slice_line) {
  3398. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  3399. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  3400. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3401. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  3402. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  3403. }
  3404. }
  3405. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  3406. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3407. if(s->mb_x) {
  3408. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  3409. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  3410. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3411. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  3412. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  3413. }
  3414. }
  3415. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  3416. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3417. }
  3418. if(get_bits_count(&s->gb) > v->bits) {
  3419. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3420. return;
  3421. }
  3422. }
  3423. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3424. s->first_slice_line = 0;
  3425. }
  3426. }
  3427. /** Decode blocks of I-frame for advanced profile
  3428. */
  3429. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3430. {
  3431. int k, j;
  3432. MpegEncContext *s = &v->s;
  3433. int cbp, val;
  3434. uint8_t *coded_val;
  3435. int mb_pos;
  3436. int mquant = v->pq;
  3437. int mqdiff;
  3438. int overlap;
  3439. GetBitContext *gb = &s->gb;
  3440. /* select codingmode used for VLC tables selection */
  3441. switch(v->y_ac_table_index){
  3442. case 0:
  3443. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3444. break;
  3445. case 1:
  3446. v->codingset = CS_HIGH_MOT_INTRA;
  3447. break;
  3448. case 2:
  3449. v->codingset = CS_MID_RATE_INTRA;
  3450. break;
  3451. }
  3452. switch(v->c_ac_table_index){
  3453. case 0:
  3454. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3455. break;
  3456. case 1:
  3457. v->codingset2 = CS_HIGH_MOT_INTER;
  3458. break;
  3459. case 2:
  3460. v->codingset2 = CS_MID_RATE_INTER;
  3461. break;
  3462. }
  3463. /* Set DC scale - y and c use the same */
  3464. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3465. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3466. //do frame decode
  3467. s->mb_x = s->mb_y = 0;
  3468. s->mb_intra = 1;
  3469. s->first_slice_line = 1;
  3470. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3471. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3472. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3473. ff_init_block_index(s);
  3474. ff_update_block_index(s);
  3475. s->dsp.clear_blocks(s->block[0]);
  3476. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3477. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3478. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3479. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3480. // do actual MB decoding and displaying
  3481. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3482. if(v->acpred_is_raw)
  3483. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3484. else
  3485. v->s.ac_pred = v->acpred_plane[mb_pos];
  3486. if(v->condover == CONDOVER_SELECT) {
  3487. if(v->overflg_is_raw)
  3488. overlap = get_bits(&v->s.gb, 1);
  3489. else
  3490. overlap = v->over_flags_plane[mb_pos];
  3491. } else
  3492. overlap = (v->condover == CONDOVER_ALL);
  3493. GET_MQUANT();
  3494. s->current_picture.qscale_table[mb_pos] = mquant;
  3495. for(k = 0; k < 6; k++) {
  3496. val = ((cbp >> (5 - k)) & 1);
  3497. if (k < 4) {
  3498. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3499. val = val ^ pred;
  3500. *coded_val = val;
  3501. }
  3502. cbp |= val << (5 - k);
  3503. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3504. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3505. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3506. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3507. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3508. }
  3509. vc1_put_block(v, s->block);
  3510. if(overlap) {
  3511. if(!s->first_slice_line) {
  3512. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  3513. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  3514. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3515. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  3516. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  3517. }
  3518. }
