You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1340 lines
37KB

  1. /*
  2. * The simplest AC3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file ac3enc.c
  23. * The simplest AC3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "crc.h"
  30. #include "ac3.h"
  31. typedef struct AC3EncodeContext {
  32. PutBitContext pb;
  33. int nb_channels;
  34. int nb_all_channels;
  35. int lfe_channel;
  36. int bit_rate;
  37. unsigned int sample_rate;
  38. unsigned int bsid;
  39. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. unsigned int frame_size; /* current frame size in words */
  41. unsigned int bits_written;
  42. unsigned int samples_written;
  43. int halfratecod;
  44. unsigned int frmsizecod;
  45. unsigned int fscod; /* frequency */
  46. unsigned int acmod;
  47. int lfe;
  48. unsigned int bsmod;
  49. short last_samples[AC3_MAX_CHANNELS][256];
  50. unsigned int chbwcod[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod;
  54. AC3BitAllocParameters bit_alloc;
  55. int csnroffst;
  56. int fgaincod[AC3_MAX_CHANNELS];
  57. int fsnroffst[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. } AC3EncodeContext;
  61. static int16_t costab[64];
  62. static int16_t sintab[64];
  63. static int16_t fft_rev[512];
  64. static int16_t xcos1[128];
  65. static int16_t xsin1[128];
  66. #define MDCT_NBITS 9
  67. #define N (1 << MDCT_NBITS)
  68. /* new exponents are sent if their Norm 1 exceed this number */
  69. #define EXP_DIFF_THRESHOLD 1000
  70. static void fft_init(int ln);
  71. static inline int16_t fix15(float a)
  72. {
  73. int v;
  74. v = (int)(a * (float)(1 << 15));
  75. if (v < -32767)
  76. v = -32767;
  77. else if (v > 32767)
  78. v = 32767;
  79. return v;
  80. }
  81. typedef struct IComplex {
  82. short re,im;
  83. } IComplex;
  84. static void fft_init(int ln)
  85. {
  86. int i, j, m, n;
  87. float alpha;
  88. n = 1 << ln;
  89. for(i=0;i<(n/2);i++) {
  90. alpha = 2 * M_PI * (float)i / (float)n;
  91. costab[i] = fix15(cos(alpha));
  92. sintab[i] = fix15(sin(alpha));
  93. }
  94. for(i=0;i<n;i++) {
  95. m=0;
  96. for(j=0;j<ln;j++) {
  97. m |= ((i >> j) & 1) << (ln-j-1);
  98. }
  99. fft_rev[i]=m;
  100. }
  101. }
  102. /* butter fly op */
  103. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  104. {\
  105. int ax, ay, bx, by;\
  106. bx=pre1;\
  107. by=pim1;\
  108. ax=qre1;\
  109. ay=qim1;\
  110. pre = (bx + ax) >> 1;\
  111. pim = (by + ay) >> 1;\
  112. qre = (bx - ax) >> 1;\
  113. qim = (by - ay) >> 1;\
  114. }
  115. #define MUL16(a,b) ((a) * (b))
  116. #define CMUL(pre, pim, are, aim, bre, bim) \
  117. {\
  118. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  119. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  120. }
  121. /* do a 2^n point complex fft on 2^ln points. */
  122. static void fft(IComplex *z, int ln)
  123. {
  124. int j, l, np, np2;
  125. int nblocks, nloops;
  126. register IComplex *p,*q;
  127. int tmp_re, tmp_im;
  128. np = 1 << ln;
  129. /* reverse */
  130. for(j=0;j<np;j++) {
  131. int k;
  132. IComplex tmp;
  133. k = fft_rev[j];
  134. if (k < j) {
  135. tmp = z[k];
  136. z[k] = z[j];
  137. z[j] = tmp;
  138. }
  139. }
  140. /* pass 0 */
  141. p=&z[0];
  142. j=(np >> 1);
  143. do {
  144. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  145. p[0].re, p[0].im, p[1].re, p[1].im);
  146. p+=2;
  147. } while (--j != 0);
  148. /* pass 1 */
  149. p=&z[0];
  150. j=np >> 2;
  151. do {
  152. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  153. p[0].re, p[0].im, p[2].re, p[2].im);
  154. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  155. p[1].re, p[1].im, p[3].im, -p[3].re);
  156. p+=4;
  157. } while (--j != 0);
  158. /* pass 2 .. ln-1 */
  159. nblocks = np >> 3;
  160. nloops = 1 << 2;
  161. np2 = np >> 1;
  162. do {
  163. p = z;
  164. q = z + nloops;
  165. for (j = 0; j < nblocks; ++j) {
  166. BF(p->re, p->im, q->re, q->im,
  167. p->re, p->im, q->re, q->im);
  168. p++;
  169. q++;
  170. for(l = nblocks; l < np2; l += nblocks) {
  171. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  172. BF(p->re, p->im, q->re, q->im,
  173. p->re, p->im, tmp_re, tmp_im);
  174. p++;
  175. q++;
  176. }
  177. p += nloops;
  178. q += nloops;
  179. }
  180. nblocks = nblocks >> 1;
  181. nloops = nloops << 1;
  182. } while (nblocks != 0);
  183. }
  184. /* do a 512 point mdct */
