You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2578 lines
90KB

  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * AAC LATM decoder
  7. * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
  8. * Copyright (c) 2010 Janne Grunau <janne-ffmpeg@jannau.net>
  9. *
  10. * This file is part of Libav.
  11. *
  12. * Libav is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU Lesser General Public
  14. * License as published by the Free Software Foundation; either
  15. * version 2.1 of the License, or (at your option) any later version.
  16. *
  17. * Libav is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * Lesser General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU Lesser General Public
  23. * License along with Libav; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25. */
  26. /**
  27. * @file
  28. * AAC decoder
  29. * @author Oded Shimon ( ods15 ods15 dyndns org )
  30. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  31. */
  32. /*
  33. * supported tools
  34. *
  35. * Support? Name
  36. * N (code in SoC repo) gain control
  37. * Y block switching
  38. * Y window shapes - standard
  39. * N window shapes - Low Delay
  40. * Y filterbank - standard
  41. * N (code in SoC repo) filterbank - Scalable Sample Rate
  42. * Y Temporal Noise Shaping
  43. * Y Long Term Prediction
  44. * Y intensity stereo
  45. * Y channel coupling
  46. * Y frequency domain prediction
  47. * Y Perceptual Noise Substitution
  48. * Y Mid/Side stereo
  49. * N Scalable Inverse AAC Quantization
  50. * N Frequency Selective Switch
  51. * N upsampling filter
  52. * Y quantization & coding - AAC
  53. * N quantization & coding - TwinVQ
  54. * N quantization & coding - BSAC
  55. * N AAC Error Resilience tools
  56. * N Error Resilience payload syntax
  57. * N Error Protection tool
  58. * N CELP
  59. * N Silence Compression
  60. * N HVXC
  61. * N HVXC 4kbits/s VR
  62. * N Structured Audio tools
  63. * N Structured Audio Sample Bank Format
  64. * N MIDI
  65. * N Harmonic and Individual Lines plus Noise
  66. * N Text-To-Speech Interface
  67. * Y Spectral Band Replication
  68. * Y (not in this code) Layer-1
  69. * Y (not in this code) Layer-2
  70. * Y (not in this code) Layer-3
  71. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  72. * Y Parametric Stereo
  73. * N Direct Stream Transfer
  74. *
  75. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  76. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  77. Parametric Stereo.
  78. */
  79. #include "avcodec.h"
  80. #include "internal.h"
  81. #include "get_bits.h"
  82. #include "dsputil.h"
  83. #include "fft.h"
  84. #include "fmtconvert.h"
  85. #include "lpc.h"
  86. #include "kbdwin.h"
  87. #include "sinewin.h"
  88. #include "aac.h"
  89. #include "aactab.h"
  90. #include "aacdectab.h"
  91. #include "cbrt_tablegen.h"
  92. #include "sbr.h"
  93. #include "aacsbr.h"
  94. #include "mpeg4audio.h"
  95. #include "aacadtsdec.h"
  96. #include <assert.h>
  97. #include <errno.h>
  98. #include <math.h>
  99. #include <string.h>
  100. #if ARCH_ARM
  101. # include "arm/aac.h"
  102. #endif
  103. union float754 {
  104. float f;
  105. uint32_t i;
  106. };
  107. static VLC vlc_scalefactors;
  108. static VLC vlc_spectral[11];
  109. static const char overread_err[] = "Input buffer exhausted before END element found\n";
  110. static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
  111. {
  112. // For PCE based channel configurations map the channels solely based on tags.
  113. if (!ac->m4ac.chan_config) {
  114. return ac->tag_che_map[type][elem_id];
  115. }
  116. // For indexed channel configurations map the channels solely based on position.
  117. switch (ac->m4ac.chan_config) {
  118. case 7:
  119. if (ac->tags_mapped == 3 && type == TYPE_CPE) {
  120. ac->tags_mapped++;
  121. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
  122. }
  123. case 6:
  124. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  125. instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
  126. encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
  127. if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
  128. ac->tags_mapped++;
  129. return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
  130. }
  131. case 5:
  132. if (ac->tags_mapped == 2 && type == TYPE_CPE) {
  133. ac->tags_mapped++;
  134. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
  135. }
  136. case 4:
  137. if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
  138. ac->tags_mapped++;
  139. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
  140. }
  141. case 3:
  142. case 2:
  143. if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
  144. ac->tags_mapped++;
  145. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
  146. } else if (ac->m4ac.chan_config == 2) {
  147. return NULL;
  148. }
  149. case 1:
  150. if (!ac->tags_mapped && type == TYPE_SCE) {
  151. ac->tags_mapped++;
  152. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
  153. }
  154. default:
  155. return NULL;
  156. }
  157. }
  158. /**
  159. * Check for the channel element in the current channel position configuration.
  160. * If it exists, make sure the appropriate element is allocated and map the
  161. * channel order to match the internal Libav channel layout.
  162. *
  163. * @param che_pos current channel position configuration
  164. * @param type channel element type
  165. * @param id channel element id
  166. * @param channels count of the number of channels in the configuration
  167. *
  168. * @return Returns error status. 0 - OK, !0 - error
  169. */
  170. static av_cold int che_configure(AACContext *ac,
  171. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  172. int type, int id, int *channels)
  173. {
  174. if (che_pos[type][id]) {
  175. if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
  176. return AVERROR(ENOMEM);
  177. ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
  178. if (type != TYPE_CCE) {
  179. ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
  180. if (type == TYPE_CPE ||
  181. (type == TYPE_SCE && ac->m4ac.ps == 1)) {
  182. ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
  183. }
  184. }
  185. } else {
  186. if (ac->che[type][id])
  187. ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
  188. av_freep(&ac->che[type][id]);
  189. }
  190. return 0;
  191. }
  192. /**
  193. * Configure output channel order based on the current program configuration element.
  194. *
  195. * @param che_pos current channel position configuration
  196. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  197. *
  198. * @return Returns error status. 0 - OK, !0 - error
  199. */
  200. static av_cold int output_configure(AACContext *ac,
  201. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  202. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  203. int channel_config, enum OCStatus oc_type)
  204. {
  205. AVCodecContext *avctx = ac->avctx;
  206. int i, type, channels = 0, ret;
  207. if (new_che_pos != che_pos)
  208. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  209. if (channel_config) {
  210. for (i = 0; i < tags_per_config[channel_config]; i++) {
  211. if ((ret = che_configure(ac, che_pos,
  212. aac_channel_layout_map[channel_config - 1][i][0],
  213. aac_channel_layout_map[channel_config - 1][i][1],
  214. &channels)))
  215. return ret;
  216. }
  217. memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  218. avctx->channel_layout = aac_channel_layout[channel_config - 1];
  219. } else {
  220. /* Allocate or free elements depending on if they are in the
  221. * current program configuration.
  222. *
  223. * Set up default 1:1 output mapping.
  224. *
  225. * For a 5.1 stream the output order will be:
  226. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  227. */
  228. for (i = 0; i < MAX_ELEM_ID; i++) {
  229. for (type = 0; type < 4; type++) {
  230. if ((ret = che_configure(ac, che_pos, type, i, &channels)))
  231. return ret;
  232. }
  233. }
  234. memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  235. avctx->channel_layout = 0;
  236. }
  237. avctx->channels = channels;
  238. ac->output_configured = oc_type;
  239. return 0;
  240. }
  241. /**
  242. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  243. *
  244. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  245. * @param sce_map mono (Single Channel Element) map
  246. * @param type speaker type/position for these channels
  247. */
  248. static void decode_channel_map(enum ChannelPosition *cpe_map,
  249. enum ChannelPosition *sce_map,
  250. enum ChannelPosition type,
  251. GetBitContext *gb, int n)
  252. {
  253. while (n--) {
  254. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  255. map[get_bits(gb, 4)] = type;
  256. }
  257. }
  258. /**
  259. * Decode program configuration element; reference: table 4.2.
  260. *
  261. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  262. *
  263. * @return Returns error status. 0 - OK, !0 - error
  264. */
  265. static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
  266. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  267. GetBitContext *gb)
  268. {
  269. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
  270. int comment_len;
  271. skip_bits(gb, 2); // object_type
  272. sampling_index = get_bits(gb, 4);
  273. if (m4ac->sampling_index != sampling_index)
  274. av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
  275. num_front = get_bits(gb, 4);
  276. num_side = get_bits(gb, 4);
  277. num_back = get_bits(gb, 4);
  278. num_lfe = get_bits(gb, 2);
  279. num_assoc_data = get_bits(gb, 3);
  280. num_cc = get_bits(gb, 4);
  281. if (get_bits1(gb))
  282. skip_bits(gb, 4); // mono_mixdown_tag
  283. if (get_bits1(gb))
  284. skip_bits(gb, 4); // stereo_mixdown_tag
  285. if (get_bits1(gb))
  286. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  287. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  288. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  289. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  290. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  291. skip_bits_long(gb, 4 * num_assoc_data);
  292. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  293. align_get_bits(gb);
  294. /* comment field, first byte is length */
  295. comment_len = get_bits(gb, 8) * 8;
  296. if (get_bits_left(gb) < comment_len) {
  297. av_log(avctx, AV_LOG_ERROR, overread_err);
  298. return -1;
  299. }
  300. skip_bits_long(gb, comment_len);
  301. return 0;
  302. }
  303. /**
  304. * Set up channel positions based on a default channel configuration
  305. * as specified in table 1.17.
