You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

938 lines
42KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , INT_MAX, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"rematrix_maxval" , "set rematrix maxval" , OFFSET(rematrix_maxval), AV_OPT_TYPE_FLOAT, {.dbl=0.0 }, 0 , 1000 , PARAM},
  66. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  68. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  69. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  70. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  71. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  73. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  81. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  82. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 24 , PARAM },
  83. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  84. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  85. /* duplicate option in order to work with avconv */
  86. {"resample_cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  87. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  88. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  89. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  90. {"precision" , "set soxr resampling precision (in bits)"
  91. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  92. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  93. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  94. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  95. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  96. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  97. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  98. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  99. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  100. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  101. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  102. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  103. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  104. {"first_pts" , "Assume the first pts should be this value (in samples)."
  105. , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE }, INT64_MIN,INT64_MAX, PARAM },
  106. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  107. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  108. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  109. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  110. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  111. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  112. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  113. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  114. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  115. { "output_sample_bits" , "set swr number of output sample bits", OFFSET(dither.output_sample_bits), AV_OPT_TYPE_INT , {.i64=0 }, 0 , 64 , PARAM },
  116. {0}
  117. };
  118. static const char* context_to_name(void* ptr) {
  119. return "SWR";
  120. }
  121. static const AVClass av_class = {
  122. .class_name = "SWResampler",
  123. .item_name = context_to_name,
  124. .option = options,
  125. .version = LIBAVUTIL_VERSION_INT,
  126. .log_level_offset_offset = OFFSET(log_level_offset),
  127. .parent_log_context_offset = OFFSET(log_ctx),
  128. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  129. };
  130. unsigned swresample_version(void)
  131. {
  132. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  133. return LIBSWRESAMPLE_VERSION_INT;
  134. }
  135. const char *swresample_configuration(void)
  136. {
  137. return FFMPEG_CONFIGURATION;
  138. }
  139. const char *swresample_license(void)
  140. {
  141. #define LICENSE_PREFIX "libswresample license: "
  142. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  143. }
  144. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  145. if(!s || s->in_convert) // s needs to be allocated but not initialized
  146. return AVERROR(EINVAL);
  147. s->channel_map = channel_map;
  148. return 0;
  149. }
  150. const AVClass *swr_get_class(void)
  151. {
  152. return &av_class;
  153. }
  154. av_cold struct SwrContext *swr_alloc(void){
  155. SwrContext *s= av_mallocz(sizeof(SwrContext));
  156. if(s){
  157. s->av_class= &av_class;
  158. av_opt_set_defaults(s);
  159. }
  160. return s;
  161. }
  162. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  163. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  164. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  165. int log_offset, void *log_ctx){
  166. if(!s) s= swr_alloc();
  167. if(!s) return NULL;
  168. s->log_level_offset= log_offset;
  169. s->log_ctx= log_ctx;
  170. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  171. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  172. av_opt_set_int(s, "osr", out_sample_rate, 0);
  173. av_opt_set_int(s, "icl", in_ch_layout, 0);
  174. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  175. av_opt_set_int(s, "isr", in_sample_rate, 0);
  176. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  177. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  178. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  179. av_opt_set_int(s, "uch", 0, 0);
  180. return s;
  181. }
  182. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  183. a->fmt = fmt;
  184. a->bps = av_get_bytes_per_sample(fmt);