  185. static void mdct512(int32_t *out, int16_t *in)
  186. {
  187. int i, re, im, re1, im1;
  188. int16_t rot[N];
  189. IComplex x[N/4];
  190. /* shift to simplify computations */
  191. for(i=0;i<N/4;i++)
  192. rot[i] = -in[i + 3*N/4];
  193. for(i=N/4;i<N;i++)
  194. rot[i] = in[i - N/4];
  195. /* pre rotation */
  196. for(i=0;i<N/4;i++) {
  197. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  198. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  199. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  200. }
  201. fft(x, MDCT_NBITS - 2);
  202. /* post rotation */
  203. for(i=0;i<N/4;i++) {
  204. re = x[i].re;
  205. im = x[i].im;
  206. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  207. out[2*i] = im1;
  208. out[N/2-1-2*i] = re1;
  209. }
  210. }
  211. /* XXX: use another norm ? */
  212. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  213. {
  214. int sum, i;
  215. sum = 0;
  216. for(i=0;i<n;i++) {
  217. sum += abs(exp1[i] - exp2[i]);
  218. }
  219. return sum;
  220. }
  221. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  222. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  223. int ch, int is_lfe)
  224. {
  225. int i, j;
  226. int exp_diff;
  227. /* estimate if the exponent variation & decide if they should be
  228. reused in the next frame */
  229. exp_strategy[0][ch] = EXP_NEW;
  230. for(i=1;i<NB_BLOCKS;i++) {
  231. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  232. #ifdef DEBUG
  233. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  234. #endif
  235. if (exp_diff > EXP_DIFF_THRESHOLD)
  236. exp_strategy[i][ch] = EXP_NEW;
  237. else
  238. exp_strategy[i][ch] = EXP_REUSE;
  239. }
  240. if (is_lfe)
  241. return;
  242. /* now select the encoding strategy type : if exponents are often
  243. recoded, we use a coarse encoding */
  244. i = 0;
  245. while (i < NB_BLOCKS) {
  246. j = i + 1;
  247. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  248. j++;
  249. switch(j - i) {
  250. case 1:
  251. exp_strategy[i][ch] = EXP_D45;
  252. break;
  253. case 2:
  254. case 3:
  255. exp_strategy[i][ch] = EXP_D25;
  256. break;
  257. default:
  258. exp_strategy[i][ch] = EXP_D15;
  259. break;
  260. }
  261. i = j;
  262. }
  263. }
  264. /* set exp[i] to min(exp[i], exp1[i]) */
  265. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  266. {
  267. int i;
  268. for(i=0;i<n;i++) {
  269. if (exp1[i] < exp[i])
  270. exp[i] = exp1[i];
  271. }
  272. }
  273. /* update the exponents so that they are the ones the decoder will
  274. decode. Return the number of bits used to code the exponents */
  275. static int encode_exp(uint8_t encoded_exp[N/2],
  276. uint8_t exp[N/2],
  277. int nb_exps,
  278. int exp_strategy)
  279. {
  280. int group_size, nb_groups, i, j, k, exp_min;
  281. uint8_t exp1[N/2];
  282. switch(exp_strategy) {
  283. case EXP_D15:
  284. group_size = 1;
  285. break;
  286. case EXP_D25:
  287. group_size = 2;
  288. break;
  289. default:
  290. case EXP_D45:
  291. group_size = 4;
  292. break;
  293. }
  294. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  295. /* for each group, compute the minimum exponent */
  296. exp1[0] = exp[0]; /* DC exponent is handled separately */
  297. k = 1;
  298. for(i=1;i<=nb_groups;i++) {
  299. exp_min = exp[k];
  300. assert(exp_min >= 0 && exp_min <= 24);
  301. for(j=1;j<group_size;j++) {
  302. if (exp[k+j] < exp_min)
  303. exp_min = exp[k+j];
  304. }
  305. exp1[i] = exp_min;
  306. k += group_size;
  307. }
  308. /* constraint for DC exponent */
  309. if (exp1[0] > 15)
  310. exp1[0] = 15;
  311. /* Decrease the delta between each groups to within 2
  312. * so that they can be differentially encoded */
  313. for (i=1;i<=nb_groups;i++)
  314. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  315. for (i=nb_groups-1;i>=0;i--)
  316. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  317. /* now we have the exponent values the decoder will see */
  318. encoded_exp[0] = exp1[0];
  319. k = 1;
  320. for(i=1;i<=nb_groups;i++) {
  321. for(j=0;j<group_size;j++) {
  322. encoded_exp[k+j] = exp1[i];
  323. }
  324. k += group_size;
  325. }
  326. #if defined(DEBUG)
  327. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  328. for(i=0;i<=nb_groups * group_size;i++) {
  329. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  330. }
  331. av_log(NULL, AV_LOG_DEBUG, "\n");
  332. #endif
  333. return 4 + (nb_groups / 3) * 7;
