You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1069 lines
40KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. ***********************************/
  29. #include "libavutil/libm.h"
  30. #include "libavutil/thread.h"
  31. #include "libavutil/float_dsp.h"
  32. #include "libavutil/opt.h"
  33. #include "avcodec.h"
  34. #include "put_bits.h"
  35. #include "internal.h"
  36. #include "mpeg4audio.h"
  37. #include "kbdwin.h"
  38. #include "sinewin.h"
  39. #include "aac.h"
  40. #include "aactab.h"
  41. #include "aacenc.h"
  42. #include "aacenctab.h"
  43. #include "aacenc_utils.h"
  44. #include "psymodel.h"
  45. static AVOnce aac_table_init = AV_ONCE_INIT;
  46. /**
  47. * Make AAC audio config object.
  48. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  49. */
  50. static void put_audio_specific_config(AVCodecContext *avctx)
  51. {
  52. PutBitContext pb;
  53. AACEncContext *s = avctx->priv_data;
  54. int channels = s->channels - (s->channels == 8 ? 1 : 0);
  55. init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
  56. put_bits(&pb, 5, s->profile+1); //profile
  57. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  58. put_bits(&pb, 4, channels);
  59. //GASpecificConfig
  60. put_bits(&pb, 1, 0); //frame length - 1024 samples
  61. put_bits(&pb, 1, 0); //does not depend on core coder
  62. put_bits(&pb, 1, 0); //is not extension
  63. //Explicitly Mark SBR absent
  64. put_bits(&pb, 11, 0x2b7); //sync extension
  65. put_bits(&pb, 5, AOT_SBR);
  66. put_bits(&pb, 1, 0);
  67. flush_put_bits(&pb);
  68. }
  69. void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
  70. {
  71. int sf, g;
  72. for (sf = 0; sf < 256; sf++) {
  73. for (g = 0; g < 128; g++) {
  74. s->quantize_band_cost_cache[sf][g].bits = -1;
  75. }
  76. }
  77. }
  78. #define WINDOW_FUNC(type) \
  79. static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
  80. SingleChannelElement *sce, \
  81. const float *audio)
  82. WINDOW_FUNC(only_long)
  83. {
  84. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  85. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  86. float *out = sce->ret_buf;
  87. fdsp->vector_fmul (out, audio, lwindow, 1024);
  88. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
  89. }
  90. WINDOW_FUNC(long_start)
  91. {
  92. const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  93. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  94. float *out = sce->ret_buf;
  95. fdsp->vector_fmul(out, audio, lwindow, 1024);
  96. memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
  97. fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
  98. memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
  99. }
  100. WINDOW_FUNC(long_stop)
  101. {
  102. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  103. const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  104. float *out = sce->ret_buf;
  105. memset(out, 0, sizeof(out[0]) * 448);
  106. fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
  107. memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
  108. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
  109. }
  110. WINDOW_FUNC(eight_short)
  111. {
  112. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  113. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  114. const float *in = audio + 448;
  115. float *out = sce->ret_buf;
  116. int w;
  117. for (w = 0; w < 8; w++) {
  118. fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
  119. out += 128;
  120. in += 128;
  121. fdsp->vector_fmul_reverse(out, in, swindow, 128);
  122. out += 128;
  123. }
  124. }
  125. static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
  126. SingleChannelElement *sce,
  127. const float *audio) = {
  128. [ONLY_LONG_SEQUENCE] = apply_only_long_window,
  129. [LONG_START_SEQUENCE] = apply_long_start_window,
  130. [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
  131. [LONG_STOP_SEQUENCE] = apply_long_stop_window
  132. };
  133. static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
  134. float *audio)
  135. {
  136. int i;
  137. const float *output = sce->ret_buf;
  138. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
  139. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
  140. s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
  141. else
  142. for (i = 0; i < 1024; i += 128)
  143. s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
  144. memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
  145. memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
  146. }
  147. /**
  148. * Encode ics_info element.
  149. * @see Table 4.6 (syntax of ics_info)
  150. */
  151. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  152. {
  153. int w;
  154. put_bits(&s->pb, 1, 0); // ics_reserved bit
  155. put_bits(&s->pb, 2, info->window_sequence[0]);
  156. put_bits(&s->pb, 1, info->use_kb_window[0]);
  157. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  158. put_bits(&s->pb, 6, info->max_sfb);
  159. put_bits(&s->pb, 1, !!info->predictor_present);
  160. } else {
  161. put_bits(&s->pb, 4, info->max_sfb);
  162. for (w = 1; w < 8; w++)
  163. put_bits(&s->pb, 1, !info->group_len[w]);
  164. }
  165. }
  166. /**
  167. * Encode MS data.