  185. a->planar= av_sample_fmt_is_planar(fmt);
  186. }
  187. static void free_temp(AudioData *a){
  188. av_free(a->data);
  189. memset(a, 0, sizeof(*a));
  190. }
  191. static void clear_context(SwrContext *s){
  192. s->in_buffer_index= 0;
  193. s->in_buffer_count= 0;
  194. s->resample_in_constraint= 0;
  195. memset(s->in.ch, 0, sizeof(s->in.ch));
  196. memset(s->out.ch, 0, sizeof(s->out.ch));
  197. free_temp(&s->postin);
  198. free_temp(&s->midbuf);
  199. free_temp(&s->preout);
  200. free_temp(&s->in_buffer);
  201. free_temp(&s->silence);
  202. free_temp(&s->drop_temp);
  203. free_temp(&s->dither.noise);
  204. free_temp(&s->dither.temp);
  205. swri_audio_convert_free(&s-> in_convert);
  206. swri_audio_convert_free(&s->out_convert);
  207. swri_audio_convert_free(&s->full_convert);
  208. swri_rematrix_free(s);
  209. s->flushed = 0;
  210. }
  211. av_cold void swr_free(SwrContext **ss){
  212. SwrContext *s= *ss;
  213. if(s){
  214. clear_context(s);
  215. if (s->resampler)
  216. s->resampler->free(&s->resample);
  217. }
  218. av_freep(ss);
  219. }
  220. av_cold int swr_init(struct SwrContext *s){
  221. int ret;
  222. clear_context(s);
  223. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  224. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  225. return AVERROR(EINVAL);
  226. }
  227. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  228. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  229. return AVERROR(EINVAL);
  230. }
  231. if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
  232. av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
  233. s->in_ch_layout = 0;
  234. }
  235. if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
  236. av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
  237. s->out_ch_layout = 0;
  238. }
  239. switch(s->engine){
  240. #if CONFIG_LIBSOXR
  241. extern struct Resampler const soxr_resampler;
  242. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  243. #endif
  244. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  245. default:
  246. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  247. return AVERROR(EINVAL);
  248. }
  249. if(!s->used_ch_count)
  250. s->used_ch_count= s->in.ch_count;
  251. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  252. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  253. s-> in_ch_layout= 0;
  254. }
  255. if(!s-> in_ch_layout)
  256. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  257. if(!s->out_ch_layout)
  258. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  259. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  260. s->rematrix_custom;
  261. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  262. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  263. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  264. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  265. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  266. && !s->rematrix
  267. && s->engine != SWR_ENGINE_SOXR){
  268. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  269. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  270. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  271. }else{
  272. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  273. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  274. }
  275. }
  276. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  277. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  278. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  279. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  280. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  281. return AVERROR(EINVAL);
  282. }
  283. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  284. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  285. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  286. if (!s->async && s->min_compensation >= FLT_MAX/2)
  287. s->async = 1;
  288. s->firstpts =
  289. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  290. } else
  291. s->firstpts = AV_NOPTS_VALUE;
  292. if (s->async) {
  293. if (s->min_compensation >= FLT_MAX/2)
  294. s->min_compensation = 0.001;
  295. if (s->async > 1.0001) {
  296. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  297. }
  298. }
  299. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  300. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  301. }else
  302. s->resampler->free(&s->resample);
  303. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  304. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  305. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  306. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  307. && s->resample){
  308. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  309. return -1;
  310. }
  311. #define RSC 1 //FIXME finetune
  312. if(!s-> in.ch_count)
  313. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  314. if(!s->used_ch_count)
  315. s->used_ch_count= s->in.ch_count;
  316. if(!s->out.ch_count)
  317. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  318. if(!s-> in.ch_count){
  319. av_assert0(!s->in_ch_layout);
  320. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  321. return -1;
  322. }
  323. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  324. char l1[1024], l2[1024];