  334. }
  335. /* return the size in bits taken by the mantissa */
  336. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  337. {
  338. int bits, mant, i;
  339. bits = 0;
  340. for(i=0;i<nb_coefs;i++) {
  341. mant = m[i];
  342. switch(mant) {
  343. case 0:
  344. /* nothing */
  345. break;
  346. case 1:
  347. /* 3 mantissa in 5 bits */
  348. if (s->mant1_cnt == 0)
  349. bits += 5;
  350. if (++s->mant1_cnt == 3)
  351. s->mant1_cnt = 0;
  352. break;
  353. case 2:
  354. /* 3 mantissa in 7 bits */
  355. if (s->mant2_cnt == 0)
  356. bits += 7;
  357. if (++s->mant2_cnt == 3)
  358. s->mant2_cnt = 0;
  359. break;
  360. case 3:
  361. bits += 3;
  362. break;
  363. case 4:
  364. /* 2 mantissa in 7 bits */
  365. if (s->mant4_cnt == 0)
  366. bits += 7;
  367. if (++s->mant4_cnt == 2)
  368. s->mant4_cnt = 0;
  369. break;
  370. case 14:
  371. bits += 14;
  372. break;
  373. case 15:
  374. bits += 16;
  375. break;
  376. default:
  377. bits += mant - 1;
  378. break;
  379. }
  380. }
  381. return bits;
  382. }
  383. static int bit_alloc(AC3EncodeContext *s,
  384. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  385. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  386. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  387. int frame_bits, int csnroffst, int fsnroffst)
  388. {
  389. int i, ch;
  390. /* compute size */
  391. for(i=0;i<NB_BLOCKS;i++) {
  392. s->mant1_cnt = 0;
  393. s->mant2_cnt = 0;
  394. s->mant4_cnt = 0;
  395. for(ch=0;ch<s->nb_all_channels;ch++) {
  396. ac3_parametric_bit_allocation(&s->bit_alloc,
  397. bap[i][ch], (int8_t *)encoded_exp[i][ch],
  398. 0, s->nb_coefs[ch],
  399. (((csnroffst-15) << 4) +
  400. fsnroffst) << 2,
  401. ff_fgaintab[s->fgaincod[ch]],
  402. ch == s->lfe_channel,
  403. 2, 0, NULL, NULL, NULL);
  404. frame_bits += compute_mantissa_size(s, bap[i][ch],
  405. s->nb_coefs[ch]);
  406. }
  407. }
  408. #if 0
  409. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  410. csnroffst, fsnroffst, frame_bits,
  411. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  412. #endif
  413. return 16 * s->frame_size - frame_bits;
  414. }
  415. #define SNR_INC1 4
  416. static int compute_bit_allocation(AC3EncodeContext *s,
  417. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  418. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  419. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  420. int frame_bits)
  421. {
  422. int i, ch;
  423. int csnroffst, fsnroffst;
  424. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  425. static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  426. /* init default parameters */
  427. s->sdecaycod = 2;
  428. s->fdecaycod = 1;
  429. s->sgaincod = 1;
  430. s->dbkneecod = 2;
  431. s->floorcod = 4;
  432. for(ch=0;ch<s->nb_all_channels;ch++)
  433. s->fgaincod[ch] = 4;
  434. /* compute real values */
  435. s->bit_alloc.fscod = s->fscod;
  436. s->bit_alloc.halfratecod = s->halfratecod;
  437. s->bit_alloc.sdecay = ff_sdecaytab[s->sdecaycod] >> s->halfratecod;
  438. s->bit_alloc.fdecay = ff_fdecaytab[s->fdecaycod] >> s->halfratecod;
  439. s->bit_alloc.sgain = ff_sgaintab[s->sgaincod];
  440. s->bit_alloc.dbknee = ff_dbkneetab[s->dbkneecod];
  441. s->bit_alloc.floor = ff_floortab[s->floorcod];
  442. /* header size */
  443. frame_bits += 65;
  444. // if (s->acmod == 2)
  445. // frame_bits += 2;
  446. frame_bits += frame_bits_inc[s->acmod];
  447. /* audio blocks */
  448. for(i=0;i<NB_BLOCKS;i++) {
  449. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  450. if (s->acmod == 2) {
  451. frame_bits++; /* rematstr */
  452. if(i==0) frame_bits += 4;
  453. }
  454. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  455. if (s->lfe)
  456. frame_bits++; /* lfeexpstr */
  457. for(ch=0;ch<s->nb_channels;ch++) {
  458. if (exp_strategy[i][ch] != EXP_REUSE)
  459. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  460. }
  461. frame_bits++; /* baie */
  462. frame_bits++; /* snr */
  463. frame_bits += 2; /* delta / skip */
  464. }
  465. frame_bits++; /* cplinu for block 0 */
  466. /* bit alloc info */
  467. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  468. /* csnroffset[6] */
  469. /* (fsnoffset[4] + fgaincod[4]) * c */
  470. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  471. /* auxdatae, crcrsv */
  472. frame_bits += 2;
  473. /* CRC */
  474. frame_bits += 16;