  306. *
  307. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  308. *
  309. * @return Returns error status. 0 - OK, !0 - error
  310. */
  311. static av_cold int set_default_channel_config(AVCodecContext *avctx,
  312. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  313. int channel_config)
  314. {
  315. if (channel_config < 1 || channel_config > 7) {
  316. av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  317. channel_config);
  318. return -1;
  319. }
  320. /* default channel configurations:
  321. *
  322. * 1ch : front center (mono)
  323. * 2ch : L + R (stereo)
  324. * 3ch : front center + L + R
  325. * 4ch : front center + L + R + back center
  326. * 5ch : front center + L + R + back stereo
  327. * 6ch : front center + L + R + back stereo + LFE
  328. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  329. */
  330. if (channel_config != 2)
  331. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  332. if (channel_config > 1)
  333. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  334. if (channel_config == 4)
  335. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  336. if (channel_config > 4)
  337. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  338. = AAC_CHANNEL_BACK; // back stereo
  339. if (channel_config > 5)
  340. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  341. if (channel_config == 7)
  342. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  343. return 0;
  344. }
  345. /**
  346. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  347. *
  348. * @param ac pointer to AACContext, may be null
  349. * @param avctx pointer to AVCCodecContext, used for logging
  350. *
  351. * @return Returns error status. 0 - OK, !0 - error
  352. */
  353. static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
  354. GetBitContext *gb,
  355. MPEG4AudioConfig *m4ac,
  356. int channel_config)
  357. {
  358. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  359. int extension_flag, ret;
  360. if (get_bits1(gb)) { // frameLengthFlag
  361. av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
  362. return -1;
  363. }
  364. if (get_bits1(gb)) // dependsOnCoreCoder
  365. skip_bits(gb, 14); // coreCoderDelay
  366. extension_flag = get_bits1(gb);
  367. if (m4ac->object_type == AOT_AAC_SCALABLE ||
  368. m4ac->object_type == AOT_ER_AAC_SCALABLE)
  369. skip_bits(gb, 3); // layerNr
  370. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  371. if (channel_config == 0) {
  372. skip_bits(gb, 4); // element_instance_tag
  373. if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
  374. return ret;
  375. } else {
  376. if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
  377. return ret;
  378. }
  379. if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
  380. return ret;
  381. if (extension_flag) {
  382. switch (m4ac->object_type) {
  383. case AOT_ER_BSAC:
  384. skip_bits(gb, 5); // numOfSubFrame
  385. skip_bits(gb, 11); // layer_length
  386. break;
  387. case AOT_ER_AAC_LC:
  388. case AOT_ER_AAC_LTP:
  389. case AOT_ER_AAC_SCALABLE:
  390. case AOT_ER_AAC_LD:
  391. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  392. * aacScalefactorDataResilienceFlag
  393. * aacSpectralDataResilienceFlag
  394. */
  395. break;
  396. }
  397. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  398. }
  399. return 0;
  400. }
  401. /**
  402. * Decode audio specific configuration; reference: table 1.13.
  403. *
  404. * @param ac pointer to AACContext, may be null
  405. * @param avctx pointer to AVCCodecContext, used for logging
  406. * @param m4ac pointer to MPEG4AudioConfig, used for parsing
  407. * @param data pointer to AVCodecContext extradata
  408. * @param data_size size of AVCCodecContext extradata
  409. *
  410. * @return Returns error status or number of consumed bits. <0 - error
  411. */
  412. static int decode_audio_specific_config(AACContext *ac,
  413. AVCodecContext *avctx,
  414. MPEG4AudioConfig *m4ac,
  415. const uint8_t *data, int data_size)
  416. {
  417. GetBitContext gb;
  418. int i;
  419. av_dlog(avctx, "extradata size %d\n", avctx->extradata_size);
  420. for (i = 0; i < avctx->extradata_size; i++)
  421. av_dlog(avctx, "%02x ", avctx->extradata[i]);
  422. av_dlog(avctx, "\n");
  423. init_get_bits(&gb, data, data_size * 8);
  424. if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0)
  425. return -1;
  426. if (m4ac->sampling_index > 12) {
  427. av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
  428. return -1;
  429. }
  430. if (m4ac->sbr == 1 && m4ac->ps == -1)
  431. m4ac->ps = 1;
  432. skip_bits_long(&gb, i);
  433. switch (m4ac->object_type) {
  434. case AOT_AAC_MAIN:
  435. case AOT_AAC_LC:
  436. case AOT_AAC_LTP:
  437. if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
  438. return -1;
  439. break;
  440. default:
  441. av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  442. m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
  443. return -1;
  444. }
  445. av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
  446. m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
  447. m4ac->sample_rate, m4ac->sbr, m4ac->ps);
  448. return get_bits_count(&gb);
  449. }
  450. /**
  451. * linear congruential pseudorandom number generator
  452. *
  453. * @param previous_val pointer to the current state of the generator
  454. *
  455. * @return Returns a 32-bit pseudorandom integer
  456. */
  457. static av_always_inline int lcg_random(int previous_val)
  458. {
  459. return previous_val * 1664525 + 1013904223;
  460. }
  461. static av_always_inline void reset_predict_state(PredictorState *ps)
  462. {
  463. ps->r0 = 0.0f;
  464. ps->r1 = 0.0f;
  465. ps->cor0 = 0.0f;
  466. ps->cor1 = 0.0f;
  467. ps->var0 = 1.0f;
  468. ps->var1 = 1.0f;
  469. }
  470. static void reset_all_predictors(PredictorState *ps)
  471. {
  472. int i;
  473. for (i = 0; i < MAX_PREDICTORS; i++)
  474. reset_predict_state(&ps[i]);
  475. }
  476. static int sample_rate_idx (int rate)
  477. {
  478. if (92017 <= rate) return 0;
  479. else if (75132 <= rate) return 1;
  480. else if (55426 <= rate) return 2;
  481. else if (46009 <= rate) return 3;
  482. else if (37566 <= rate) return 4;
  483. else if (27713 <= rate) return 5;
  484. else if (23004 <= rate) return 6;
  485. else if (18783 <= rate) return 7;
  486. else if (13856 <= rate) return 8;
  487. else if (11502 <= rate) return 9;
  488. else if (9391 <= rate) return 10;
  489. else return 11;
  490. }
  491. static void reset_predictor_group(PredictorState *ps, int group_num)
  492. {
  493. int i;
  494. for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
  495. reset_predict_state(&ps[i]);
  496. }
  497. #define AAC_INIT_VLC_STATIC(num, size) \
  498. INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
  499. ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
  500. ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
  501. size);
  502. static av_cold int aac_decode_init(AVCodecContext *avctx)
  503. {
  504. AACContext *ac = avctx->priv_data;
  505. float output_scale_factor;
  506. ac->avctx = avctx;
  507. ac->m4ac.sample_rate = avctx->sample_rate;
  508. if (avctx->extradata_size > 0) {
  509. if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
  510. avctx->extradata,
  511. avctx->extradata_size) < 0)
  512. return -1;
  513. } else {
  514. int sr, i;
  515. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  516. sr = sample_rate_idx(avctx->sample_rate);
  517. ac->m4ac.sampling_index = sr;
  518. ac->m4ac.channels = avctx->channels;
  519. for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
  520. if (ff_mpeg4audio_channels[i] == avctx->channels)
  521. break;
  522. if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
  523. i = 0;
  524. }
  525. ac->m4ac.chan_config = i;
  526. if (ac->m4ac.chan_config) {
  527. set_default_channel_config(avctx, new_che_pos, ac->m4ac.chan_config);
  528. output_configure(ac, ac->che_pos, new_che_pos, ac->m4ac.chan_config, OC_GLOBAL_HDR);
  529. }
  530. }
  531. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  532. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  533. output_scale_factor = 1.0 / 32768.0;
  534. } else {
  535. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  536. output_scale_factor = 1.0;
  537. }
  538. AAC_INIT_VLC_STATIC( 0, 304);
  539. AAC_INIT_VLC_STATIC( 1, 270);
  540. AAC_INIT_VLC_STATIC( 2, 550);
  541. AAC_INIT_VLC_STATIC( 3, 300);
  542. AAC_INIT_VLC_STATIC( 4, 328);
  543. AAC_INIT_VLC_STATIC( 5, 294);
  544. AAC_INIT_VLC_STATIC( 6, 306);
  545. AAC_INIT_VLC_STATIC( 7, 268);
  546. AAC_INIT_VLC_STATIC( 8, 510);
  547. AAC_INIT_VLC_STATIC( 9, 366);
  548. AAC_INIT_VLC_STATIC(10, 462);
  549. ff_aac_sbr_init();
  550. dsputil_init(&ac->dsp, avctx);
  551. ff_fmt_convert_init(&ac->fmt_conv, avctx);
  552. ac->random_state = 0x1f2e3d4c;
  553. ff_aac_tableinit();
  554. INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
  555. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  556. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  557. 352);
  558. ff_mdct_init(&ac->mdct, 11, 1, output_scale_factor/1024.0);
  559. ff_mdct_init(&ac->mdct_small, 8, 1, output_scale_factor/128.0);
  560. ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0/output_scale_factor);
  561. // window initialization
  562. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  563. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  564. ff_init_ff_sine_windows(10);
  565. ff_init_ff_sine_windows( 7);
  566. cbrt_tableinit();
  567. return 0;
  568. }
  569. /**
  570. * Skip data_stream_element; reference: table 4.10.
  571. */
  572. static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
  573. {
  574. int byte_align = get_bits1(gb);
  575. int count = get_bits(gb, 8);
  576. if (count == 255)
  577. count += get_bits(gb, 8);
  578. if (byte_align)
  579. align_get_bits(gb);
  580. if (get_bits_left(gb) < 8 * count) {
  581. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  582. return -1;
  583. }
  584. skip_bits_long(gb, 8 * count);
  585. return 0;
  586. }
  587. static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
  588. GetBitContext *gb)
  589. {
  590. int sfb;
  591. if (get_bits1(gb)) {
  592. ics->predictor_reset_group = get_bits(gb, 5);
  593. if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
  594. av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
  595. return -1;
  596. }
  597. }
  598. for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
  599. ics->prediction_used[sfb] = get_bits1(gb);
  600. }
  601. return 0;
  602. }
  603. /**
  604. * Decode Long Term Prediction data; reference: table 4.xx.