  325. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  326. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  327. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  328. "but there is not enough information to do it\n", l1, l2);
  329. return -1;
  330. }
  331. av_assert0(s->used_ch_count);
  332. av_assert0(s->out.ch_count);
  333. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  334. s->in_buffer= s->in;
  335. s->silence = s->in;
  336. s->drop_temp= s->out;
  337. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  338. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  339. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  340. return 0;
  341. }
  342. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  343. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  344. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  345. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  346. if (!s->in_convert || !s->out_convert)
  347. return AVERROR(ENOMEM);
  348. s->postin= s->in;
  349. s->preout= s->out;
  350. s->midbuf= s->in;
  351. if(s->channel_map){
  352. s->postin.ch_count=
  353. s->midbuf.ch_count= s->used_ch_count;
  354. if(s->resample)
  355. s->in_buffer.ch_count= s->used_ch_count;
  356. }
  357. if(!s->resample_first){
  358. s->midbuf.ch_count= s->out.ch_count;
  359. if(s->resample)
  360. s->in_buffer.ch_count = s->out.ch_count;
  361. }
  362. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  363. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  364. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  365. if(s->resample){
  366. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  367. }
  368. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  369. return ret;
  370. if(s->rematrix || s->dither.method)
  371. return swri_rematrix_init(s);
  372. return 0;
  373. }
  374. int swri_realloc_audio(AudioData *a, int count){
  375. int i, countb;
  376. AudioData old;
  377. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  378. return AVERROR(EINVAL);
  379. if(a->count >= count)
  380. return 0;
  381. count*=2;
  382. countb= FFALIGN(count*a->bps, ALIGN);
  383. old= *a;
  384. av_assert0(a->bps);
  385. av_assert0(a->ch_count);
  386. a->data= av_mallocz(countb*a->ch_count);
  387. if(!a->data)
  388. return AVERROR(ENOMEM);
  389. for(i=0; i<a->ch_count; i++){
  390. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  391. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  392. }
  393. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  394. av_freep(&old.data);
  395. a->count= count;
  396. return 1;
  397. }
  398. static void copy(AudioData *out, AudioData *in,
  399. int count){
  400. av_assert0(out->planar == in->planar);
  401. av_assert0(out->bps == in->bps);
  402. av_assert0(out->ch_count == in->ch_count);
  403. if(out->planar){
  404. int ch;
  405. for(ch=0; ch<out->ch_count; ch++)
  406. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  407. }else
  408. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  409. }
  410. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  411. int i;
  412. if(!in_arg){
  413. memset(out->ch, 0, sizeof(out->ch));
  414. }else if(out->planar){
  415. for(i=0; i<out->ch_count; i++)
  416. out->ch[i]= in_arg[i];
  417. }else{
  418. for(i=0; i<out->ch_count; i++)
  419. out->ch[i]= in_arg[0] + i*out->bps;
  420. }
  421. }
  422. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  423. int i;
  424. if(out->planar){
  425. for(i=0; i<out->ch_count; i++)
  426. in_arg[i]= out->ch[i];
  427. }else{
  428. in_arg[0]= out->ch[0];
  429. }
  430. }
  431. /**
  432. *
  433. * out may be equal in.
  434. */
  435. static void buf_set(AudioData *out, AudioData *in, int count){
  436. int ch;
  437. if(in->planar){
  438. for(ch=0; ch<out->ch_count; ch++)
  439. out->ch[ch]= in->ch[ch] + count*out->bps;
  440. }else{
  441. for(ch=out->ch_count-1; ch>=0; ch--)
  442. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  443. }
  444. }
  445. /**
  446. *
  447. * @return number of samples output per channel
  448. */
  449. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  450. const AudioData * in_param, int in_count){
  451. AudioData in, out, tmp;
  452. int ret_sum=0;
  453. int border=0;
  454. int padless = ARCH_X86 && s->engine == SWR_ENGINE_SWR ? 7 : 0;
  455. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  456. av_assert1(s->in_buffer.planar == in_param->planar);
  457. av_assert1(s->in_buffer.fmt == in_param->fmt);
  458. tmp=out=*out_param;
  459. in = *in_param;
  460. do{
  461. int ret, size, consumed;
  462. if(!s->resample_in_constraint && s->in_buffer_count){
  463. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  464. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  465. out_count -= ret;
  466. ret_sum += ret;
  467. buf_set(&out, &out, ret);
  468. s->in_buffer_count -= consumed;
  469. s->in_buffer_index += consumed;
  470. if(!in_count)
  471. break;
  472. if(s->in_buffer_count <= border){
  473. buf_set(&in, &in, -s->in_buffer_count);
  474. in_count += s->in_buffer_count;
  475. s->in_buffer_count=0;
  476. s->in_buffer_index=0;
  477. border = 0;
  478. }
  479. }
  480. if((s->flushed || in_count > padless) && !s->in_buffer_count){
  481. s->in_buffer_index=0;