  168. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  169. */
  170. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  171. {
  172. int i, w;
  173. put_bits(pb, 2, cpe->ms_mode);
  174. if (cpe->ms_mode == 1)
  175. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  176. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  177. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  178. }
  179. /**
  180. * Produce integer coefficients from scalefactors provided by the model.
  181. */
  182. static void adjust_frame_information(ChannelElement *cpe, int chans)
  183. {
  184. int i, w, w2, g, ch;
  185. int maxsfb, cmaxsfb;
  186. for (ch = 0; ch < chans; ch++) {
  187. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  188. maxsfb = 0;
  189. cpe->ch[ch].pulse.num_pulse = 0;
  190. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  191. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  192. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
  193. ;
  194. maxsfb = FFMAX(maxsfb, cmaxsfb);
  195. }
  196. }
  197. ics->max_sfb = maxsfb;
  198. //adjust zero bands for window groups
  199. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  200. for (g = 0; g < ics->max_sfb; g++) {
  201. i = 1;
  202. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  203. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  204. i = 0;
  205. break;
  206. }
  207. }
  208. cpe->ch[ch].zeroes[w*16 + g] = i;
  209. }
  210. }
  211. }
  212. if (chans > 1 && cpe->common_window) {
  213. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  214. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  215. int msc = 0;
  216. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  217. ics1->max_sfb = ics0->max_sfb;
  218. for (w = 0; w < ics0->num_windows*16; w += 16)
  219. for (i = 0; i < ics0->max_sfb; i++)
  220. if (cpe->ms_mask[w+i])
  221. msc++;
  222. if (msc == 0 || ics0->max_sfb == 0)
  223. cpe->ms_mode = 0;
  224. else
  225. cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
  226. }
  227. }
  228. static void apply_intensity_stereo(ChannelElement *cpe)
  229. {
  230. int w, w2, g, i;
  231. IndividualChannelStream *ics = &cpe->ch[0].ics;
  232. if (!cpe->common_window)
  233. return;
  234. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  235. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  236. int start = (w+w2) * 128;
  237. for (g = 0; g < ics->num_swb; g++) {
  238. int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
  239. float scale = cpe->ch[0].is_ener[w*16+g];
  240. if (!cpe->is_mask[w*16 + g]) {
  241. start += ics->swb_sizes[g];
  242. continue;
  243. }
  244. if (cpe->ms_mask[w*16 + g])
  245. p *= -1;
  246. for (i = 0; i < ics->swb_sizes[g]; i++) {
  247. float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
  248. cpe->ch[0].coeffs[start+i] = sum;
  249. cpe->ch[1].coeffs[start+i] = 0.0f;
  250. }
  251. start += ics->swb_sizes[g];
  252. }
  253. }
  254. }
  255. }
  256. static void apply_mid_side_stereo(ChannelElement *cpe)
  257. {
  258. int w, w2, g, i;
  259. IndividualChannelStream *ics = &cpe->ch[0].ics;
  260. if (!cpe->common_window)
  261. return;
  262. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  263. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  264. int start = (w+w2) * 128;
  265. for (g = 0; g < ics->num_swb; g++) {
  266. /* ms_mask can be used for other purposes in PNS and I/S,
  267. * so must not apply M/S if any band uses either, even if
  268. * ms_mask is set.
  269. */
  270. if (!cpe->ms_mask[w*16 + g] || cpe->is_mask[w*16 + g]
  271. || cpe->ch[0].band_type[w*16 + g] >= NOISE_BT
  272. || cpe->ch[1].band_type[w*16 + g] >= NOISE_BT) {
  273. start += ics->swb_sizes[g];
  274. continue;
  275. }
  276. for (i = 0; i < ics->swb_sizes[g]; i++) {
  277. float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
  278. float R = L - cpe->ch[1].coeffs[start+i];
  279. cpe->ch[0].coeffs[start+i] = L;
  280. cpe->ch[1].coeffs[start+i] = R;
  281. }
  282. start += ics->swb_sizes[g];
  283. }
  284. }
  285. }
  286. }
  287. /**
  288. * Encode scalefactor band coding type.
  289. */
  290. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  291. {
  292. int w;
  293. if (s->coder->set_special_band_scalefactors)
  294. s->coder->set_special_band_scalefactors(s, sce);
  295. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  296. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  297. }
  298. /**
  299. * Encode scalefactors.