  3519. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  3520. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3521. if(s->mb_x) {
  3522. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  3523. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  3524. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3525. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  3526. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  3527. }
  3528. }
  3529. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  3530. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3531. }
  3532. if(get_bits_count(&s->gb) > v->bits) {
  3533. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3534. return;
  3535. }
  3536. }
  3537. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3538. s->first_slice_line = 0;
  3539. }
  3540. }
  3541. static void vc1_decode_p_blocks(VC1Context *v)
  3542. {
  3543. MpegEncContext *s = &v->s;
  3544. /* select codingmode used for VLC tables selection */
  3545. switch(v->c_ac_table_index){
  3546. case 0:
  3547. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3548. break;
  3549. case 1:
  3550. v->codingset = CS_HIGH_MOT_INTRA;
  3551. break;
  3552. case 2:
  3553. v->codingset = CS_MID_RATE_INTRA;
  3554. break;
  3555. }
  3556. switch(v->c_ac_table_index){
  3557. case 0:
  3558. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3559. break;
  3560. case 1:
  3561. v->codingset2 = CS_HIGH_MOT_INTER;
  3562. break;
  3563. case 2:
  3564. v->codingset2 = CS_MID_RATE_INTER;
  3565. break;
  3566. }
  3567. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3568. s->first_slice_line = 1;
  3569. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3570. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3571. ff_init_block_index(s);
  3572. ff_update_block_index(s);
  3573. s->dsp.clear_blocks(s->block[0]);
  3574. vc1_decode_p_mb(v);
  3575. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3576. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3577. return;
  3578. }
  3579. }
  3580. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3581. s->first_slice_line = 0;
  3582. }
  3583. }
  3584. static void vc1_decode_b_blocks(VC1Context *v)
  3585. {
  3586. MpegEncContext *s = &v->s;
  3587. /* select codingmode used for VLC tables selection */
  3588. switch(v->c_ac_table_index){
  3589. case 0:
  3590. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3591. break;
  3592. case 1:
  3593. v->codingset = CS_HIGH_MOT_INTRA;
  3594. break;
  3595. case 2:
  3596. v->codingset = CS_MID_RATE_INTRA;
  3597. break;
  3598. }
  3599. switch(v->c_ac_table_index){
  3600. case 0:
  3601. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3602. break;
  3603. case 1:
  3604. v->codingset2 = CS_HIGH_MOT_INTER;
  3605. break;
  3606. case 2:
  3607. v->codingset2 = CS_MID_RATE_INTER;
  3608. break;
  3609. }
  3610. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3611. s->first_slice_line = 1;
  3612. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3613. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3614. ff_init_block_index(s);
  3615. ff_update_block_index(s);
  3616. s->dsp.clear_blocks(s->block[0]);
  3617. vc1_decode_b_mb(v);
  3618. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3619. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3620. return;
  3621. }
  3622. }
  3623. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3624. s->first_slice_line = 0;
  3625. }
  3626. }
  3627. static void vc1_decode_skip_blocks(VC1Context *v)
  3628. {
  3629. MpegEncContext *s = &v->s;
  3630. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3631. s->first_slice_line = 1;
  3632. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3633. s->mb_x = 0;
  3634. ff_init_block_index(s);
  3635. ff_update_block_index(s);
  3636. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3637. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3638. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3639. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3640. s->first_slice_line = 0;
  3641. }
  3642. s->pict_type = P_TYPE;
  3643. }
  3644. static void vc1_decode_blocks(VC1Context *v)
  3645. {
  3646. v->s.esc3_level_length = 0;
  3647. switch(v->s.pict_type) {
  3648. case I_TYPE:
  3649. if(v->profile == PROFILE_ADVANCED)
  3650. vc1_decode_i_blocks_adv(v);
  3651. else
  3652. vc1_decode_i_blocks(v);
  3653. break;
  3654. case P_TYPE:
  3655. if(v->p_frame_skipped)
  3656. vc1_decode_skip_blocks(v);
  3657. else