  475. /* now the big work begins : do the bit allocation. Modify the snr
  476. offset until we can pack everything in the requested frame size */
  477. csnroffst = s->csnroffst;
  478. while (csnroffst >= 0 &&
  479. bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
  480. csnroffst -= SNR_INC1;
  481. if (csnroffst < 0) {
  482. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed, try increasing the bitrate, -ab 384 for example!\n");
  483. return -1;
  484. }
  485. while ((csnroffst + SNR_INC1) <= 63 &&
  486. bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
  487. csnroffst + SNR_INC1, 0) >= 0) {
  488. csnroffst += SNR_INC1;
  489. memcpy(bap, bap1, sizeof(bap1));
  490. }
  491. while ((csnroffst + 1) <= 63 &&
  492. bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
  493. csnroffst++;
  494. memcpy(bap, bap1, sizeof(bap1));
  495. }
  496. fsnroffst = 0;
  497. while ((fsnroffst + SNR_INC1) <= 15 &&
  498. bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
  499. csnroffst, fsnroffst + SNR_INC1) >= 0) {
  500. fsnroffst += SNR_INC1;
  501. memcpy(bap, bap1, sizeof(bap1));
  502. }
  503. while ((fsnroffst + 1) <= 15 &&
  504. bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
  505. csnroffst, fsnroffst + 1) >= 0) {
  506. fsnroffst++;
  507. memcpy(bap, bap1, sizeof(bap1));
  508. }
  509. s->csnroffst = csnroffst;
  510. for(ch=0;ch<s->nb_all_channels;ch++)
  511. s->fsnroffst[ch] = fsnroffst;
  512. #if defined(DEBUG_BITALLOC)
  513. {
  514. int j;
  515. for(i=0;i<6;i++) {
  516. for(ch=0;ch<s->nb_all_channels;ch++) {
  517. printf("Block #%d Ch%d:\n", i, ch);
  518. printf("bap=");
  519. for(j=0;j<s->nb_coefs[ch];j++) {
  520. printf("%d ",bap[i][ch][j]);
  521. }
  522. printf("\n");
  523. }
  524. }
  525. }
  526. #endif
  527. return 0;
  528. }
  529. static int AC3_encode_init(AVCodecContext *avctx)
  530. {
  531. int freq = avctx->sample_rate;
  532. int bitrate = avctx->bit_rate;
  533. int channels = avctx->channels;
  534. AC3EncodeContext *s = avctx->priv_data;
  535. int i, j, ch;
  536. float alpha;
  537. static const uint8_t acmod_defs[6] = {
  538. 0x01, /* C */
  539. 0x02, /* L R */
  540. 0x03, /* L C R */
  541. 0x06, /* L R SL SR */
  542. 0x07, /* L C R SL SR */
  543. 0x07, /* L C R SL SR (+LFE) */
  544. };
  545. avctx->frame_size = AC3_FRAME_SIZE;
  546. ac3_common_init();
  547. /* number of channels */
  548. if (channels < 1 || channels > 6)
  549. return -1;
  550. s->acmod = acmod_defs[channels - 1];
  551. s->lfe = (channels == 6) ? 1 : 0;
  552. s->nb_all_channels = channels;
  553. s->nb_channels = channels > 5 ? 5 : channels;
  554. s->lfe_channel = s->lfe ? 5 : -1;
  555. /* frequency */
  556. for(i=0;i<3;i++) {
  557. for(j=0;j<3;j++)
  558. if ((ff_ac3_freqs[j] >> i) == freq)
  559. goto found;
  560. }
  561. return -1;
  562. found:
  563. s->sample_rate = freq;
  564. s->halfratecod = i;
  565. s->fscod = j;
  566. s->bsid = 8 + s->halfratecod;
  567. s->bsmod = 0; /* complete main audio service */
  568. /* bitrate & frame size */
  569. bitrate /= 1000;
  570. for(i=0;i<19;i++) {
  571. if ((ff_ac3_bitratetab[i] >> s->halfratecod) == bitrate)
  572. break;
  573. }
  574. if (i == 19)
  575. return -1;
  576. s->bit_rate = bitrate;
  577. s->frmsizecod = i << 1;
  578. s->frame_size_min = ff_ac3_frame_sizes[s->frmsizecod][s->fscod];
  579. s->bits_written = 0;
  580. s->samples_written = 0;
  581. s->frame_size = s->frame_size_min;
  582. /* bit allocation init */
  583. for(ch=0;ch<s->nb_channels;ch++) {
  584. /* bandwidth for each channel */
  585. /* XXX: should compute the bandwidth according to the frame
  586. size, so that we avoid anoying high freq artefacts */
  587. s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
  588. s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
  589. }
  590. if (s->lfe) {
  591. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  592. }
  593. /* initial snr offset */
  594. s->csnroffst = 40;
  595. /* mdct init */
  596. fft_init(MDCT_NBITS - 2);
  597. for(i=0;i<N/4;i++) {
  598. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  599. xcos1[i] = fix15(-cos(alpha));
  600. xsin1[i] = fix15(-sin(alpha));
  601. }
  602. avctx->coded_frame= avcodec_alloc_frame();
  603. avctx->coded_frame->key_frame= 1;
  604. return 0;
  605. }
  606. /* output the AC3 frame header */
  607. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  608. {