  300. */
  301. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  302. SingleChannelElement *sce)
  303. {
  304. int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
  305. int off_is = 0, noise_flag = 1;
  306. int i, w;
  307. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  308. for (i = 0; i < sce->ics.max_sfb; i++) {
  309. if (!sce->zeroes[w*16 + i]) {
  310. if (sce->band_type[w*16 + i] == NOISE_BT) {
  311. diff = sce->sf_idx[w*16 + i] - off_pns;
  312. off_pns = sce->sf_idx[w*16 + i];
  313. if (noise_flag-- > 0) {
  314. put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
  315. continue;
  316. }
  317. } else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
  318. sce->band_type[w*16 + i] == INTENSITY_BT2) {
  319. diff = sce->sf_idx[w*16 + i] - off_is;
  320. off_is = sce->sf_idx[w*16 + i];
  321. } else {
  322. diff = sce->sf_idx[w*16 + i] - off_sf;
  323. off_sf = sce->sf_idx[w*16 + i];
  324. }
  325. diff += SCALE_DIFF_ZERO;
  326. av_assert0(diff >= 0 && diff <= 120);
  327. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  328. }
  329. }
  330. }
  331. }
  332. /**
  333. * Encode pulse data.
  334. */
  335. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  336. {
  337. int i;
  338. put_bits(&s->pb, 1, !!pulse->num_pulse);
  339. if (!pulse->num_pulse)
  340. return;
  341. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  342. put_bits(&s->pb, 6, pulse->start);
  343. for (i = 0; i < pulse->num_pulse; i++) {
  344. put_bits(&s->pb, 5, pulse->pos[i]);
  345. put_bits(&s->pb, 4, pulse->amp[i]);
  346. }
  347. }
  348. /**
  349. * Encode spectral coefficients processed by psychoacoustic model.
  350. */
  351. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  352. {
  353. int start, i, w, w2;
  354. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  355. start = 0;
  356. for (i = 0; i < sce->ics.max_sfb; i++) {
  357. if (sce->zeroes[w*16 + i]) {
  358. start += sce->ics.swb_sizes[i];
  359. continue;
  360. }
  361. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
  362. s->coder->quantize_and_encode_band(s, &s->pb,
  363. &sce->coeffs[start + w2*128],
  364. NULL, sce->ics.swb_sizes[i],
  365. sce->sf_idx[w*16 + i],
  366. sce->band_type[w*16 + i],
  367. s->lambda,
  368. sce->ics.window_clipping[w]);
  369. }
  370. start += sce->ics.swb_sizes[i];
  371. }
  372. }
  373. }
  374. /**
  375. * Downscale spectral coefficients for near-clipping windows to avoid artifacts
  376. */
  377. static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
  378. {
  379. int start, i, j, w;
  380. if (sce->ics.clip_avoidance_factor < 1.0f) {
  381. for (w = 0; w < sce->ics.num_windows; w++) {
  382. start = 0;
  383. for (i = 0; i < sce->ics.max_sfb; i++) {
  384. float *swb_coeffs = &sce->coeffs[start + w*128];
  385. for (j = 0; j < sce->ics.swb_sizes[i]; j++)
  386. swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
  387. start += sce->ics.swb_sizes[i];
  388. }
  389. }
  390. }
  391. }
  392. /**
  393. * Encode one channel of audio data.
  394. */
  395. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  396. SingleChannelElement *sce,
  397. int common_window)
  398. {
  399. put_bits(&s->pb, 8, sce->sf_idx[0]);
  400. if (!common_window) {
  401. put_ics_info(s, &sce->ics);
  402. if (s->coder->encode_main_pred)
  403. s->coder->encode_main_pred(s, sce);
  404. if (s->coder->encode_ltp_info)
  405. s->coder->encode_ltp_info(s, sce, 0);
  406. }
  407. encode_band_info(s, sce);
  408. encode_scale_factors(avctx, s, sce);
  409. encode_pulses(s, &sce->pulse);
  410. put_bits(&s->pb, 1, !!sce->tns.present);
  411. if (s->coder->encode_tns_info)
  412. s->coder->encode_tns_info(s, sce);
  413. put_bits(&s->pb, 1, 0); //ssr
  414. encode_spectral_coeffs(s, sce);
  415. return 0;
  416. }
  417. /**
  418. * Write some auxiliary information about the created AAC file.