  605. */
  606. static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
  607. GetBitContext *gb, uint8_t max_sfb)
  608. {
  609. int sfb;
  610. ltp->lag = get_bits(gb, 11);
  611. ltp->coef = ltp_coef[get_bits(gb, 3)];
  612. for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
  613. ltp->used[sfb] = get_bits1(gb);
  614. }
  615. /**
  616. * Decode Individual Channel Stream info; reference: table 4.6.
  617. *
  618. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  619. */
  620. static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
  621. GetBitContext *gb, int common_window)
  622. {
  623. if (get_bits1(gb)) {
  624. av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
  625. memset(ics, 0, sizeof(IndividualChannelStream));
  626. return -1;
  627. }
  628. ics->window_sequence[1] = ics->window_sequence[0];
  629. ics->window_sequence[0] = get_bits(gb, 2);
  630. ics->use_kb_window[1] = ics->use_kb_window[0];
  631. ics->use_kb_window[0] = get_bits1(gb);
  632. ics->num_window_groups = 1;
  633. ics->group_len[0] = 1;
  634. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  635. int i;
  636. ics->max_sfb = get_bits(gb, 4);
  637. for (i = 0; i < 7; i++) {
  638. if (get_bits1(gb)) {
  639. ics->group_len[ics->num_window_groups - 1]++;
  640. } else {
  641. ics->num_window_groups++;
  642. ics->group_len[ics->num_window_groups - 1] = 1;
  643. }
  644. }
  645. ics->num_windows = 8;
  646. ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
  647. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  648. ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
  649. ics->predictor_present = 0;
  650. } else {
  651. ics->max_sfb = get_bits(gb, 6);
  652. ics->num_windows = 1;
  653. ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
  654. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  655. ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
  656. ics->predictor_present = get_bits1(gb);
  657. ics->predictor_reset_group = 0;
  658. if (ics->predictor_present) {
  659. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  660. if (decode_prediction(ac, ics, gb)) {
  661. memset(ics, 0, sizeof(IndividualChannelStream));
  662. return -1;
  663. }
  664. } else if (ac->m4ac.object_type == AOT_AAC_LC) {
  665. av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
  666. memset(ics, 0, sizeof(IndividualChannelStream));
  667. return -1;
  668. } else {
  669. if ((ics->ltp.present = get_bits(gb, 1)))
  670. decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
  671. }
  672. }
  673. }
  674. if (ics->max_sfb > ics->num_swb) {
  675. av_log(ac->avctx, AV_LOG_ERROR,
  676. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  677. ics->max_sfb, ics->num_swb);
  678. memset(ics, 0, sizeof(IndividualChannelStream));
  679. return -1;
  680. }
  681. return 0;
  682. }
  683. /**
  684. * Decode band types (section_data payload); reference: table 4.46.
  685. *
  686. * @param band_type array of the used band type
  687. * @param band_type_run_end array of the last scalefactor band of a band type run
  688. *
  689. * @return Returns error status. 0 - OK, !0 - error
  690. */
  691. static int decode_band_types(AACContext *ac, enum BandType band_type[120],
  692. int band_type_run_end[120], GetBitContext *gb,
  693. IndividualChannelStream *ics)
  694. {
  695. int g, idx = 0;
  696. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  697. for (g = 0; g < ics->num_window_groups; g++) {
  698. int k = 0;
  699. while (k < ics->max_sfb) {
  700. uint8_t sect_end = k;
  701. int sect_len_incr;
  702. int sect_band_type = get_bits(gb, 4);
  703. if (sect_band_type == 12) {
  704. av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
  705. return -1;
  706. }
  707. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
  708. sect_end += sect_len_incr;
  709. sect_end += sect_len_incr;
  710. if (get_bits_left(gb) < 0) {
  711. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  712. return -1;
  713. }
  714. if (sect_end > ics->max_sfb) {
  715. av_log(ac->avctx, AV_LOG_ERROR,
  716. "Number of bands (%d) exceeds limit (%d).\n",
  717. sect_end, ics->max_sfb);
  718. return -1;
  719. }
  720. for (; k < sect_end; k++) {
  721. band_type [idx] = sect_band_type;
  722. band_type_run_end[idx++] = sect_end;
  723. }
  724. }
  725. }
  726. return 0;
  727. }
  728. /**
  729. * Decode scalefactors; reference: table 4.47.
  730. *
  731. * @param global_gain first scalefactor value as scalefactors are differentially coded
  732. * @param band_type array of the used band type
  733. * @param band_type_run_end array of the last scalefactor band of a band type run
  734. * @param sf array of scalefactors or intensity stereo positions
  735. *
  736. * @return Returns error status. 0 - OK, !0 - error
  737. */
  738. static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
  739. unsigned int global_gain,
  740. IndividualChannelStream *ics,
  741. enum BandType band_type[120],
  742. int band_type_run_end[120])
  743. {
  744. int g, i, idx = 0;
  745. int offset[3] = { global_gain, global_gain - 90, 0 };
  746. int clipped_offset;
  747. int noise_flag = 1;
  748. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  749. for (g = 0; g < ics->num_window_groups; g++) {
  750. for (i = 0; i < ics->max_sfb;) {
  751. int run_end = band_type_run_end[idx];
  752. if (band_type[idx] == ZERO_BT) {
  753. for (; i < run_end; i++, idx++)
  754. sf[idx] = 0.;
  755. } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  756. for (; i < run_end; i++, idx++) {
  757. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  758. clipped_offset = av_clip(offset[2], -155, 100);
  759. if (offset[2] != clipped_offset) {
  760. av_log_ask_for_sample(ac->avctx, "Intensity stereo "
  761. "position clipped (%d -> %d).\nIf you heard an "
  762. "audible artifact, there may be a bug in the "
  763. "decoder. ", offset[2], clipped_offset);
  764. }
  765. sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
  766. }
  767. } else if (band_type[idx] == NOISE_BT) {
  768. for (; i < run_end; i++, idx++) {
  769. if (noise_flag-- > 0)
  770. offset[1] += get_bits(gb, 9) - 256;
  771. else
  772. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  773. clipped_offset = av_clip(offset[1], -100, 155);
  774. if (offset[1] != clipped_offset) {
  775. av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
  776. "(%d -> %d).\nIf you heard an audible "
  777. "artifact, there may be a bug in the decoder. ",
  778. offset[1], clipped_offset);
  779. }
  780. sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
  781. }
  782. } else {
  783. for (; i < run_end; i++, idx++) {
  784. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  785. if (offset[0] > 255U) {
  786. av_log(ac->avctx, AV_LOG_ERROR,
  787. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  788. return -1;
  789. }
  790. sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
  791. }
  792. }
  793. }
  794. }
  795. return 0;
  796. }
  797. /**
  798. * Decode pulse data; reference: table 4.7.
  799. */
  800. static int decode_pulses(Pulse *pulse, GetBitContext *gb,
  801. const uint16_t *swb_offset, int num_swb)
  802. {
  803. int i, pulse_swb;
  804. pulse->num_pulse = get_bits(gb, 2) + 1;
  805. pulse_swb = get_bits(gb, 6);
  806. if (pulse_swb >= num_swb)
  807. return -1;
  808. pulse->pos[0] = swb_offset[pulse_swb];
  809. pulse->pos[0] += get_bits(gb, 5);
  810. if (pulse->pos[0] > 1023)
  811. return -1;
  812. pulse->amp[0] = get_bits(gb, 4);
  813. for (i = 1; i < pulse->num_pulse; i++) {
  814. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
  815. if (pulse->pos[i] > 1023)
  816. return -1;
  817. pulse->amp[i] = get_bits(gb, 4);
  818. }
  819. return 0;
  820. }
  821. /**
  822. * Decode Temporal Noise Shaping data; reference: table 4.48.
  823. *
  824. * @return Returns error status. 0 - OK, !0 - error
  825. */
  826. static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
  827. GetBitContext *gb, const IndividualChannelStream *ics)
  828. {
  829. int w, filt, i, coef_len, coef_res, coef_compress;
  830. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  831. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  832. for (w = 0; w < ics->num_windows; w++) {
  833. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  834. coef_res = get_bits1(gb);
  835. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  836. int tmp2_idx;
  837. tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
  838. if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
  839. av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
  840. tns->order[w][filt], tns_max_order);
  841. tns->order[w][filt] = 0;
  842. return -1;
  843. }
  844. if (tns->order[w][filt]) {
  845. tns->direction[w][filt] = get_bits1(gb);
  846. coef_compress = get_bits1(gb);
  847. coef_len = coef_res + 3 - coef_compress;
  848. tmp2_idx = 2 * coef_compress + coef_res;
  849. for (i = 0; i < tns->order[w][filt]; i++)
  850. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  851. }
  852. }
  853. }
  854. }
  855. return 0;
  856. }
  857. /**
  858. * Decode Mid/Side data; reference: table 4.54.