  609. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  610. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  611. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  612. put_bits(&s->pb, 2, s->fscod);
  613. put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
  614. put_bits(&s->pb, 5, s->bsid);
  615. put_bits(&s->pb, 3, s->bsmod);
  616. put_bits(&s->pb, 3, s->acmod);
  617. if ((s->acmod & 0x01) && s->acmod != 0x01)
  618. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  619. if (s->acmod & 0x04)
  620. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  621. if (s->acmod == 0x02)
  622. put_bits(&s->pb, 2, 0); /* surround not indicated */
  623. put_bits(&s->pb, 1, s->lfe); /* LFE */
  624. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  625. put_bits(&s->pb, 1, 0); /* no compression control word */
  626. put_bits(&s->pb, 1, 0); /* no lang code */
  627. put_bits(&s->pb, 1, 0); /* no audio production info */
  628. put_bits(&s->pb, 1, 0); /* no copyright */
  629. put_bits(&s->pb, 1, 1); /* original bitstream */
  630. put_bits(&s->pb, 1, 0); /* no time code 1 */
  631. put_bits(&s->pb, 1, 0); /* no time code 2 */
  632. put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
  633. }
  634. /* symetric quantization on 'levels' levels */
  635. static inline int sym_quant(int c, int e, int levels)
  636. {
  637. int v;
  638. if (c >= 0) {
  639. v = (levels * (c << e)) >> 24;
  640. v = (v + 1) >> 1;
  641. v = (levels >> 1) + v;
  642. } else {
  643. v = (levels * ((-c) << e)) >> 24;
  644. v = (v + 1) >> 1;
  645. v = (levels >> 1) - v;
  646. }
  647. assert (v >= 0 && v < levels);
  648. return v;
  649. }
  650. /* asymetric quantization on 2^qbits levels */
  651. static inline int asym_quant(int c, int e, int qbits)
  652. {
  653. int lshift, m, v;
  654. lshift = e + qbits - 24;
  655. if (lshift >= 0)
  656. v = c << lshift;
  657. else
  658. v = c >> (-lshift);
  659. /* rounding */
  660. v = (v + 1) >> 1;
  661. m = (1 << (qbits-1));
  662. if (v >= m)
  663. v = m - 1;
  664. assert(v >= -m);
  665. return v & ((1 << qbits)-1);
  666. }
  667. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
  668. frame */
  669. static void output_audio_block(AC3EncodeContext *s,
  670. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  671. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  672. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  673. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  674. int8_t global_exp[AC3_MAX_CHANNELS],
  675. int block_num)
  676. {
  677. int ch, nb_groups, group_size, i, baie, rbnd;
  678. uint8_t *p;
  679. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  680. int exp0, exp1;
  681. int mant1_cnt, mant2_cnt, mant4_cnt;
  682. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  683. int delta0, delta1, delta2;
  684. for(ch=0;ch<s->nb_channels;ch++)
  685. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  686. for(ch=0;ch<s->nb_channels;ch++)
  687. put_bits(&s->pb, 1, 1); /* no dither */
  688. put_bits(&s->pb, 1, 0); /* no dynamic range */
  689. if (block_num == 0) {
  690. /* for block 0, even if no coupling, we must say it. This is a
  691. waste of bit :-) */
  692. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  693. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  694. } else {
  695. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  696. }
  697. if (s->acmod == 2)
  698. {
  699. if(block_num==0)
  700. {
  701. /* first block must define rematrixing (rematstr) */
  702. put_bits(&s->pb, 1, 1);
  703. /* dummy rematrixing rematflg(1:4)=0 */
  704. for (rbnd=0;rbnd<4;rbnd++)
  705. put_bits(&s->pb, 1, 0);
  706. }
  707. else
  708. {
  709. /* no matrixing (but should be used in the future) */
  710. put_bits(&s->pb, 1, 0);
  711. }
  712. }
  713. #if defined(DEBUG)
  714. {
  715. static int count = 0;
  716. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  717. }
  718. #endif
  719. /* exponent strategy */
  720. for(ch=0;ch<s->nb_channels;ch++) {
  721. put_bits(&s->pb, 2, exp_strategy[ch]);
  722. }
  723. if (s->lfe) {
  724. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  725. }
  726. for(ch=0;ch<s->nb_channels;ch++) {
  727. if (exp_strategy[ch] != EXP_REUSE)
  728. put_bits(&s->pb, 6, s->chbwcod[ch]);
  729. }
  730. /* exponents */
  731. for (ch = 0; ch < s->nb_all_channels; ch++) {
  732. switch(exp_strategy[ch]) {