  419. */
  420. static void put_bitstream_info(AACEncContext *s, const char *name)
  421. {
  422. int i, namelen, padbits;
  423. namelen = strlen(name) + 2;
  424. put_bits(&s->pb, 3, TYPE_FIL);
  425. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  426. if (namelen >= 15)
  427. put_bits(&s->pb, 8, namelen - 14);
  428. put_bits(&s->pb, 4, 0); //extension type - filler
  429. padbits = -put_bits_count(&s->pb) & 7;
  430. avpriv_align_put_bits(&s->pb);
  431. for (i = 0; i < namelen - 2; i++)
  432. put_bits(&s->pb, 8, name[i]);
  433. put_bits(&s->pb, 12 - padbits, 0);
  434. }
  435. /*
  436. * Copy input samples.
  437. * Channels are reordered from libavcodec's default order to AAC order.
  438. */
  439. static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
  440. {
  441. int ch;
  442. int end = 2048 + (frame ? frame->nb_samples : 0);
  443. const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
  444. /* copy and remap input samples */
  445. for (ch = 0; ch < s->channels; ch++) {
  446. /* copy last 1024 samples of previous frame to the start of the current frame */
  447. memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
  448. /* copy new samples and zero any remaining samples */
  449. if (frame) {
  450. memcpy(&s->planar_samples[ch][2048],
  451. frame->extended_data[channel_map[ch]],
  452. frame->nb_samples * sizeof(s->planar_samples[0][0]));
  453. }
  454. memset(&s->planar_samples[ch][end], 0,
  455. (3072 - end) * sizeof(s->planar_samples[0][0]));
  456. }
  457. }
  458. static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  459. const AVFrame *frame, int *got_packet_ptr)
  460. {
  461. AACEncContext *s = avctx->priv_data;
  462. float **samples = s->planar_samples, *samples2, *la, *overlap;
  463. ChannelElement *cpe;
  464. SingleChannelElement *sce;
  465. IndividualChannelStream *ics;
  466. int i, its, ch, w, chans, tag, start_ch, ret, frame_bits;
  467. int target_bits, rate_bits, too_many_bits, too_few_bits;
  468. int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
  469. int chan_el_counter[4];
  470. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  471. if (s->last_frame == 2)
  472. return 0;
  473. /* add current frame to queue */
  474. if (frame) {
  475. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  476. return ret;
  477. }
  478. copy_input_samples(s, frame);
  479. if (s->psypp)
  480. ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
  481. if (!avctx->frame_number)
  482. return 0;
  483. start_ch = 0;
  484. for (i = 0; i < s->chan_map[0]; i++) {
  485. FFPsyWindowInfo* wi = windows + start_ch;
  486. tag = s->chan_map[i+1];
  487. chans = tag == TYPE_CPE ? 2 : 1;
  488. cpe = &s->cpe[i];
  489. for (ch = 0; ch < chans; ch++) {
  490. float clip_avoidance_factor;
  491. sce = &cpe->ch[ch];
  492. ics = &sce->ics;
  493. s->cur_channel = start_ch + ch;
  494. overlap = &samples[s->cur_channel][0];
  495. samples2 = overlap + 1024;
  496. la = samples2 + (448+64);
  497. if (!frame)
  498. la = NULL;
  499. if (tag == TYPE_LFE) {
  500. wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
  501. wi[ch].window_shape = 0;
  502. wi[ch].num_windows = 1;
  503. wi[ch].grouping[0] = 1;
  504. /* Only the lowest 12 coefficients are used in a LFE channel.
  505. * The expression below results in only the bottom 8 coefficients
  506. * being used for 11.025kHz to 16kHz sample rates.