  3658. vc1_decode_p_blocks(v);
  3659. break;
  3660. case B_TYPE:
  3661. if(v->bi_type)
  3662. vc1_decode_i_blocks(v);
  3663. else
  3664. vc1_decode_b_blocks(v);
  3665. break;
  3666. }
  3667. }
  3668. /** Initialize a VC1/WMV3 decoder
  3669. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3670. * @todo TODO: Decypher remaining bits in extra_data
  3671. */
  3672. static int vc1_decode_init(AVCodecContext *avctx)
  3673. {
  3674. VC1Context *v = avctx->priv_data;
  3675. MpegEncContext *s = &v->s;
  3676. GetBitContext gb;
  3677. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3678. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3679. avctx->pix_fmt = PIX_FMT_YUV420P;
  3680. else
  3681. avctx->pix_fmt = PIX_FMT_GRAY8;
  3682. v->s.avctx = avctx;
  3683. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3684. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3685. if(ff_h263_decode_init(avctx) < 0)
  3686. return -1;
  3687. if (vc1_init_common(v) < 0) return -1;
  3688. avctx->coded_width = avctx->width;
  3689. avctx->coded_height = avctx->height;
  3690. if (avctx->codec_id == CODEC_ID_WMV3)
  3691. {
  3692. int count = 0;
  3693. // looks like WMV3 has a sequence header stored in the extradata
  3694. // advanced sequence header may be before the first frame
  3695. // the last byte of the extradata is a version number, 1 for the
  3696. // samples we can decode
  3697. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3698. if (decode_sequence_header(avctx, &gb) < 0)
  3699. return -1;
  3700. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3701. if (count>0)
  3702. {
  3703. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3704. count, get_bits(&gb, count));
  3705. }
  3706. else if (count < 0)
  3707. {
  3708. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3709. }
  3710. } else { // VC1/WVC1
  3711. int edata_size = avctx->extradata_size;
  3712. uint8_t *edata = avctx->extradata;
  3713. if(avctx->extradata_size < 16) {
  3714. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
  3715. return -1;
  3716. }
  3717. while(edata_size > 8) {
  3718. // test if we've found header
  3719. if(BE_32(edata) == 0x0000010F) {
  3720. edata += 4;
  3721. edata_size -= 4;
  3722. break;
  3723. }
  3724. edata_size--;
  3725. edata++;
  3726. }
  3727. init_get_bits(&gb, edata, edata_size*8);
  3728. if (decode_sequence_header(avctx, &gb) < 0)
  3729. return -1;
  3730. while(edata_size > 8) {
  3731. // test if we've found entry point
  3732. if(BE_32(edata) == 0x0000010E) {
  3733. edata += 4;
  3734. edata_size -= 4;
  3735. break;
  3736. }
  3737. edata_size--;
  3738. edata++;
  3739. }
  3740. init_get_bits(&gb, edata, edata_size*8);
  3741. if (decode_entry_point(avctx, &gb) < 0)
  3742. return -1;
  3743. }
  3744. avctx->has_b_frames= !!(avctx->max_b_frames);
  3745. s->low_delay = !avctx->has_b_frames;
  3746. s->mb_width = (avctx->coded_width+15)>>4;
  3747. s->mb_height = (avctx->coded_height+15)>>4;
  3748. /* Allocate mb bitplanes */
  3749. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3750. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3751. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3752. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3753. /* allocate block type info in that way so it could be used with s->block_index[] */
  3754. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3755. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3756. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3757. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3758. /* Init coded blocks info */
  3759. if (v->profile == PROFILE_ADVANCED)
  3760. {
  3761. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3762. // return -1;
  3763. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3764. // return -1;
  3765. }
  3766. return 0;
  3767. }
  3768. /** Decode a VC1/WMV3 frame
  3769. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3770. */
  3771. static int vc1_decode_frame(AVCodecContext *avctx,
  3772. void *data, int *data_size,
  3773. uint8_t *buf, int buf_size)
  3774. {
  3775. VC1Context *v = avctx->priv_data;
  3776. MpegEncContext *s = &v->s;
  3777. AVFrame *pict = data;
  3778. uint8_t *buf2 = NULL;
  3779. /* no supplementary picture */
  3780. if (buf_size == 0) {
  3781. /* special case for last picture */
  3782. if (s->low_delay==0 && s->next_picture_ptr) {
  3783. *pict= *(AVFrame*)s->next_picture_ptr;
  3784. s->next_picture_ptr= NULL;