  733. case EXP_REUSE:
  734. continue;
  735. case EXP_D15:
  736. group_size = 1;
  737. break;
  738. case EXP_D25:
  739. group_size = 2;
  740. break;
  741. default:
  742. case EXP_D45:
  743. group_size = 4;
  744. break;
  745. }
  746. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  747. p = encoded_exp[ch];
  748. /* first exponent */
  749. exp1 = *p++;
  750. put_bits(&s->pb, 4, exp1);
  751. /* next ones are delta encoded */
  752. for(i=0;i<nb_groups;i++) {
  753. /* merge three delta in one code */
  754. exp0 = exp1;
  755. exp1 = p[0];
  756. p += group_size;
  757. delta0 = exp1 - exp0 + 2;
  758. exp0 = exp1;
  759. exp1 = p[0];
  760. p += group_size;
  761. delta1 = exp1 - exp0 + 2;
  762. exp0 = exp1;
  763. exp1 = p[0];
  764. p += group_size;
  765. delta2 = exp1 - exp0 + 2;
  766. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  767. }
  768. if (ch != s->lfe_channel)
  769. put_bits(&s->pb, 2, 0); /* no gain range info */
  770. }
  771. /* bit allocation info */
  772. baie = (block_num == 0);
  773. put_bits(&s->pb, 1, baie);
  774. if (baie) {
  775. put_bits(&s->pb, 2, s->sdecaycod);
  776. put_bits(&s->pb, 2, s->fdecaycod);
  777. put_bits(&s->pb, 2, s->sgaincod);
  778. put_bits(&s->pb, 2, s->dbkneecod);
  779. put_bits(&s->pb, 3, s->floorcod);
  780. }
  781. /* snr offset */
  782. put_bits(&s->pb, 1, baie); /* always present with bai */
  783. if (baie) {
  784. put_bits(&s->pb, 6, s->csnroffst);
  785. for(ch=0;ch<s->nb_all_channels;ch++) {
  786. put_bits(&s->pb, 4, s->fsnroffst[ch]);
  787. put_bits(&s->pb, 3, s->fgaincod[ch]);
  788. }
  789. }
  790. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  791. put_bits(&s->pb, 1, 0); /* no data to skip */
  792. /* mantissa encoding : we use two passes to handle the grouping. A
  793. one pass method may be faster, but it would necessitate to
  794. modify the output stream. */
  795. /* first pass: quantize */
  796. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  797. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  798. for (ch = 0; ch < s->nb_all_channels; ch++) {
  799. int b, c, e, v;
  800. for(i=0;i<s->nb_coefs[ch];i++) {
  801. c = mdct_coefs[ch][i];
  802. e = encoded_exp[ch][i] - global_exp[ch];
  803. b = bap[ch][i];
  804. switch(b) {
  805. case 0:
  806. v = 0;
  807. break;
  808. case 1:
  809. v = sym_quant(c, e, 3);
  810. switch(mant1_cnt) {
  811. case 0:
  812. qmant1_ptr = &qmant[ch][i];
  813. v = 9 * v;
  814. mant1_cnt = 1;
  815. break;
  816. case 1:
  817. *qmant1_ptr += 3 * v;
  818. mant1_cnt = 2;
  819. v = 128;
  820. break;
  821. default:
  822. *qmant1_ptr += v;
  823. mant1_cnt = 0;
  824. v = 128;
  825. break;
  826. }
  827. break;
  828. case 2:
  829. v = sym_quant(c, e, 5);
  830. switch(mant2_cnt) {
  831. case 0:
  832. qmant2_ptr = &qmant[ch][i];
  833. v = 25 * v;
  834. mant2_cnt = 1;
  835. break;
  836. case 1:
  837. *qmant2_ptr += 5 * v;
  838. mant2_cnt = 2;
  839. v = 128;
  840. break;
  841. default:
  842. *qmant2_ptr += v;
  843. mant2_cnt = 0;
  844. v = 128;
  845. break;
  846. }
  847. break;
  848. case 3:
  849. v = sym_quant(c, e, 7);
  850. break;
  851. case 4:
  852. v = sym_quant(c, e, 11);
  853. switch(mant4_cnt) {
  854. case 0:
  855. qmant4_ptr = &qmant[ch][i];
  856. v = 11 * v;
  857. mant4_cnt = 1;
  858. break;
  859. default:
  860. *qmant4_ptr += v;
  861. mant4_cnt = 0;
  862. v = 128;
  863. break;
  864. }
  865. break;
  866. case 5:
  867. v = sym_quant(c, e, 15);
  868. break;
  869. case 14:
  870. v = asym_quant(c, e, 14);
  871. break;
  872. case 15:
  873. v = asym_quant(c, e, 16);
  874. break;
  875. default:
  876. v = asym_quant(c, e, b - 1);
  877. break;
  878. }
  879. qmant[ch][i] = v;
  880. }
  881. }
  882. /* second pass : output the values */
  883. for (ch = 0; ch < s->nb_all_channels; ch++) {
  884. int b, q;
  885. for(i=0;i<s->nb_coefs[ch];i++) {
  886. q = qmant[ch][i];
  887. b = bap[ch][i];
  888. switch(b) {
  889. case 0:
  890. break;
  891. case 1:
  892. if (q != 128)
  893. put_bits(&s->pb, 5, q);
  894. break;
  895. case 2:
  896. if (q != 128)
  897. put_bits(&s->pb, 7, q);
  898. break;
  899. case 3:
  900. put_bits(&s->pb, 3, q);
  901. break;
  902. case 4:
  903. if (q != 128)
  904. put_bits(&s->pb, 7, q);
  905. break;
  906. case 14:
  907. put_bits(&s->pb, 14, q);
  908. break;
  909. case 15:
  910. put_bits(&s->pb, 16, q);