  507. */
  508. ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
  509. } else {
  510. wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel,
  511. ics->window_sequence[0]);
  512. }
  513. ics->window_sequence[1] = ics->window_sequence[0];
  514. ics->window_sequence[0] = wi[ch].window_type[0];
  515. ics->use_kb_window[1] = ics->use_kb_window[0];
  516. ics->use_kb_window[0] = wi[ch].window_shape;
  517. ics->num_windows = wi[ch].num_windows;
  518. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  519. ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
  520. ics->max_sfb = FFMIN(ics->max_sfb, ics->num_swb);
  521. ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  522. ff_swb_offset_128 [s->samplerate_index]:
  523. ff_swb_offset_1024[s->samplerate_index];
  524. ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  525. ff_tns_max_bands_128 [s->samplerate_index]:
  526. ff_tns_max_bands_1024[s->samplerate_index];
  527. clip_avoidance_factor = 0.0f;
  528. for (w = 0; w < ics->num_windows; w++)
  529. ics->group_len[w] = wi[ch].grouping[w];
  530. for (w = 0; w < ics->num_windows; w++) {
  531. if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
  532. ics->window_clipping[w] = 1;
  533. clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
  534. } else {
  535. ics->window_clipping[w] = 0;
  536. }
  537. }
  538. if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
  539. ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
  540. } else {
  541. ics->clip_avoidance_factor = 1.0f;
  542. }
  543. apply_window_and_mdct(s, sce, overlap);
  544. if (s->options.ltp && s->coder->update_ltp) {
  545. s->coder->update_ltp(s, sce);
  546. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]);
  547. s->mdct1024.mdct_calc(&s->mdct1024, sce->lcoeffs, sce->ret_buf);
  548. }
  549. if (!(isfinite(cpe->ch[ch].coeffs[ 0]) &&
  550. isfinite(cpe->ch[ch].coeffs[ 128]) &&
  551. isfinite(cpe->ch[ch].coeffs[2*128]) &&
  552. isfinite(cpe->ch[ch].coeffs[3*128]) &&
  553. isfinite(cpe->ch[ch].coeffs[4*128]) &&
  554. isfinite(cpe->ch[ch].coeffs[5*128]) &&
  555. isfinite(cpe->ch[ch].coeffs[6*128]) &&
  556. isfinite(cpe->ch[ch].coeffs[7*128]))
  557. ) {
  558. av_log(avctx, AV_LOG_ERROR, "Input contains NaN/+-Inf\n");
  559. return AVERROR(EINVAL);
  560. }
  561. avoid_clipping(s, sce);
  562. }
  563. start_ch += chans;
  564. }
  565. if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
  566. return ret;
  567. frame_bits = its = 0;
  568. do {
  569. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  570. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
  571. put_bitstream_info(s, LIBAVCODEC_IDENT);
  572. start_ch = 0;
  573. target_bits = 0;
  574. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  575. for (i = 0; i < s->chan_map[0]; i++) {
  576. FFPsyWindowInfo* wi = windows + start_ch;
  577. const float *coeffs[2];
  578. tag = s->chan_map[i+1];
  579. chans = tag == TYPE_CPE ? 2 : 1;
  580. cpe = &s->cpe[i];
  581. cpe->common_window = 0;
  582. memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
  583. memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
  584. put_bits(&s->pb, 3, tag);
  585. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  586. for (ch = 0; ch < chans; ch++) {
  587. sce = &cpe->ch[ch];
  588. coeffs[ch] = sce->coeffs;
  589. sce->ics.predictor_present = 0;
  590. sce->ics.ltp.present = 0;
  591. memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used));
  592. memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
  593. memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
  594. for (w = 0; w < 128; w++)
  595. if (sce->band_type[w] > RESERVED_BT)
  596. sce->band_type[w] = 0;
  597. }
  598. s->psy.bitres.alloc = -1;
  599. s->psy.bitres.bits = s->last_frame_pb_count / s->channels;
  600. s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
  601. if (s->psy.bitres.alloc > 0) {
  602. /* Lambda unused here on purpose, we need to take psy's unscaled allocation */
  603. target_bits += s->psy.bitres.alloc
  604. * (s->lambda / (avctx->global_quality ? avctx->global_quality : 120));
  605. s->psy.bitres.alloc /= chans;
  606. }
  607. s->cur_type = tag;
  608. for (ch = 0; ch < chans; ch++) {
  609. s->cur_channel = start_ch + ch;
  610. if (s->options.pns && s->coder->mark_pns)
  611. s->coder->mark_pns(s, avctx, &cpe->ch[ch]);
  612. s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
  613. }
  614. if (chans > 1
  615. && wi[0].window_type[0] == wi[1].window_type[0]
  616. && wi[0].window_shape == wi[1].window_shape) {
  617. cpe->common_window = 1;