  859. *
  860. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  861. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  862. * [3] reserved for scalable AAC
  863. */
  864. static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
  865. int ms_present)
  866. {
  867. int idx;
  868. if (ms_present == 1) {
  869. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  870. cpe->ms_mask[idx] = get_bits1(gb);
  871. } else if (ms_present == 2) {
  872. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  873. }
  874. }
  875. #ifndef VMUL2
  876. static inline float *VMUL2(float *dst, const float *v, unsigned idx,
  877. const float *scale)
  878. {
  879. float s = *scale;
  880. *dst++ = v[idx & 15] * s;
  881. *dst++ = v[idx>>4 & 15] * s;
  882. return dst;
  883. }
  884. #endif
  885. #ifndef VMUL4
  886. static inline float *VMUL4(float *dst, const float *v, unsigned idx,
  887. const float *scale)
  888. {
  889. float s = *scale;
  890. *dst++ = v[idx & 3] * s;
  891. *dst++ = v[idx>>2 & 3] * s;
  892. *dst++ = v[idx>>4 & 3] * s;
  893. *dst++ = v[idx>>6 & 3] * s;
  894. return dst;
  895. }
  896. #endif
  897. #ifndef VMUL2S
  898. static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
  899. unsigned sign, const float *scale)
  900. {
  901. union float754 s0, s1;
  902. s0.f = s1.f = *scale;
  903. s0.i ^= sign >> 1 << 31;
  904. s1.i ^= sign << 31;
  905. *dst++ = v[idx & 15] * s0.f;
  906. *dst++ = v[idx>>4 & 15] * s1.f;
  907. return dst;
  908. }
  909. #endif
  910. #ifndef VMUL4S
  911. static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
  912. unsigned sign, const float *scale)
  913. {
  914. unsigned nz = idx >> 12;
  915. union float754 s = { .f = *scale };
  916. union float754 t;
  917. t.i = s.i ^ (sign & 1U<<31);
  918. *dst++ = v[idx & 3] * t.f;
  919. sign <<= nz & 1; nz >>= 1;
  920. t.i = s.i ^ (sign & 1U<<31);
  921. *dst++ = v[idx>>2 & 3] * t.f;
  922. sign <<= nz & 1; nz >>= 1;
  923. t.i = s.i ^ (sign & 1U<<31);
  924. *dst++ = v[idx>>4 & 3] * t.f;
  925. sign <<= nz & 1; nz >>= 1;
  926. t.i = s.i ^ (sign & 1U<<31);
  927. *dst++ = v[idx>>6 & 3] * t.f;
  928. return dst;
  929. }
  930. #endif
  931. /**
  932. * Decode spectral data; reference: table 4.50.
  933. * Dequantize and scale spectral data; reference: 4.6.3.3.
  934. *
  935. * @param coef array of dequantized, scaled spectral data
  936. * @param sf array of scalefactors or intensity stereo positions
  937. * @param pulse_present set if pulses are present
  938. * @param pulse pointer to pulse data struct
  939. * @param band_type array of the used band type
  940. *
  941. * @return Returns error status. 0 - OK, !0 - error
  942. */
  943. static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
  944. GetBitContext *gb, const float sf[120],
  945. int pulse_present, const Pulse *pulse,
  946. const IndividualChannelStream *ics,
  947. enum BandType band_type[120])
  948. {
  949. int i, k, g, idx = 0;
  950. const int c = 1024 / ics->num_windows;
  951. const uint16_t *offsets = ics->swb_offset;
  952. float *coef_base = coef;
  953. for (g = 0; g < ics->num_windows; g++)
  954. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
  955. for (g = 0; g < ics->num_window_groups; g++) {
  956. unsigned g_len = ics->group_len[g];
  957. for (i = 0; i < ics->max_sfb; i++, idx++) {
  958. const unsigned cbt_m1 = band_type[idx] - 1;
  959. float *cfo = coef + offsets[i];
  960. int off_len = offsets[i + 1] - offsets[i];
  961. int group;
  962. if (cbt_m1 >= INTENSITY_BT2 - 1) {
  963. for (group = 0; group < g_len; group++, cfo+=128) {
  964. memset(cfo, 0, off_len * sizeof(float));
  965. }
  966. } else if (cbt_m1 == NOISE_BT - 1) {
  967. for (group = 0; group < g_len; group++, cfo+=128) {
  968. float scale;
  969. float band_energy;
  970. for (k = 0; k < off_len; k++) {
  971. ac->random_state = lcg_random(ac->random_state);
  972. cfo[k] = ac->random_state;
  973. }
  974. band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
  975. scale = sf[idx] / sqrtf(band_energy);
  976. ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
  977. }
  978. } else {
  979. const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
  980. const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
  981. VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
  982. OPEN_READER(re, gb);
  983. switch (cbt_m1 >> 1) {
  984. case 0:
  985. for (group = 0; group < g_len; group++, cfo+=128) {
  986. float *cf = cfo;
  987. int len = off_len;
  988. do {
  989. int code;
  990. unsigned cb_idx;
  991. UPDATE_CACHE(re, gb);
  992. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  993. cb_idx = cb_vector_idx[code];
  994. cf = VMUL4(cf, vq, cb_idx, sf + idx);
  995. } while (len -= 4);
  996. }
  997. break;
  998. case 1:
  999. for (group = 0; group < g_len; group++, cfo+=128) {
  1000. float *cf = cfo;
  1001. int len = off_len;
  1002. do {
  1003. int code;
  1004. unsigned nnz;
  1005. unsigned cb_idx;
  1006. uint32_t bits;
  1007. UPDATE_CACHE(re, gb);
  1008. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1009. cb_idx = cb_vector_idx[code];
  1010. nnz = cb_idx >> 8 & 15;
  1011. bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
  1012. LAST_SKIP_BITS(re, gb, nnz);
  1013. cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
  1014. } while (len -= 4);
  1015. }
  1016. break;
  1017. case 2:
  1018. for (group = 0; group < g_len; group++, cfo+=128) {
  1019. float *cf = cfo;
  1020. int len = off_len;
  1021. do {
  1022. int code;
  1023. unsigned cb_idx;
  1024. UPDATE_CACHE(re, gb);
  1025. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1026. cb_idx = cb_vector_idx[code];
  1027. cf = VMUL2(cf, vq, cb_idx, sf + idx);
  1028. } while (len -= 2);
  1029. }
  1030. break;
  1031. case 3:
  1032. case 4:
  1033. for (group = 0; group < g_len; group++, cfo+=128) {
  1034. float *cf = cfo;
  1035. int len = off_len;
  1036. do {
  1037. int code;
  1038. unsigned nnz;
  1039. unsigned cb_idx;
  1040. unsigned sign;
  1041. UPDATE_CACHE(re, gb);
  1042. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1043. cb_idx = cb_vector_idx[code];
  1044. nnz = cb_idx >> 8 & 15;
  1045. sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
  1046. LAST_SKIP_BITS(re, gb, nnz);
  1047. cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
  1048. } while (len -= 2);
  1049. }
  1050. break;
  1051. default:
  1052. for (group = 0; group < g_len; group++, cfo+=128) {
  1053. float *cf = cfo;
  1054. uint32_t *icf = (uint32_t *) cf;
  1055. int len = off_len;
  1056. do {
  1057. int code;
  1058. unsigned nzt, nnz;
  1059. unsigned cb_idx;
  1060. uint32_t bits;
  1061. int j;
  1062. UPDATE_CACHE(re, gb);
  1063. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1064. if (!code) {
  1065. *icf++ = 0;
  1066. *icf++ = 0;
  1067. continue;
  1068. }
  1069. cb_idx = cb_vector_idx[code];
  1070. nnz = cb_idx >> 12;
  1071. nzt = cb_idx >> 8;
  1072. bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
  1073. LAST_SKIP_BITS(re, gb, nnz);
  1074. for (j = 0; j < 2; j++) {
  1075. if (nzt & 1<<j) {
  1076. uint32_t b;
  1077. int n;
  1078. /* The total length of escape_sequence must be < 22 bits according
  1079. to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
  1080. UPDATE_CACHE(re, gb);
  1081. b = GET_CACHE(re, gb);
  1082. b = 31 - av_log2(~b);
  1083. if (b > 8) {
  1084. av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  1085. return -1;
  1086. }
  1087. SKIP_BITS(re, gb, b + 1);
  1088. b += 4;
  1089. n = (1 << b) + SHOW_UBITS(re, gb, b);
  1090. LAST_SKIP_BITS(re, gb, b);
  1091. *icf++ = cbrt_tab[n] | (bits & 1U<<31);
  1092. bits <<= 1;
  1093. } else {
  1094. unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
  1095. *icf++ = (bits & 1U<<31) | v;
  1096. bits <<= !!v;
  1097. }
  1098. cb_idx >>= 4;
  1099. }
  1100. } while (len -= 2);
  1101. ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
  1102. }
  1103. }
  1104. CLOSE_READER(re, gb);
  1105. }
  1106. }
  1107. coef += g_len << 7;
  1108. }
  1109. if (pulse_present) {
  1110. idx = 0;
  1111. for (i = 0; i < pulse->num_pulse; i++) {
  1112. float co = coef_base[ pulse->pos[i] ];
  1113. while (offsets[idx + 1] <= pulse->pos[i])
  1114. idx++;
  1115. if (band_type[idx] != NOISE_BT && sf[idx]) {
  1116. float ico = -pulse->amp[i];
  1117. if (co) {
  1118. co /= sf[idx];
  1119. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  1120. }
  1121. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  1122. }
  1123. }
  1124. }
  1125. return 0;
  1126. }
  1127. static av_always_inline float flt16_round(float pf)
  1128. {
  1129. union float754 tmp;
  1130. tmp.f = pf;
  1131. tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
  1132. return tmp.f;
  1133. }
  1134. static av_always_inline float flt16_even(float pf)
  1135. {
  1136. union float754 tmp;
  1137. tmp.f = pf;
  1138. tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
  1139. return tmp.f;
  1140. }
  1141. static av_always_inline float flt16_trunc(float pf)
  1142. {
  1143. union float754 pun;
  1144. pun.f = pf;
  1145. pun.i &= 0xFFFF0000U;
  1146. return pun.f;
  1147. }
  1148. static av_always_inline void predict(PredictorState *ps, float *coef,
  1149. int output_enable)
  1150. {
  1151. const float a = 0.953125; // 61.0 / 64
  1152. const float alpha = 0.90625; // 29.0 / 32
  1153. float e0, e1;
  1154. float pv;
  1155. float k1, k2;
  1156. float r0 = ps->r0, r1 = ps->r1;
  1157. float cor0 = ps->cor0, cor1 = ps->cor1;
  1158. float var0 = ps->var0, var1 = ps->var1;
  1159. k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
  1160. k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
  1161. pv = flt16_round(k1 * r0 + k2 * r1);
  1162. if (output_enable)
  1163. *coef += pv;
  1164. e0 = *coef;
  1165. e1 = e0 - k1 * r0;
  1166. ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
  1167. ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
  1168. ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
  1169. ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
  1170. ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
  1171. ps->r0 = flt16_trunc(a * e0);
  1172. }
  1173. /**
  1174. * Apply AAC-Main style frequency domain prediction.