  911. break;
  912. default:
  913. put_bits(&s->pb, b - 1, q);
  914. break;
  915. }
  916. }
  917. }
  918. }
  919. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  920. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  921. {
  922. unsigned int c;
  923. c = 0;
  924. while (a) {
  925. if (a & 1)
  926. c ^= b;
  927. a = a >> 1;
  928. b = b << 1;
  929. if (b & (1 << 16))
  930. b ^= poly;
  931. }
  932. return c;
  933. }
  934. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  935. {
  936. unsigned int r;
  937. r = 1;
  938. while (n) {
  939. if (n & 1)
  940. r = mul_poly(r, a, poly);
  941. a = mul_poly(a, a, poly);
  942. n >>= 1;
  943. }
  944. return r;
  945. }
  946. /* compute log2(max(abs(tab[]))) */
  947. static int log2_tab(int16_t *tab, int n)
  948. {
  949. int i, v;
  950. v = 0;
  951. for(i=0;i<n;i++) {
  952. v |= abs(tab[i]);
  953. }
  954. return av_log2(v);
  955. }
  956. static void lshift_tab(int16_t *tab, int n, int lshift)
  957. {
  958. int i;
  959. if (lshift > 0) {
  960. for(i=0;i<n;i++) {
  961. tab[i] <<= lshift;
  962. }
  963. } else if (lshift < 0) {
  964. lshift = -lshift;
  965. for(i=0;i<n;i++) {
  966. tab[i] >>= lshift;
  967. }
  968. }
  969. }
  970. /* fill the end of the frame and compute the two crcs */
  971. static int output_frame_end(AC3EncodeContext *s)
  972. {
  973. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  974. uint8_t *frame;
  975. frame_size = s->frame_size; /* frame size in words */
  976. /* align to 8 bits */
  977. flush_put_bits(&s->pb);
  978. /* add zero bytes to reach the frame size */
  979. frame = s->pb.buf;
  980. n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
  981. assert(n >= 0);
  982. if(n>0)
  983. memset(pbBufPtr(&s->pb), 0, n);
  984. /* Now we must compute both crcs : this is not so easy for crc1
  985. because it is at the beginning of the data... */
  986. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  987. crc1 = bswap_16(av_crc(av_crc8005, 0, frame + 4, 2 * frame_size_58 - 4));
  988. /* XXX: could precompute crc_inv */
  989. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  990. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  991. frame[2] = crc1 >> 8;
  992. frame[3] = crc1;
  993. crc2 = bswap_16(av_crc(av_crc8005, 0, frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2));
  994. frame[2*frame_size - 2] = crc2 >> 8;
  995. frame[2*frame_size - 1] = crc2;
  996. // printf("n=%d frame_size=%d\n", n, frame_size);
  997. return frame_size * 2;
  998. }
  999. static int AC3_encode_frame(AVCodecContext *avctx,
  1000. unsigned char *frame, int buf_size, void *data)
  1001. {
  1002. AC3EncodeContext *s = avctx->priv_data;
  1003. int16_t *samples = data;
  1004. int i, j, k, v, ch;
  1005. int16_t input_samples[N];
  1006. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1007. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1008. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1009. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1010. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1011. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1012. int frame_bits;
  1013. frame_bits = 0;
  1014. for(ch=0;ch<s->nb_all_channels;ch++) {
  1015. /* fixed mdct to the six sub blocks & exponent computation */
  1016. for(i=0;i<NB_BLOCKS;i++) {
  1017. int16_t *sptr;
  1018. int sinc;
  1019. /* compute input samples */
  1020. memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
  1021. sinc = s->nb_all_channels;
  1022. sptr = samples + (sinc * (N/2) * i) + ch;
  1023. for(j=0;j<N/2;j++) {
  1024. v = *sptr;
  1025. input_samples[j + N/2] = v;
  1026. s->last_samples[ch][j] = v;
  1027. sptr += sinc;
  1028. }
  1029. /* apply the MDCT window */
  1030. for(j=0;j<N/2;j++) {
  1031. input_samples[j] = MUL16(input_samples[j],
  1032. ff_ac3_window[j]) >> 15;
  1033. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1034. ff_ac3_window[j]) >> 15;
  1035. }
  1036. /* Normalize the samples to use the maximum available
  1037. precision */
  1038. v = 14 - log2_tab(input_samples, N);
  1039. if (v < 0)
  1040. v = 0;
  1041. exp_samples[i][ch] = v - 10;
  1042. lshift_tab(input_samples, N, v);
  1043. /* do the MDCT */
  1044. mdct512(mdct_coef[i][ch], input_samples);
  1045. /* compute "exponents". We take into account the
  1046. normalization there */
  1047. for(j=0;j<N/2;j++) {
  1048. int e;