  618. for (w = 0; w < wi[0].num_windows; w++) {
  619. if (wi[0].grouping[w] != wi[1].grouping[w]) {
  620. cpe->common_window = 0;
  621. break;
  622. }
  623. }
  624. }
  625. for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
  626. sce = &cpe->ch[ch];
  627. s->cur_channel = start_ch + ch;
  628. if (s->options.tns && s->coder->search_for_tns)
  629. s->coder->search_for_tns(s, sce);
  630. if (s->options.tns && s->coder->apply_tns_filt)
  631. s->coder->apply_tns_filt(s, sce);
  632. if (sce->tns.present)
  633. tns_mode = 1;
  634. if (s->options.pns && s->coder->search_for_pns)
  635. s->coder->search_for_pns(s, avctx, sce);
  636. }
  637. s->cur_channel = start_ch;
  638. if (s->options.intensity_stereo) { /* Intensity Stereo */
  639. if (s->coder->search_for_is)
  640. s->coder->search_for_is(s, avctx, cpe);
  641. if (cpe->is_mode) is_mode = 1;
  642. apply_intensity_stereo(cpe);
  643. }
  644. if (s->options.pred) { /* Prediction */
  645. for (ch = 0; ch < chans; ch++) {
  646. sce = &cpe->ch[ch];
  647. s->cur_channel = start_ch + ch;
  648. if (s->options.pred && s->coder->search_for_pred)
  649. s->coder->search_for_pred(s, sce);
  650. if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
  651. }
  652. if (s->coder->adjust_common_pred)
  653. s->coder->adjust_common_pred(s, cpe);
  654. for (ch = 0; ch < chans; ch++) {
  655. sce = &cpe->ch[ch];
  656. s->cur_channel = start_ch + ch;
  657. if (s->options.pred && s->coder->apply_main_pred)
  658. s->coder->apply_main_pred(s, sce);
  659. }
  660. s->cur_channel = start_ch;
  661. }
  662. if (s->options.mid_side) { /* Mid/Side stereo */
  663. if (s->options.mid_side == -1 && s->coder->search_for_ms)
  664. s->coder->search_for_ms(s, cpe);
  665. else if (cpe->common_window)
  666. memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
  667. apply_mid_side_stereo(cpe);
  668. }
  669. adjust_frame_information(cpe, chans);
  670. if (s->options.ltp) { /* LTP */
  671. for (ch = 0; ch < chans; ch++) {
  672. sce = &cpe->ch[ch];
  673. s->cur_channel = start_ch + ch;
  674. if (s->coder->search_for_ltp)
  675. s->coder->search_for_ltp(s, sce, cpe->common_window);
  676. if (sce->ics.ltp.present) pred_mode = 1;
  677. }
  678. s->cur_channel = start_ch;
  679. if (s->coder->adjust_common_ltp)
  680. s->coder->adjust_common_ltp(s, cpe);
  681. }
  682. if (chans == 2) {
  683. put_bits(&s->pb, 1, cpe->common_window);
  684. if (cpe->common_window) {
  685. put_ics_info(s, &cpe->ch[0].ics);
  686. if (s->coder->encode_main_pred)
  687. s->coder->encode_main_pred(s, &cpe->ch[0]);
  688. if (s->coder->encode_ltp_info)
  689. s->coder->encode_ltp_info(s, &cpe->ch[0], 1);
  690. encode_ms_info(&s->pb, cpe);
  691. if (cpe->ms_mode) ms_mode = 1;
  692. }
  693. }
  694. for (ch = 0; ch < chans; ch++) {
  695. s->cur_channel = start_ch + ch;
  696. encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
  697. }
  698. start_ch += chans;
  699. }
  700. if (avctx->flags & CODEC_FLAG_QSCALE) {
  701. /* When using a constant Q-scale, don't mess with lambda */
  702. break;
  703. }
  704. /* rate control stuff
  705. * allow between the nominal bitrate, and what psy's bit reservoir says to target
  706. * but drift towards the nominal bitrate always
  707. */
  708. frame_bits = put_bits_count(&s->pb);
  709. rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate;
  710. rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3);
  711. too_many_bits = FFMAX(target_bits, rate_bits);
  712. too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3);
  713. too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits);
  714. /* When using ABR, be strict (but only for increasing) */
  715. too_few_bits = too_few_bits - too_few_bits/8;
  716. too_many_bits = too_many_bits + too_many_bits/2;
  717. if ( its == 0 /* for steady-state Q-scale tracking */
  718. || (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits))
  719. || frame_bits >= 6144 * s->channels - 3 )
  720. {
  721. float ratio = ((float)rate_bits) / frame_bits;
  722. if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) {
  723. /*
  724. * This path is for steady-state Q-scale tracking
  725. * When frame bits fall within the stable range, we still need to adjust
  726. * lambda to maintain it like so in a stable fashion (large jumps in lambda
  727. * create artifacts and should be avoided), but slowly
  728. */
  729. ratio = sqrtf(sqrtf(ratio));
  730. ratio = av_clipf(ratio, 0.9f, 1.1f);
  731. } else {
  732. /* Not so fast though */
  733. ratio = sqrtf(ratio);
  734. }
  735. s->lambda = FFMIN(s->lambda * ratio, 65536.f);