  1175. */
  1176. static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
  1177. {
  1178. int sfb, k;
  1179. if (!sce->ics.predictor_initialized) {
  1180. reset_all_predictors(sce->predictor_state);
  1181. sce->ics.predictor_initialized = 1;
  1182. }
  1183. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1184. for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
  1185. for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
  1186. predict(&sce->predictor_state[k], &sce->coeffs[k],
  1187. sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
  1188. }
  1189. }
  1190. if (sce->ics.predictor_reset_group)
  1191. reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
  1192. } else
  1193. reset_all_predictors(sce->predictor_state);
  1194. }
  1195. /**
  1196. * Decode an individual_channel_stream payload; reference: table 4.44.
  1197. *
  1198. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  1199. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  1200. *
  1201. * @return Returns error status. 0 - OK, !0 - error
  1202. */
  1203. static int decode_ics(AACContext *ac, SingleChannelElement *sce,
  1204. GetBitContext *gb, int common_window, int scale_flag)
  1205. {
  1206. Pulse pulse;
  1207. TemporalNoiseShaping *tns = &sce->tns;
  1208. IndividualChannelStream *ics = &sce->ics;
  1209. float *out = sce->coeffs;
  1210. int global_gain, pulse_present = 0;
  1211. /* This assignment is to silence a GCC warning about the variable being used
  1212. * uninitialized when in fact it always is.
  1213. */
  1214. pulse.num_pulse = 0;
  1215. global_gain = get_bits(gb, 8);
  1216. if (!common_window && !scale_flag) {
  1217. if (decode_ics_info(ac, ics, gb, 0) < 0)
  1218. return -1;
  1219. }
  1220. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  1221. return -1;
  1222. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  1223. return -1;
  1224. pulse_present = 0;
  1225. if (!scale_flag) {
  1226. if ((pulse_present = get_bits1(gb))) {
  1227. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1228. av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  1229. return -1;
  1230. }
  1231. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  1232. av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  1233. return -1;
  1234. }
  1235. }
  1236. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  1237. return -1;
  1238. if (get_bits1(gb)) {
  1239. av_log_missing_feature(ac->avctx, "SSR", 1);
  1240. return -1;
  1241. }
  1242. }
  1243. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  1244. return -1;
  1245. if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
  1246. apply_prediction(ac, sce);
  1247. return 0;
  1248. }
  1249. /**
  1250. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  1251. */
  1252. static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
  1253. {
  1254. const IndividualChannelStream *ics = &cpe->ch[0].ics;
  1255. float *ch0 = cpe->ch[0].coeffs;
  1256. float *ch1 = cpe->ch[1].coeffs;
  1257. int g, i, group, idx = 0;
  1258. const uint16_t *offsets = ics->swb_offset;
  1259. for (g = 0; g < ics->num_window_groups; g++) {
  1260. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1261. if (cpe->ms_mask[idx] &&
  1262. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  1263. for (group = 0; group < ics->group_len[g]; group++) {
  1264. ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
  1265. ch1 + group * 128 + offsets[i],
  1266. offsets[i+1] - offsets[i]);
  1267. }
  1268. }
  1269. }
  1270. ch0 += ics->group_len[g] * 128;
  1271. ch1 += ics->group_len[g] * 128;
  1272. }
  1273. }
  1274. /**
  1275. * intensity stereo decoding; reference: 4.6.8.2.3
  1276. *
  1277. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  1278. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  1279. * [3] reserved for scalable AAC
  1280. */
  1281. static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
  1282. {
  1283. const IndividualChannelStream *ics = &cpe->ch[1].ics;
  1284. SingleChannelElement *sce1 = &cpe->ch[1];
  1285. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  1286. const uint16_t *offsets = ics->swb_offset;
  1287. int g, group, i, idx = 0;
  1288. int c;
  1289. float scale;
  1290. for (g = 0; g < ics->num_window_groups; g++) {
  1291. for (i = 0; i < ics->max_sfb;) {
  1292. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  1293. const int bt_run_end = sce1->band_type_run_end[idx];
  1294. for (; i < bt_run_end; i++, idx++) {
  1295. c = -1 + 2 * (sce1->band_type[idx] - 14);
  1296. if (ms_present)
  1297. c *= 1 - 2 * cpe->ms_mask[idx];
  1298. scale = c * sce1->sf[idx];
  1299. for (group = 0; group < ics->group_len[g]; group++)
  1300. ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
  1301. coef0 + group * 128 + offsets[i],
  1302. scale,
  1303. offsets[i + 1] - offsets[i]);
  1304. }
  1305. } else {
  1306. int bt_run_end = sce1->band_type_run_end[idx];
  1307. idx += bt_run_end - i;
  1308. i = bt_run_end;
  1309. }
  1310. }
  1311. coef0 += ics->group_len[g] * 128;
  1312. coef1 += ics->group_len[g] * 128;
  1313. }
  1314. }
  1315. /**
  1316. * Decode a channel_pair_element; reference: table 4.4.
  1317. *
  1318. * @return Returns error status. 0 - OK, !0 - error
  1319. */
  1320. static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
  1321. {
  1322. int i, ret, common_window, ms_present = 0;
  1323. common_window = get_bits1(gb);
  1324. if (common_window) {
  1325. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  1326. return -1;
  1327. i = cpe->ch[1].ics.use_kb_window[0];
  1328. cpe->ch[1].ics = cpe->ch[0].ics;
  1329. cpe->ch[1].ics.use_kb_window[1] = i;
  1330. if (cpe->ch[1].ics.predictor_present && (ac->m4ac.object_type != AOT_AAC_MAIN))
  1331. if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
  1332. decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
  1333. ms_present = get_bits(gb, 2);
  1334. if (ms_present == 3) {
  1335. av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  1336. return -1;
  1337. } else if (ms_present)
  1338. decode_mid_side_stereo(cpe, gb, ms_present);
  1339. }
  1340. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  1341. return ret;
  1342. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  1343. return ret;
  1344. if (common_window) {
  1345. if (ms_present)
  1346. apply_mid_side_stereo(ac, cpe);
  1347. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  1348. apply_prediction(ac, &cpe->ch[0]);
  1349. apply_prediction(ac, &cpe->ch[1]);
  1350. }
  1351. }
  1352. apply_intensity_stereo(ac, cpe, ms_present);
  1353. return 0;
  1354. }
  1355. static const float cce_scale[] = {
  1356. 1.09050773266525765921, //2^(1/8)
  1357. 1.18920711500272106672, //2^(1/4)
  1358. M_SQRT2,
  1359. 2,
  1360. };
  1361. /**
  1362. * Decode coupling_channel_element; reference: table 4.8.
  1363. *
  1364. * @return Returns error status. 0 - OK, !0 - error
  1365. */
  1366. static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
  1367. {
  1368. int num_gain = 0;
  1369. int c, g, sfb, ret;
  1370. int sign;
  1371. float scale;
  1372. SingleChannelElement *sce = &che->ch[0];
  1373. ChannelCoupling *coup = &che->coup;
  1374. coup->coupling_point = 2 * get_bits1(gb);
  1375. coup->num_coupled = get_bits(gb, 3);
  1376. for (c = 0; c <= coup->num_coupled; c++) {
  1377. num_gain++;
  1378. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  1379. coup->id_select[c] = get_bits(gb, 4);
  1380. if (coup->type[c] == TYPE_CPE) {
  1381. coup->ch_select[c] = get_bits(gb, 2);
  1382. if (coup->ch_select[c] == 3)
  1383. num_gain++;
  1384. } else
  1385. coup->ch_select[c] = 2;
  1386. }
  1387. coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
  1388. sign = get_bits(gb, 1);
  1389. scale = cce_scale[get_bits(gb, 2)];
  1390. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  1391. return ret;
  1392. for (c = 0; c < num_gain; c++) {
  1393. int idx = 0;
  1394. int cge = 1;
  1395. int gain = 0;
  1396. float gain_cache = 1.;
  1397. if (c) {
  1398. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  1399. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  1400. gain_cache = powf(scale, -gain);
  1401. }
  1402. if (coup->coupling_point == AFTER_IMDCT) {
  1403. coup->gain[c][0] = gain_cache;
  1404. } else {
  1405. for (g = 0; g < sce->ics.num_window_groups; g++) {
  1406. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  1407. if (sce->band_type[idx] != ZERO_BT) {
  1408. if (!cge) {
  1409. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  1410. if (t) {
  1411. int s = 1;
  1412. t = gain += t;
  1413. if (sign) {
  1414. s -= 2 * (t & 0x1);
  1415. t >>= 1;
  1416. }
  1417. gain_cache = powf(scale, -t) * s;
  1418. }
  1419. }
  1420. coup->gain[c][idx] = gain_cache;
  1421. }
  1422. }
  1423. }
  1424. }
  1425. }
  1426. return 0;
  1427. }
  1428. /**
  1429. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  1430. *
  1431. * @return Returns number of bytes consumed.
  1432. */
  1433. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
  1434. GetBitContext *gb)
  1435. {
  1436. int i;
  1437. int num_excl_chan = 0;
  1438. do {
  1439. for (i = 0; i < 7; i++)
  1440. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  1441. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  1442. return num_excl_chan / 7;
  1443. }
  1444. /**
  1445. * Decode dynamic range information; reference: table 4.52.
  1446. *
  1447. * @param cnt length of TYPE_FIL syntactic element in bytes
  1448. *
  1449. * @return Returns number of bytes consumed.