  3785. *data_size = sizeof(AVFrame);
  3786. }
  3787. return 0;
  3788. }
  3789. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3790. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3791. int i= ff_find_unused_picture(s, 0);
  3792. s->current_picture_ptr= &s->picture[i];
  3793. }
  3794. //for advanced profile we need to unescape buffer
  3795. if (avctx->codec_id == CODEC_ID_VC1) {
  3796. int i, buf_size2;
  3797. buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3798. buf_size2 = 0;
  3799. for(i = 0; i < buf_size; i++) {
  3800. if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
  3801. buf2[buf_size2++] = buf[i+1];
  3802. i++;
  3803. } else
  3804. buf2[buf_size2++] = buf[i];
  3805. }
  3806. init_get_bits(&s->gb, buf2, buf_size2*8);
  3807. } else
  3808. init_get_bits(&s->gb, buf, buf_size*8);
  3809. // do parse frame header
  3810. if(v->profile < PROFILE_ADVANCED) {
  3811. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3812. av_free(buf2);
  3813. return -1;
  3814. }
  3815. } else {
  3816. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3817. av_free(buf2);
  3818. return -1;
  3819. }
  3820. }
  3821. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3822. av_free(buf2);
  3823. return -1;
  3824. }
  3825. /* skip B frames as they are not decoded correctly */
  3826. if(s->pict_type == B_TYPE){
  3827. av_free(buf2);
  3828. return buf_size;
  3829. }
  3830. // for hurry_up==5
  3831. s->current_picture.pict_type= s->pict_type;
  3832. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3833. /* skip B-frames if we don't have reference frames */
  3834. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3835. av_free(buf2);
  3836. return -1;//buf_size;
  3837. }
  3838. /* skip b frames if we are in a hurry */
  3839. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3840. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3841. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3842. || avctx->skip_frame >= AVDISCARD_ALL) {
  3843. av_free(buf2);
  3844. return buf_size;
  3845. }
  3846. /* skip everything if we are in a hurry>=5 */
  3847. if(avctx->hurry_up>=5) {
  3848. av_free(buf2);
  3849. return -1;//buf_size;
  3850. }
  3851. if(s->next_p_frame_damaged){
  3852. if(s->pict_type==B_TYPE)
  3853. return buf_size;
  3854. else
  3855. s->next_p_frame_damaged=0;
  3856. }
  3857. if(MPV_frame_start(s, avctx) < 0) {
  3858. av_free(buf2);
  3859. return -1;
  3860. }
  3861. ff_er_frame_start(s);
  3862. v->bits = buf_size * 8;
  3863. vc1_decode_blocks(v);
  3864. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3865. // if(get_bits_count(&s->gb) > buf_size * 8)
  3866. // return -1;
  3867. ff_er_frame_end(s);
  3868. MPV_frame_end(s);
  3869. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3870. assert(s->current_picture.pict_type == s->pict_type);
  3871. if (s->pict_type == B_TYPE || s->low_delay) {
  3872. *pict= *(AVFrame*)s->current_picture_ptr;
  3873. } else if (s->last_picture_ptr != NULL) {
  3874. *pict= *(AVFrame*)s->last_picture_ptr;
  3875. }
  3876. if(s->last_picture_ptr || s->low_delay){
  3877. *data_size = sizeof(AVFrame);
  3878. ff_print_debug_info(s, pict);
  3879. }
  3880. /* Return the Picture timestamp as the frame number */
  3881. /* we substract 1 because it is added on utils.c */
  3882. avctx->frame_number = s->picture_number - 1;
  3883. av_free(buf2);
  3884. return buf_size;
  3885. }
  3886. /** Close a VC1/WMV3 decoder
  3887. * @warning Initial try at using MpegEncContext stuff
  3888. */
  3889. static int vc1_decode_end(AVCodecContext *avctx)
  3890. {
  3891. VC1Context *v = avctx->priv_data;
  3892. av_freep(&v->hrd_rate);
  3893. av_freep(&v->hrd_buffer);
  3894. MPV_common_end(&v->s);
  3895. av_freep(&v->mv_type_mb_plane);
  3896. av_freep(&v->direct_mb_plane);
  3897. av_freep(&v->acpred_plane);
  3898. av_freep(&v->over_flags_plane);
  3899. av_freep(&v->mb_type_base);
  3900. return 0;
  3901. }
  3902. AVCodec vc1_decoder = {
  3903. "vc1",
  3904. CODEC_TYPE_VIDEO,
  3905. CODEC_ID_VC1,
  3906. sizeof(VC1Context),
  3907. vc1_decode_init,
  3908. NULL,
  3909. vc1_decode_end,
  3910. vc1_decode_frame,
  3911. CODEC_CAP_DELAY,
  3912. NULL
  3913. };
  3914. AVCodec wmv3_decoder = {
  3915. "wmv3",
  3916. CODEC_TYPE_VIDEO,
  3917. CODEC_ID_WMV3,
  3918. sizeof(VC1Context),
  3919. vc1_decode_init,
  3920. NULL,
  3921. vc1_decode_end,
  3922. vc1_decode_frame,
  3923. CODEC_CAP_DELAY,
  3924. NULL
  3925. };