  736. /* Keep iterating if we must reduce and lambda is in the sky */
  737. if (ratio > 0.9f && ratio < 1.1f) {
  738. break;
  739. } else {
  740. if (is_mode || ms_mode || tns_mode || pred_mode) {
  741. for (i = 0; i < s->chan_map[0]; i++) {
  742. // Must restore coeffs
  743. chans = tag == TYPE_CPE ? 2 : 1;
  744. cpe = &s->cpe[i];
  745. for (ch = 0; ch < chans; ch++)
  746. memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
  747. }
  748. }
  749. its++;
  750. }
  751. } else {
  752. break;
  753. }
  754. } while (1);
  755. if (s->options.ltp && s->coder->ltp_insert_new_frame)
  756. s->coder->ltp_insert_new_frame(s);
  757. put_bits(&s->pb, 3, TYPE_END);
  758. flush_put_bits(&s->pb);
  759. s->last_frame_pb_count = put_bits_count(&s->pb);
  760. s->lambda_sum += s->lambda;
  761. s->lambda_count++;
  762. if (!frame)
  763. s->last_frame++;
  764. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  765. &avpkt->duration);
  766. avpkt->size = put_bits_count(&s->pb) >> 3;
  767. *got_packet_ptr = 1;
  768. return 0;
  769. }
  770. static av_cold int aac_encode_end(AVCodecContext *avctx)
  771. {
  772. AACEncContext *s = avctx->priv_data;
  773. av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_sum / s->lambda_count);
  774. ff_mdct_end(&s->mdct1024);
  775. ff_mdct_end(&s->mdct128);
  776. ff_psy_end(&s->psy);
  777. ff_lpc_end(&s->lpc);
  778. if (s->psypp)
  779. ff_psy_preprocess_end(s->psypp);
  780. av_freep(&s->buffer.samples);
  781. av_freep(&s->cpe);
  782. av_freep(&s->fdsp);
  783. ff_af_queue_close(&s->afq);
  784. return 0;
  785. }
  786. static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
  787. {
  788. int ret = 0;
  789. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  790. if (!s->fdsp)
  791. return AVERROR(ENOMEM);
  792. // window init
  793. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  794. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  795. ff_init_ff_sine_windows(10);
  796. ff_init_ff_sine_windows(7);
  797. if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
  798. return ret;
  799. if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
  800. return ret;
  801. return 0;
  802. }
  803. static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
  804. {
  805. int ch;
  806. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
  807. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
  808. FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
  809. for(ch = 0; ch < s->channels; ch++)
  810. s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
  811. return 0;
  812. alloc_fail:
  813. return AVERROR(ENOMEM);
  814. }
  815. static av_cold void aac_encode_init_tables(void)
  816. {
  817. ff_aac_tableinit();
  818. }
  819. static av_cold int aac_encode_init(AVCodecContext *avctx)
  820. {
  821. AACEncContext *s = avctx->priv_data;
  822. int i, ret = 0;
  823. const uint8_t *sizes[2];
  824. uint8_t grouping[AAC_MAX_CHANNELS];
  825. int lengths[2];
  826. s->channels = avctx->channels;
  827. s->chan_map = aac_chan_configs[s->channels-1];
  828. s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
  829. s->last_frame_pb_count = 0;
  830. avctx->extradata_size = 5;
  831. avctx->frame_size = 1024;
  832. avctx->initial_padding = 1024;
  833. avctx->bit_rate = (int)FFMIN(
  834. 6144 * s->channels / 1024.0 * avctx->sample_rate,
  835. avctx->bit_rate);
  836. avctx->profile = avctx->profile == FF_PROFILE_UNKNOWN ? FF_PROFILE_AAC_LOW :
  837. avctx->profile;
  838. for (i = 0; i < 16; i++)
  839. if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
  840. break;
  841. s->samplerate_index = i;
  842. ERROR_IF(s->samplerate_index == 16 ||
  843. s->samplerate_index >= ff_aac_swb_size_1024_len ||
  844. s->samplerate_index >= ff_aac_swb_size_128_len,
  845. "Unsupported sample rate %d\n", avctx->sample_rate);
  846. ERROR_IF(s->channels > AAC_MAX_CHANNELS || s->channels == 7,
  847. "Unsupported number of channels: %d\n", s->channels);
  848. WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
  849. "Too many bits %f > %d per frame requested, clamping to max\n",
  850. 1024.0 * avctx->bit_rate / avctx->sample_rate,
  851. 6144 * s->channels);
  852. for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++)
  853. if (avctx->profile == aacenc_profiles[i])
  854. break;
  855. ERROR_IF(i == FF_ARRAY_ELEMS(aacenc_profiles),
  856. "Unsupported encoding profile: %d\n", avctx->profile);
  857. if (avctx->profile == FF_PROFILE_MPEG2_AAC_LOW) {
  858. avctx->profile = FF_PROFILE_AAC_LOW;
  859. ERROR_IF(s->options.pred,