  1450. */
  1451. static int decode_dynamic_range(DynamicRangeControl *che_drc,
  1452. GetBitContext *gb, int cnt)
  1453. {
  1454. int n = 1;
  1455. int drc_num_bands = 1;
  1456. int i;
  1457. /* pce_tag_present? */
  1458. if (get_bits1(gb)) {
  1459. che_drc->pce_instance_tag = get_bits(gb, 4);
  1460. skip_bits(gb, 4); // tag_reserved_bits
  1461. n++;
  1462. }
  1463. /* excluded_chns_present? */
  1464. if (get_bits1(gb)) {
  1465. n += decode_drc_channel_exclusions(che_drc, gb);
  1466. }
  1467. /* drc_bands_present? */
  1468. if (get_bits1(gb)) {
  1469. che_drc->band_incr = get_bits(gb, 4);
  1470. che_drc->interpolation_scheme = get_bits(gb, 4);
  1471. n++;
  1472. drc_num_bands += che_drc->band_incr;
  1473. for (i = 0; i < drc_num_bands; i++) {
  1474. che_drc->band_top[i] = get_bits(gb, 8);
  1475. n++;
  1476. }
  1477. }
  1478. /* prog_ref_level_present? */
  1479. if (get_bits1(gb)) {
  1480. che_drc->prog_ref_level = get_bits(gb, 7);
  1481. skip_bits1(gb); // prog_ref_level_reserved_bits
  1482. n++;
  1483. }
  1484. for (i = 0; i < drc_num_bands; i++) {
  1485. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  1486. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  1487. n++;
  1488. }
  1489. return n;
  1490. }
  1491. /**
  1492. * Decode extension data (incomplete); reference: table 4.51.
  1493. *
  1494. * @param cnt length of TYPE_FIL syntactic element in bytes
  1495. *
  1496. * @return Returns number of bytes consumed
  1497. */
  1498. static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
  1499. ChannelElement *che, enum RawDataBlockType elem_type)
  1500. {
  1501. int crc_flag = 0;
  1502. int res = cnt;
  1503. switch (get_bits(gb, 4)) { // extension type
  1504. case EXT_SBR_DATA_CRC:
  1505. crc_flag++;
  1506. case EXT_SBR_DATA:
  1507. if (!che) {
  1508. av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
  1509. return res;
  1510. } else if (!ac->m4ac.sbr) {
  1511. av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
  1512. skip_bits_long(gb, 8 * cnt - 4);
  1513. return res;
  1514. } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
  1515. av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
  1516. skip_bits_long(gb, 8 * cnt - 4);
  1517. return res;
  1518. } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
  1519. ac->m4ac.sbr = 1;
  1520. ac->m4ac.ps = 1;
  1521. output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
  1522. } else {
  1523. ac->m4ac.sbr = 1;
  1524. }
  1525. res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
  1526. break;
  1527. case EXT_DYNAMIC_RANGE:
  1528. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1529. break;
  1530. case EXT_FILL:
  1531. case EXT_FILL_DATA:
  1532. case EXT_DATA_ELEMENT:
  1533. default:
  1534. skip_bits_long(gb, 8 * cnt - 4);
  1535. break;
  1536. };
  1537. return res;
  1538. }
  1539. /**
  1540. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1541. *
  1542. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1543. * @param coef spectral coefficients
  1544. */
  1545. static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
  1546. IndividualChannelStream *ics, int decode)
  1547. {
  1548. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1549. int w, filt, m, i;
  1550. int bottom, top, order, start, end, size, inc;
  1551. float lpc[TNS_MAX_ORDER];
  1552. float tmp[TNS_MAX_ORDER];
  1553. for (w = 0; w < ics->num_windows; w++) {
  1554. bottom = ics->num_swb;
  1555. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1556. top = bottom;
  1557. bottom = FFMAX(0, top - tns->length[w][filt]);
  1558. order = tns->order[w][filt];
  1559. if (order == 0)
  1560. continue;
  1561. // tns_decode_coef
  1562. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1563. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1564. end = ics->swb_offset[FFMIN( top, mmm)];
  1565. if ((size = end - start) <= 0)
  1566. continue;
  1567. if (tns->direction[w][filt]) {
  1568. inc = -1;
  1569. start = end - 1;
  1570. } else {
  1571. inc = 1;
  1572. }
  1573. start += w * 128;
  1574. if (decode) {
  1575. // ar filter
  1576. for (m = 0; m < size; m++, start += inc)
  1577. for (i = 1; i <= FFMIN(m, order); i++)
  1578. coef[start] -= coef[start - i * inc] * lpc[i - 1];
  1579. } else {
  1580. // ma filter
  1581. for (m = 0; m < size; m++, start += inc) {
  1582. tmp[0] = coef[start];
  1583. for (i = 1; i <= FFMIN(m, order); i++)
  1584. coef[start] += tmp[i] * lpc[i - 1];
  1585. for (i = order; i > 0; i--)
  1586. tmp[i] = tmp[i - 1];
  1587. }
  1588. }
  1589. }
  1590. }
  1591. }
  1592. /**
  1593. * Apply windowing and MDCT to obtain the spectral
  1594. * coefficient from the predicted sample by LTP.
  1595. */
  1596. static void windowing_and_mdct_ltp(AACContext *ac, float *out,
  1597. float *in, IndividualChannelStream *ics)
  1598. {
  1599. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1600. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1601. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1602. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1603. if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
  1604. ac->dsp.vector_fmul(in, in, lwindow_prev, 1024);
  1605. } else {
  1606. memset(in, 0, 448 * sizeof(float));
  1607. ac->dsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
  1608. memcpy(in + 576, in + 576, 448 * sizeof(float));
  1609. }
  1610. if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
  1611. ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
  1612. } else {
  1613. memcpy(in + 1024, in + 1024, 448 * sizeof(float));
  1614. ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
  1615. memset(in + 1024 + 576, 0, 448 * sizeof(float));
  1616. }
  1617. ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
  1618. }
  1619. /**
  1620. * Apply the long term prediction
  1621. */
  1622. static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
  1623. {
  1624. const LongTermPrediction *ltp = &sce->ics.ltp;
  1625. const uint16_t *offsets = sce->ics.swb_offset;
  1626. int i, sfb;
  1627. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1628. float *predTime = sce->ret;
  1629. float *predFreq = ac->buf_mdct;
  1630. int16_t num_samples = 2048;
  1631. if (ltp->lag < 1024)
  1632. num_samples = ltp->lag + 1024;
  1633. for (i = 0; i < num_samples; i++)
  1634. predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
  1635. memset(&predTime[i], 0, (2048 - i) * sizeof(float));
  1636. windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
  1637. if (sce->tns.present)
  1638. apply_tns(predFreq, &sce->tns, &sce->ics, 0);
  1639. for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
  1640. if (ltp->used[sfb])
  1641. for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
  1642. sce->coeffs[i] += predFreq[i];
  1643. }
  1644. }
  1645. /**
  1646. * Update the LTP buffer for next frame
  1647. */
  1648. static void update_ltp(AACContext *ac, SingleChannelElement *sce)
  1649. {
  1650. IndividualChannelStream *ics = &sce->ics;
  1651. float *saved = sce->saved;
  1652. float *saved_ltp = sce->coeffs;
  1653. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1654. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1655. int i;
  1656. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1657. memcpy(saved_ltp, saved, 512 * sizeof(float));
  1658. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1659. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1660. for (i = 0; i < 64; i++)
  1661. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1662. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1663. memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
  1664. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1665. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1666. for (i = 0; i < 64; i++)
  1667. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1668. } else { // LONG_STOP or ONLY_LONG
  1669. ac->dsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
  1670. for (i = 0; i < 512; i++)
  1671. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
  1672. }
  1673. memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
  1674. memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
  1675. memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
  1676. }
  1677. /**
  1678. * Conduct IMDCT and windowing.
  1679. */
  1680. static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
  1681. {
  1682. IndividualChannelStream *ics = &sce->ics;
  1683. float *in = sce->coeffs;
  1684. float *out = sce->ret;
  1685. float *saved = sce->saved;
  1686. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1687. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1688. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1689. float *buf = ac->buf_mdct;
  1690. float *temp = ac->temp;
  1691. int i;
  1692. // imdct
  1693. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1694. for (i = 0; i < 1024; i += 128)
  1695. ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
  1696. } else
  1697. ac->mdct.imdct_half(&ac->mdct, buf, in);
  1698. /* window overlapping
  1699. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1700. * and long to short transitions are considered to be short to short
  1701. * transitions. This leaves just two cases (long to long and short to short)
  1702. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1703. */
  1704. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1705. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1706. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
  1707. } else {
  1708. memcpy( out, saved, 448 * sizeof(float));
  1709. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1710. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
  1711. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
  1712. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
  1713. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
  1714. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
  1715. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1716. } else {
  1717. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
  1718. memcpy( out + 576, buf + 64, 448 * sizeof(float));
  1719. }
  1720. }
  1721. // buffer update
  1722. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1723. memcpy( saved, temp + 64, 64 * sizeof(float));
  1724. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
  1725. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
  1726. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
  1727. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1728. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1729. memcpy( saved, buf + 512, 448 * sizeof(float));
  1730. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1731. } else { // LONG_STOP or ONLY_LONG
  1732. memcpy( saved, buf + 512, 512 * sizeof(float));
  1733. }
  1734. }
  1735. /**
  1736. * Apply dependent channel coupling (applied before IMDCT).
  1737. *
  1738. * @param index index into coupling gain array
  1739. */
  1740. static void apply_dependent_coupling(AACContext *ac,
  1741. SingleChannelElement *target,
  1742. ChannelElement *cce, int index)
  1743. {
  1744. IndividualChannelStream *ics = &cce->ch[0].ics;
  1745. const uint16_t *offsets = ics->swb_offset;
  1746. float *dest = target->coeffs;
  1747. const float *src = cce->ch[0].coeffs;
  1748. int g, i, group, k, idx = 0;
  1749. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1750. av_log(ac->avctx, AV_LOG_ERROR,
  1751. "Dependent coupling is not supported together with LTP\n");
  1752. return;
  1753. }
  1754. for (g = 0; g < ics->num_window_groups; g++) {
  1755. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1756. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  1757. const float gain = cce->coup.gain[index][idx];
  1758. for (group = 0; group < ics->group_len[g]; group++) {
  1759. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  1760. // XXX dsputil-ize
  1761. dest[group * 128 + k] += gain * src[group * 128 + k];
  1762. }
  1763. }
  1764. }
  1765. }
  1766. dest += ics->group_len[g] * 128;
  1767. src += ics->group_len[g] * 128;
  1768. }
  1769. }
  1770. /**
  1771. * Apply independent channel coupling (applied after IMDCT).