  482. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, FFMAX(in_count-padless, 0), &consumed);
  483. out_count -= ret;
  484. ret_sum += ret;
  485. buf_set(&out, &out, ret);
  486. in_count -= consumed;
  487. buf_set(&in, &in, consumed);
  488. }
  489. //TODO is this check sane considering the advanced copy avoidance below
  490. size= s->in_buffer_index + s->in_buffer_count + in_count;
  491. if( size > s->in_buffer.count
  492. && s->in_buffer_count + in_count <= s->in_buffer_index){
  493. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  494. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  495. s->in_buffer_index=0;
  496. }else
  497. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  498. return ret;
  499. if(in_count){
  500. int count= in_count;
  501. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  502. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  503. copy(&tmp, &in, /*in_*/count);
  504. s->in_buffer_count += count;
  505. in_count -= count;
  506. border += count;
  507. buf_set(&in, &in, count);
  508. s->resample_in_constraint= 0;
  509. if(s->in_buffer_count != count || in_count)
  510. continue;
  511. if (padless) {
  512. padless = 0;
  513. continue;
  514. }
  515. }
  516. break;
  517. }while(1);
  518. s->resample_in_constraint= !!out_count;
  519. return ret_sum;
  520. }
  521. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  522. AudioData *in , int in_count){
  523. AudioData *postin, *midbuf, *preout;
  524. int ret/*, in_max*/;
  525. AudioData preout_tmp, midbuf_tmp;
  526. if(s->full_convert){
  527. av_assert0(!s->resample);
  528. swri_audio_convert(s->full_convert, out, in, in_count);
  529. return out_count;
  530. }
  531. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  532. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  533. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  534. return ret;
  535. if(s->resample_first){
  536. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  537. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  538. return ret;
  539. }else{
  540. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  541. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  542. return ret;
  543. }
  544. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  545. return ret;
  546. postin= &s->postin;
  547. midbuf_tmp= s->midbuf;
  548. midbuf= &midbuf_tmp;
  549. preout_tmp= s->preout;
  550. preout= &preout_tmp;
  551. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  552. postin= in;
  553. if(s->resample_first ? !s->resample : !s->rematrix)
  554. midbuf= postin;
  555. if(s->resample_first ? !s->rematrix : !s->resample)
  556. preout= midbuf;
  557. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar
  558. && !(s->out_sample_fmt==AV_SAMPLE_FMT_S32P && (s->dither.output_sample_bits&31))){
  559. if(preout==in){
  560. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  561. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  562. copy(out, in, out_count);
  563. return out_count;
  564. }
  565. else if(preout==postin) preout= midbuf= postin= out;
  566. else if(preout==midbuf) preout= midbuf= out;
  567. else preout= out;
  568. }
  569. if(in != postin){
  570. swri_audio_convert(s->in_convert, postin, in, in_count);
  571. }
  572. if(s->resample_first){
  573. if(postin != midbuf)
  574. out_count= resample(s, midbuf, out_count, postin, in_count);
  575. if(midbuf != preout)
  576. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  577. }else{
  578. if(postin != midbuf)
  579. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  580. if(midbuf != preout)
  581. out_count= resample(s, preout, out_count, midbuf, in_count);
  582. }
  583. if(preout != out && out_count){
  584. AudioData *conv_src = preout;
  585. if(s->dither.method){
  586. int ch;
  587. int dither_count= FFMAX(out_count, 1<<16);
  588. if (preout == in) {
  589. conv_src = &s->dither.temp;
  590. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  591. return ret;
  592. }
  593. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  594. return ret;
  595. if(ret)
  596. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  597. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  598. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  599. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  600. s->dither.noise_pos = 0;
  601. if (s->dither.method < SWR_DITHER_NS){
  602. if (s->mix_2_1_simd) {
  603. int len1= out_count&~15;
  604. int off = len1 * preout->bps;
  605. if(len1)
  606. for(ch=0; ch<preout->ch_count; ch++)
  607. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_simd_one, 0, 0, len1);
  608. if(out_count != len1)
  609. for(ch=0; ch<preout->ch_count; ch++)
  610. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  611. } else {
  612. for(ch=0; ch<preout->ch_count; ch++)
  613. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  614. }
  615. } else {
  616. switch(s->int_sample_fmt) {
  617. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  618. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  619. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  620. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  621. }
  622. }
  623. s->dither.noise_pos += out_count;
  624. }
  625. //FIXME packed doesn't need more than 1 chan here!