  860. "Main prediction unavailable in the \"mpeg2_aac_low\" profile\n");
  861. ERROR_IF(s->options.ltp,
  862. "LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n");
  863. WARN_IF(s->options.pns,
  864. "PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n");
  865. s->options.pns = 0;
  866. } else if (avctx->profile == FF_PROFILE_AAC_LTP) {
  867. s->options.ltp = 1;
  868. ERROR_IF(s->options.pred,
  869. "Main prediction unavailable in the \"aac_ltp\" profile\n");
  870. } else if (avctx->profile == FF_PROFILE_AAC_MAIN) {
  871. s->options.pred = 1;
  872. ERROR_IF(s->options.ltp,
  873. "LTP prediction unavailable in the \"aac_main\" profile\n");
  874. } else if (s->options.ltp) {
  875. avctx->profile = FF_PROFILE_AAC_LTP;
  876. WARN_IF(1,
  877. "Chainging profile to \"aac_ltp\"\n");
  878. ERROR_IF(s->options.pred,
  879. "Main prediction unavailable in the \"aac_ltp\" profile\n");
  880. } else if (s->options.pred) {
  881. avctx->profile = FF_PROFILE_AAC_MAIN;
  882. WARN_IF(1,
  883. "Chainging profile to \"aac_main\"\n");
  884. ERROR_IF(s->options.ltp,
  885. "LTP prediction unavailable in the \"aac_main\" profile\n");
  886. }
  887. s->profile = avctx->profile;
  888. s->coder = &ff_aac_coders[s->options.coder];
  889. if (s->options.coder != AAC_CODER_TWOLOOP) {
  890. ERROR_IF(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
  891. "Coders other than twoloop require -strict -2 and some may be removed in the future\n");
  892. WARN_IF(s->options.coder == AAC_CODER_FAAC,
  893. "The FAAC-like coder will be removed in the near future, please use twoloop!\n");
  894. s->options.intensity_stereo = 0;
  895. s->options.pns = 0;
  896. }
  897. ERROR_IF(s->options.ltp && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
  898. "The LPT profile requires experimental compliance, add -strict -2 to enable!\n");
  899. if ((ret = dsp_init(avctx, s)) < 0)
  900. goto fail;
  901. if ((ret = alloc_buffers(avctx, s)) < 0)
  902. goto fail;
  903. put_audio_specific_config(avctx);
  904. sizes[0] = ff_aac_swb_size_1024[s->samplerate_index];
  905. sizes[1] = ff_aac_swb_size_128[s->samplerate_index];
  906. lengths[0] = ff_aac_num_swb_1024[s->samplerate_index];
  907. lengths[1] = ff_aac_num_swb_128[s->samplerate_index];
  908. for (i = 0; i < s->chan_map[0]; i++)
  909. grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
  910. if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
  911. s->chan_map[0], grouping)) < 0)
  912. goto fail;
  913. s->psypp = ff_psy_preprocess_init(avctx);
  914. ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
  915. av_lfg_init(&s->lfg, 0x72adca55);
  916. if (HAVE_MIPSDSP)
  917. ff_aac_coder_init_mips(s);
  918. if ((ret = ff_thread_once(&aac_table_init, &aac_encode_init_tables)) != 0)
  919. return AVERROR_UNKNOWN;
  920. ff_af_queue_init(avctx, &s->afq);
  921. return 0;
  922. fail:
  923. aac_encode_end(avctx);
  924. return ret;
  925. }
  926. #define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
  927. static const AVOption aacenc_options[] = {
  928. {"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, -1, AAC_CODER_NB-1, AACENC_FLAGS, "coder"},
  929. {"faac", "FAAC-inspired method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  930. {"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  931. {"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  932. {"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
  933. {"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS},
  934. {"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
  935. {"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
  936. {"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
  937. {"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
  938. {"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
  939. {NULL}
  940. };
  941. static const AVClass aacenc_class = {
  942. "AAC encoder",
  943. av_default_item_name,
  944. aacenc_options,
  945. LIBAVUTIL_VERSION_INT,
  946. };
  947. AVCodec ff_aac_encoder = {
  948. .name = "aac",
  949. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  950. .type = AVMEDIA_TYPE_AUDIO,
  951. .id = AV_CODEC_ID_AAC,
  952. .priv_data_size = sizeof(AACEncContext),
  953. .init = aac_encode_init,
  954. .encode2 = aac_encode_frame,
  955. .close = aac_encode_end,
  956. .supported_samplerates = mpeg4audio_sample_rates,
  957. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  958. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
  959. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  960. AV_SAMPLE_FMT_NONE },
  961. .priv_class = &aacenc_class,
  962. };