  1772. *
  1773. * @param index index into coupling gain array
  1774. */
  1775. static void apply_independent_coupling(AACContext *ac,
  1776. SingleChannelElement *target,
  1777. ChannelElement *cce, int index)
  1778. {
  1779. int i;
  1780. const float gain = cce->coup.gain[index][0];
  1781. const float *src = cce->ch[0].ret;
  1782. float *dest = target->ret;
  1783. const int len = 1024 << (ac->m4ac.sbr == 1);
  1784. for (i = 0; i < len; i++)
  1785. dest[i] += gain * src[i];
  1786. }
  1787. /**
  1788. * channel coupling transformation interface
  1789. *
  1790. * @param apply_coupling_method pointer to (in)dependent coupling function
  1791. */
  1792. static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
  1793. enum RawDataBlockType type, int elem_id,
  1794. enum CouplingPoint coupling_point,
  1795. void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
  1796. {
  1797. int i, c;
  1798. for (i = 0; i < MAX_ELEM_ID; i++) {
  1799. ChannelElement *cce = ac->che[TYPE_CCE][i];
  1800. int index = 0;
  1801. if (cce && cce->coup.coupling_point == coupling_point) {
  1802. ChannelCoupling *coup = &cce->coup;
  1803. for (c = 0; c <= coup->num_coupled; c++) {
  1804. if (coup->type[c] == type && coup->id_select[c] == elem_id) {
  1805. if (coup->ch_select[c] != 1) {
  1806. apply_coupling_method(ac, &cc->ch[0], cce, index);
  1807. if (coup->ch_select[c] != 0)
  1808. index++;
  1809. }
  1810. if (coup->ch_select[c] != 2)
  1811. apply_coupling_method(ac, &cc->ch[1], cce, index++);
  1812. } else
  1813. index += 1 + (coup->ch_select[c] == 3);
  1814. }
  1815. }
  1816. }
  1817. }
  1818. /**
  1819. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1820. */
  1821. static void spectral_to_sample(AACContext *ac)
  1822. {
  1823. int i, type;
  1824. for (type = 3; type >= 0; type--) {
  1825. for (i = 0; i < MAX_ELEM_ID; i++) {
  1826. ChannelElement *che = ac->che[type][i];
  1827. if (che) {
  1828. if (type <= TYPE_CPE)
  1829. apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
  1830. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1831. if (che->ch[0].ics.predictor_present) {
  1832. if (che->ch[0].ics.ltp.present)
  1833. apply_ltp(ac, &che->ch[0]);
  1834. if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
  1835. apply_ltp(ac, &che->ch[1]);
  1836. }
  1837. }
  1838. if (che->ch[0].tns.present)
  1839. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1840. if (che->ch[1].tns.present)
  1841. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1842. if (type <= TYPE_CPE)
  1843. apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
  1844. if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
  1845. imdct_and_windowing(ac, &che->ch[0]);
  1846. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1847. update_ltp(ac, &che->ch[0]);
  1848. if (type == TYPE_CPE) {
  1849. imdct_and_windowing(ac, &che->ch[1]);
  1850. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1851. update_ltp(ac, &che->ch[1]);
  1852. }
  1853. if (ac->m4ac.sbr > 0) {
  1854. ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
  1855. }
  1856. }
  1857. if (type <= TYPE_CCE)
  1858. apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
  1859. }
  1860. }
  1861. }
  1862. }
  1863. static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
  1864. {
  1865. int size;
  1866. AACADTSHeaderInfo hdr_info;
  1867. size = ff_aac_parse_header(gb, &hdr_info);
  1868. if (size > 0) {
  1869. if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
  1870. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1871. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1872. ac->m4ac.chan_config = hdr_info.chan_config;
  1873. if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
  1874. return -7;
  1875. if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
  1876. return -7;
  1877. } else if (ac->output_configured != OC_LOCKED) {
  1878. ac->m4ac.chan_config = 0;
  1879. ac->output_configured = OC_NONE;
  1880. }
  1881. if (ac->output_configured != OC_LOCKED) {
  1882. ac->m4ac.sbr = -1;
  1883. ac->m4ac.ps = -1;
  1884. }
  1885. ac->m4ac.sample_rate = hdr_info.sample_rate;
  1886. ac->m4ac.sampling_index = hdr_info.sampling_index;
  1887. ac->m4ac.object_type = hdr_info.object_type;
  1888. if (!ac->avctx->sample_rate)
  1889. ac->avctx->sample_rate = hdr_info.sample_rate;
  1890. if (hdr_info.num_aac_frames == 1) {
  1891. if (!hdr_info.crc_absent)
  1892. skip_bits(gb, 16);
  1893. } else {
  1894. av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
  1895. return -1;
  1896. }
  1897. }
  1898. return size;
  1899. }
  1900. static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
  1901. int *data_size, GetBitContext *gb)
  1902. {
  1903. AACContext *ac = avctx->priv_data;
  1904. ChannelElement *che = NULL, *che_prev = NULL;
  1905. enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
  1906. int err, elem_id, data_size_tmp;
  1907. int samples = 0, multiplier;
  1908. if (show_bits(gb, 12) == 0xfff) {
  1909. if (parse_adts_frame_header(ac, gb) < 0) {
  1910. av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
  1911. return -1;
  1912. }
  1913. if (ac->m4ac.sampling_index > 12) {
  1914. av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  1915. return -1;
  1916. }
  1917. }
  1918. ac->tags_mapped = 0;
  1919. // parse
  1920. while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
  1921. elem_id = get_bits(gb, 4);
  1922. if (elem_type < TYPE_DSE) {
  1923. if (!(che=get_che(ac, elem_type, elem_id))) {
  1924. av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
  1925. elem_type, elem_id);
  1926. return -1;
  1927. }
  1928. samples = 1024;
  1929. }
  1930. switch (elem_type) {
  1931. case TYPE_SCE:
  1932. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1933. break;
  1934. case TYPE_CPE:
  1935. err = decode_cpe(ac, gb, che);
  1936. break;
  1937. case TYPE_CCE:
  1938. err = decode_cce(ac, gb, che);
  1939. break;
  1940. case TYPE_LFE:
  1941. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1942. break;
  1943. case TYPE_DSE:
  1944. err = skip_data_stream_element(ac, gb);
  1945. break;
  1946. case TYPE_PCE: {
  1947. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1948. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1949. if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
  1950. break;
  1951. if (ac->output_configured > OC_TRIAL_PCE)
  1952. av_log(avctx, AV_LOG_ERROR,
  1953. "Not evaluating a further program_config_element as this construct is dubious at best.\n");
  1954. else
  1955. err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
  1956. break;
  1957. }
  1958. case TYPE_FIL:
  1959. if (elem_id == 15)
  1960. elem_id += get_bits(gb, 8) - 1;
  1961. if (get_bits_left(gb) < 8 * elem_id) {
  1962. av_log(avctx, AV_LOG_ERROR, overread_err);
  1963. return -1;
  1964. }
  1965. while (elem_id > 0)
  1966. elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
  1967. err = 0; /* FIXME */
  1968. break;
  1969. default:
  1970. err = -1; /* should not happen, but keeps compiler happy */
  1971. break;
  1972. }
  1973. che_prev = che;
  1974. elem_type_prev = elem_type;
  1975. if (err)
  1976. return err;
  1977. if (get_bits_left(gb) < 3) {
  1978. av_log(avctx, AV_LOG_ERROR, overread_err);
  1979. return -1;
  1980. }
  1981. }
  1982. spectral_to_sample(ac);
  1983. multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
  1984. samples <<= multiplier;
  1985. if (ac->output_configured < OC_LOCKED) {
  1986. avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
  1987. avctx->frame_size = samples;
  1988. }
  1989. data_size_tmp = samples * avctx->channels *
  1990. av_get_bytes_per_sample(avctx->sample_fmt);
  1991. if (*data_size < data_size_tmp) {
  1992. av_log(avctx, AV_LOG_ERROR,
  1993. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  1994. *data_size, data_size_tmp);
  1995. return -1;
  1996. }
  1997. *data_size = data_size_tmp;
  1998. if (samples) {
  1999. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
  2000. ac->fmt_conv.float_interleave(data, (const float **)ac->output_data,
  2001. samples, avctx->channels);
  2002. else
  2003. ac->fmt_conv.float_to_int16_interleave(data, (const float **)ac->output_data,
  2004. samples, avctx->channels);
  2005. }
  2006. if (ac->output_configured)
  2007. ac->output_configured = OC_LOCKED;
  2008. return 0;
  2009. }
  2010. static int aac_decode_frame(AVCodecContext *avctx, void *data,
  2011. int *data_size, AVPacket *avpkt)
  2012. {
  2013. const uint8_t *buf = avpkt->data;
  2014. int buf_size = avpkt->size;
  2015. GetBitContext gb;
  2016. int buf_consumed;
  2017. int buf_offset;
  2018. int err;
  2019. init_get_bits(&gb, buf, buf_size * 8);
  2020. if ((err = aac_decode_frame_int(avctx, data, data_size, &gb)) < 0)
  2021. return err;
  2022. buf_consumed = (get_bits_count(&gb) + 7) >> 3;
  2023. for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
  2024. if (buf[buf_offset])
  2025. break;
  2026. return buf_size > buf_offset ? buf_consumed : buf_size;
  2027. }
  2028. static av_cold int aac_decode_close(AVCodecContext *avctx)
  2029. {
  2030. AACContext *ac = avctx->priv_data;
  2031. int i, type;
  2032. for (i = 0; i < MAX_ELEM_ID; i++) {