  626. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  627. }
  628. return out_count;
  629. }
  630. int swr_is_initialized(struct SwrContext *s) {
  631. return !!s->in_buffer.ch_count;
  632. }
  633. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  634. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  635. AudioData * in= &s->in;
  636. AudioData *out= &s->out;
  637. while(s->drop_output > 0){
  638. int ret;
  639. uint8_t *tmp_arg[SWR_CH_MAX];
  640. #define MAX_DROP_STEP 16384
  641. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  642. return ret;
  643. reversefill_audiodata(&s->drop_temp, tmp_arg);
  644. s->drop_output *= -1; //FIXME find a less hackish solution
  645. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
  646. s->drop_output *= -1;
  647. in_count = 0;
  648. if(ret>0) {
  649. s->drop_output -= ret;
  650. continue;
  651. }
  652. if(s->drop_output || !out_arg)
  653. return 0;
  654. }
  655. if(!in_arg){
  656. if(s->resample){
  657. if (!s->flushed)
  658. s->resampler->flush(s);
  659. s->resample_in_constraint = 0;
  660. s->flushed = 1;
  661. }else if(!s->in_buffer_count){
  662. return 0;
  663. }
  664. }else
  665. fill_audiodata(in , (void*)in_arg);
  666. fill_audiodata(out, out_arg);
  667. if(s->resample){
  668. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  669. if(ret>0 && !s->drop_output)
  670. s->outpts += ret * (int64_t)s->in_sample_rate;
  671. return ret;
  672. }else{
  673. AudioData tmp= *in;
  674. int ret2=0;
  675. int ret, size;
  676. size = FFMIN(out_count, s->in_buffer_count);
  677. if(size){
  678. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  679. ret= swr_convert_internal(s, out, size, &tmp, size);
  680. if(ret<0)
  681. return ret;
  682. ret2= ret;
  683. s->in_buffer_count -= ret;
  684. s->in_buffer_index += ret;
  685. buf_set(out, out, ret);
  686. out_count -= ret;
  687. if(!s->in_buffer_count)
  688. s->in_buffer_index = 0;
  689. }
  690. if(in_count){
  691. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  692. if(in_count > out_count) { //FIXME move after swr_convert_internal
  693. if( size > s->in_buffer.count
  694. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  695. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  696. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  697. s->in_buffer_index=0;
  698. }else
  699. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  700. return ret;
  701. }
  702. if(out_count){
  703. size = FFMIN(in_count, out_count);
  704. ret= swr_convert_internal(s, out, size, in, size);
  705. if(ret<0)
  706. return ret;
  707. buf_set(in, in, ret);
  708. in_count -= ret;
  709. ret2 += ret;
  710. }
  711. if(in_count){
  712. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  713. copy(&tmp, in, in_count);
  714. s->in_buffer_count += in_count;
  715. }
  716. }
  717. if(ret2>0 && !s->drop_output)
  718. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  719. return ret2;
  720. }
  721. }
  722. int swr_drop_output(struct SwrContext *s, int count){
  723. s->drop_output += count;
  724. if(s->drop_output <= 0)
  725. return 0;
  726. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  727. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  728. }
  729. int swr_inject_silence(struct SwrContext *s, int count){
  730. int ret, i;
  731. uint8_t *tmp_arg[SWR_CH_MAX];
  732. if(count <= 0)
  733. return 0;
  734. #define MAX_SILENCE_STEP 16384
  735. while (count > MAX_SILENCE_STEP) {
  736. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  737. return ret;
  738. count -= MAX_SILENCE_STEP;
  739. }
  740. if((ret=swri_realloc_audio(&s->silence, count))<0)
  741. return ret;
  742. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  743. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  744. } else
  745. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  746. reversefill_audiodata(&s->silence, tmp_arg);
  747. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  748. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  749. return ret;
  750. }
  751. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  752. if (s->resampler && s->resample){
  753. return s->resampler->get_delay(s, base);
  754. }else{
  755. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  756. }
  757. }
  758. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  759. int ret;
  760. if (!s || compensation_distance < 0)
  761. return AVERROR(EINVAL);
  762. if (!compensation_distance && sample_delta)
  763. return AVERROR(EINVAL);
  764. if (!s->resample) {
  765. s->flags |= SWR_FLAG_RESAMPLE;
  766. ret = swr_init(s);
  767. if (ret < 0)
  768. return ret;
  769. }
  770. if (!s->resampler->set_compensation){
  771. return AVERROR(EINVAL);
  772. }else{
  773. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  774. }
  775. }
  776. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  777. if(pts == INT64_MIN)
  778. return s->outpts;
  779. if (s->firstpts == AV_NOPTS_VALUE)
  780. s->outpts = s->firstpts = pts;
  781. if(s->min_compensation >= FLT_MAX) {
  782. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  783. } else {
  784. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  785. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  786. if(fabs(fdelta) > s->min_compensation) {
  787. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  788. int ret;
  789. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  790. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  791. if(ret<0){
  792. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  793. }
  794. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  795. int duration = s->out_sample_rate * s->soft_compensation_duration;
  796. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  797. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  798. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  799. swr_set_compensation(s, comp, duration);
  800. }
  801. }
  802. return s->outpts;
  803. }
  804. }