  1049. v = abs(mdct_coef[i][ch][j]);
  1050. if (v == 0)
  1051. e = 24;
  1052. else {
  1053. e = 23 - av_log2(v) + exp_samples[i][ch];
  1054. if (e >= 24) {
  1055. e = 24;
  1056. mdct_coef[i][ch][j] = 0;
  1057. }
  1058. }
  1059. exp[i][ch][j] = e;
  1060. }
  1061. }
  1062. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1063. /* compute the exponents as the decoder will see them. The
  1064. EXP_REUSE case must be handled carefully : we select the
  1065. min of the exponents */
  1066. i = 0;
  1067. while (i < NB_BLOCKS) {
  1068. j = i + 1;
  1069. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1070. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1071. j++;
  1072. }
  1073. frame_bits += encode_exp(encoded_exp[i][ch],
  1074. exp[i][ch], s->nb_coefs[ch],
  1075. exp_strategy[i][ch]);
  1076. /* copy encoded exponents for reuse case */
  1077. for(k=i+1;k<j;k++) {
  1078. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1079. s->nb_coefs[ch] * sizeof(uint8_t));
  1080. }
  1081. i = j;
  1082. }
  1083. }
  1084. /* adjust for fractional frame sizes */
  1085. while(s->bits_written >= s->bit_rate*1000 && s->samples_written >= s->sample_rate) {
  1086. s->bits_written -= s->bit_rate*1000;
  1087. s->samples_written -= s->sample_rate;
  1088. }
  1089. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate*1000);
  1090. s->bits_written += s->frame_size * 16;
  1091. s->samples_written += AC3_FRAME_SIZE;
  1092. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1093. /* everything is known... let's output the frame */
  1094. output_frame_header(s, frame);
  1095. for(i=0;i<NB_BLOCKS;i++) {
  1096. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1097. bap[i], mdct_coef[i], exp_samples[i], i);
  1098. }
  1099. return output_frame_end(s);
  1100. }
  1101. static int AC3_encode_close(AVCodecContext *avctx)
  1102. {
  1103. av_freep(&avctx->coded_frame);
  1104. return 0;
  1105. }
  1106. #if 0
  1107. /*************************************************************************/
  1108. /* TEST */
  1109. #define FN (N/4)
  1110. void fft_test(void)
  1111. {
  1112. IComplex in[FN], in1[FN];
  1113. int k, n, i;
  1114. float sum_re, sum_im, a;
  1115. /* FFT test */
  1116. for(i=0;i<FN;i++) {
  1117. in[i].re = random() % 65535 - 32767;
  1118. in[i].im = random() % 65535 - 32767;
  1119. in1[i] = in[i];
  1120. }
  1121. fft(in, 7);
  1122. /* do it by hand */
  1123. for(k=0;k<FN;k++) {
  1124. sum_re = 0;
  1125. sum_im = 0;
  1126. for(n=0;n<FN;n++) {
  1127. a = -2 * M_PI * (n * k) / FN;
  1128. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1129. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1130. }
  1131. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1132. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1133. }
  1134. }
  1135. void mdct_test(void)
  1136. {
  1137. int16_t input[N];
  1138. int32_t output[N/2];
  1139. float input1[N];
  1140. float output1[N/2];
  1141. float s, a, err, e, emax;
  1142. int i, k, n;
  1143. for(i=0;i<N;i++) {
  1144. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1145. input1[i] = input[i];
  1146. }
  1147. mdct512(output, input);
  1148. /* do it by hand */
  1149. for(k=0;k<N/2;k++) {
  1150. s = 0;
  1151. for(n=0;n<N;n++) {
  1152. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1153. s += input1[n] * cos(a);
  1154. }
  1155. output1[k] = -2 * s / N;
  1156. }
  1157. err = 0;
  1158. emax = 0;
  1159. for(i=0;i<N/2;i++) {
  1160. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1161. e = output[i] - output1[i];
  1162. if (e > emax)
  1163. emax = e;
  1164. err += e * e;
  1165. }
  1166. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1167. }
  1168. void test_ac3(void)
  1169. {
  1170. AC3EncodeContext ctx;
  1171. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1172. short samples[AC3_FRAME_SIZE];
  1173. int ret, i;
  1174. AC3_encode_init(&ctx, 44100, 64000, 1);
  1175. fft_test();
  1176. mdct_test();
  1177. for(i=0;i<AC3_FRAME_SIZE;i++)
  1178. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1179. ret = AC3_encode_frame(&ctx, frame, samples);
  1180. printf("ret=%d\n", ret);
  1181. }
  1182. #endif
  1183. AVCodec ac3_encoder = {
  1184. "ac3",
  1185. CODEC_TYPE_AUDIO,
  1186. CODEC_ID_AC3,
  1187. sizeof(AC3EncodeContext),
  1188. AC3_encode_init,
  1189. AC3_encode_frame,
  1190. AC3_encode_close,
  1191. NULL,
  1192. };