  2033. for (type = 0; type < 4; type++) {
  2034. if (ac->che[type][i])
  2035. ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
  2036. av_freep(&ac->che[type][i]);
  2037. }
  2038. }
  2039. ff_mdct_end(&ac->mdct);
  2040. ff_mdct_end(&ac->mdct_small);
  2041. ff_mdct_end(&ac->mdct_ltp);
  2042. return 0;
  2043. }
  2044. #define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
  2045. struct LATMContext {
  2046. AACContext aac_ctx; ///< containing AACContext
  2047. int initialized; ///< initilized after a valid extradata was seen
  2048. // parser data
  2049. int audio_mux_version_A; ///< LATM syntax version
  2050. int frame_length_type; ///< 0/1 variable/fixed frame length
  2051. int frame_length; ///< frame length for fixed frame length
  2052. };
  2053. static inline uint32_t latm_get_value(GetBitContext *b)
  2054. {
  2055. int length = get_bits(b, 2);
  2056. return get_bits_long(b, (length+1)*8);
  2057. }
  2058. static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
  2059. GetBitContext *gb)
  2060. {
  2061. AVCodecContext *avctx = latmctx->aac_ctx.avctx;
  2062. MPEG4AudioConfig m4ac;
  2063. int config_start_bit = get_bits_count(gb);
  2064. int bits_consumed, esize;
  2065. if (config_start_bit % 8) {
  2066. av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
  2067. "config not byte aligned.\n", 1);
  2068. return AVERROR_INVALIDDATA;
  2069. } else {
  2070. bits_consumed =
  2071. decode_audio_specific_config(NULL, avctx, &m4ac,
  2072. gb->buffer + (config_start_bit / 8),
  2073. get_bits_left(gb) / 8);
  2074. if (bits_consumed < 0)
  2075. return AVERROR_INVALIDDATA;
  2076. esize = (bits_consumed+7) / 8;
  2077. if (avctx->extradata_size <= esize) {
  2078. av_free(avctx->extradata);
  2079. avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
  2080. if (!avctx->extradata)
  2081. return AVERROR(ENOMEM);
  2082. }
  2083. avctx->extradata_size = esize;
  2084. memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
  2085. memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  2086. skip_bits_long(gb, bits_consumed);
  2087. }
  2088. return bits_consumed;
  2089. }
  2090. static int read_stream_mux_config(struct LATMContext *latmctx,
  2091. GetBitContext *gb)
  2092. {
  2093. int ret, audio_mux_version = get_bits(gb, 1);
  2094. latmctx->audio_mux_version_A = 0;
  2095. if (audio_mux_version)
  2096. latmctx->audio_mux_version_A = get_bits(gb, 1);
  2097. if (!latmctx->audio_mux_version_A) {
  2098. if (audio_mux_version)
  2099. latm_get_value(gb); // taraFullness
  2100. skip_bits(gb, 1); // allStreamSameTimeFraming
  2101. skip_bits(gb, 6); // numSubFrames
  2102. // numPrograms
  2103. if (get_bits(gb, 4)) { // numPrograms
  2104. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2105. "multiple programs are not supported\n", 1);
  2106. return AVERROR_PATCHWELCOME;
  2107. }
  2108. // for each program (which there is only on in DVB)
  2109. // for each layer (which there is only on in DVB)
  2110. if (get_bits(gb, 3)) { // numLayer
  2111. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2112. "multiple layers are not supported\n", 1);
  2113. return AVERROR_PATCHWELCOME;
  2114. }
  2115. // for all but first stream: use_same_config = get_bits(gb, 1);
  2116. if (!audio_mux_version) {
  2117. if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
  2118. return ret;
  2119. } else {
  2120. int ascLen = latm_get_value(gb);
  2121. if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
  2122. return ret;
  2123. ascLen -= ret;
  2124. skip_bits_long(gb, ascLen);
  2125. }
  2126. latmctx->frame_length_type = get_bits(gb, 3);
  2127. switch (latmctx->frame_length_type) {
  2128. case 0:
  2129. skip_bits(gb, 8); // latmBufferFullness
  2130. break;
  2131. case 1:
  2132. latmctx->frame_length = get_bits(gb, 9);
  2133. break;
  2134. case 3:
  2135. case 4:
  2136. case 5:
  2137. skip_bits(gb, 6); // CELP frame length table index
  2138. break;
  2139. case 6:
  2140. case 7:
  2141. skip_bits(gb, 1); // HVXC frame length table index
  2142. break;
  2143. }
  2144. if (get_bits(gb, 1)) { // other data
  2145. if (audio_mux_version) {
  2146. latm_get_value(gb); // other_data_bits
  2147. } else {
  2148. int esc;
  2149. do {
  2150. esc = get_bits(gb, 1);
  2151. skip_bits(gb, 8);
  2152. } while (esc);
  2153. }
  2154. }
  2155. if (get_bits(gb, 1)) // crc present
  2156. skip_bits(gb, 8); // config_crc
  2157. }
  2158. return 0;
  2159. }
  2160. static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
  2161. {
  2162. uint8_t tmp;
  2163. if (ctx->frame_length_type == 0) {
  2164. int mux_slot_length = 0;
  2165. do {
  2166. tmp = get_bits(gb, 8);
  2167. mux_slot_length += tmp;
  2168. } while (tmp == 255);
  2169. return mux_slot_length;
  2170. } else if (ctx->frame_length_type == 1) {
  2171. return ctx->frame_length;
  2172. } else if (ctx->frame_length_type == 3 ||
  2173. ctx->frame_length_type == 5 ||
  2174. ctx->frame_length_type == 7) {
  2175. skip_bits(gb, 2); // mux_slot_length_coded
  2176. }
  2177. return 0;
  2178. }
  2179. static int read_audio_mux_element(struct LATMContext *latmctx,
  2180. GetBitContext *gb)
  2181. {
  2182. int err;
  2183. uint8_t use_same_mux = get_bits(gb, 1);
  2184. if (!use_same_mux) {
  2185. if ((err = read_stream_mux_config(latmctx, gb)) < 0)
  2186. return err;
  2187. } else if (!latmctx->aac_ctx.avctx->extradata) {
  2188. av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
  2189. "no decoder config found\n");
  2190. return AVERROR(EAGAIN);
  2191. }
  2192. if (latmctx->audio_mux_version_A == 0) {
  2193. int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
  2194. if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
  2195. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
  2196. return AVERROR_INVALIDDATA;
  2197. } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
  2198. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2199. "frame length mismatch %d << %d\n",
  2200. mux_slot_length_bytes * 8, get_bits_left(gb));
  2201. return AVERROR_INVALIDDATA;
  2202. }
  2203. }
  2204. return 0;
  2205. }
  2206. static int latm_decode_frame(AVCodecContext *avctx, void *out, int *out_size,
  2207. AVPacket *avpkt)
  2208. {
  2209. struct LATMContext *latmctx = avctx->priv_data;
  2210. int muxlength, err;
  2211. GetBitContext gb;
  2212. if (avpkt->size == 0)
  2213. return 0;
  2214. init_get_bits(&gb, avpkt->data, avpkt->size * 8);
  2215. // check for LOAS sync word
  2216. if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
  2217. return AVERROR_INVALIDDATA;
  2218. muxlength = get_bits(&gb, 13) + 3;
  2219. // not enough data, the parser should have sorted this
  2220. if (muxlength > avpkt->size)
  2221. return AVERROR_INVALIDDATA;
  2222. if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
  2223. return err;
  2224. if (!latmctx->initialized) {
  2225. if (!avctx->extradata) {
  2226. *out_size = 0;
  2227. return avpkt->size;
  2228. } else {
  2229. aac_decode_close(avctx);
  2230. if ((err = aac_decode_init(avctx)) < 0)
  2231. return err;
  2232. latmctx->initialized = 1;
  2233. }
  2234. }
  2235. if (show_bits(&gb, 12) == 0xfff) {
  2236. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2237. "ADTS header detected, probably as result of configuration "
  2238. "misparsing\n");
  2239. return AVERROR_INVALIDDATA;
  2240. }
  2241. if ((err = aac_decode_frame_int(avctx, out, out_size, &gb)) < 0)
  2242. return err;
  2243. return muxlength;
  2244. }
  2245. av_cold static int latm_decode_init(AVCodecContext *avctx)
  2246. {
  2247. struct LATMContext *latmctx = avctx->priv_data;
  2248. int ret;
  2249. ret = aac_decode_init(avctx);
  2250. if (avctx->extradata_size > 0) {
  2251. latmctx->initialized = !ret;
  2252. } else {
  2253. latmctx->initialized = 0;
  2254. }
  2255. return ret;
  2256. }
  2257. AVCodec ff_aac_decoder = {
  2258. "aac",
  2259. AVMEDIA_TYPE_AUDIO,
  2260. CODEC_ID_AAC,
  2261. sizeof(AACContext),
  2262. aac_decode_init,
  2263. NULL,
  2264. aac_decode_close,
  2265. aac_decode_frame,
  2266. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  2267. .sample_fmts = (const enum AVSampleFormat[]) {
  2268. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  2269. },
  2270. .capabilities = CODEC_CAP_CHANNEL_CONF,
  2271. .channel_layouts = aac_channel_layout,
  2272. };
  2273. /*
  2274. Note: This decoder filter is intended to decode LATM streams transferred
  2275. in MPEG transport streams which only contain one program.
  2276. To do a more complex LATM demuxing a separate LATM demuxer should be used.
  2277. */
  2278. AVCodec ff_aac_latm_decoder = {
  2279. .name = "aac_latm",
  2280. .type = AVMEDIA_TYPE_AUDIO,
  2281. .id = CODEC_ID_AAC_LATM,
  2282. .priv_data_size = sizeof(struct LATMContext),
  2283. .init = latm_decode_init,
  2284. .close = aac_decode_close,
  2285. .decode = latm_decode_frame,
  2286. .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
  2287. .sample_fmts = (const enum AVSampleFormat[]) {
  2288. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  2289. },
  2290. .capabilities = CODEC_CAP_CHANNEL_CONF,
  2291. .channel_layouts = aac_channel_layout,
  2292. };