You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1883 lines
67KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  54. return LIBSWSCALE_VERSION_INT;
  55. }
  56. const char *swscale_configuration(void)
  57. {
  58. return FFMPEG_CONFIGURATION;
  59. }
  60. const char *swscale_license(void)
  61. {
  62. #define LICENSE_PREFIX "libswscale license: "
  63. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  64. }
  65. #define RET 0xC3 // near return opcode for x86
  66. typedef struct FormatEntry {
  67. int is_supported_in, is_supported_out;
  68. } FormatEntry;
  69. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  70. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  71. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  72. [AV_PIX_FMT_RGB24] = { 1, 1 },
  73. [AV_PIX_FMT_BGR24] = { 1, 1 },
  74. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  78. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  79. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  80. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  81. [AV_PIX_FMT_PAL8] = { 1, 0 },
  82. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  83. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  85. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  86. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  87. [AV_PIX_FMT_BGR8] = { 1, 1 },
  88. [AV_PIX_FMT_BGR4] = { 0, 1 },
  89. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  90. [AV_PIX_FMT_RGB8] = { 1, 1 },
  91. [AV_PIX_FMT_RGB4] = { 0, 1 },
  92. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_NV12] = { 1, 1 },
  94. [AV_PIX_FMT_NV21] = { 1, 1 },
  95. [AV_PIX_FMT_ARGB] = { 1, 1 },
  96. [AV_PIX_FMT_RGBA] = { 1, 1 },
  97. [AV_PIX_FMT_ABGR] = { 1, 1 },
  98. [AV_PIX_FMT_BGRA] = { 1, 1 },
  99. [AV_PIX_FMT_0RGB] = { 1, 1 },
  100. [AV_PIX_FMT_RGB0] = { 1, 1 },
  101. [AV_PIX_FMT_0BGR] = { 1, 1 },
  102. [AV_PIX_FMT_BGR0] = { 1, 1 },
  103. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  104. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  105. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  128. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  130. [AV_PIX_FMT_RGBA64BE] = { 1, 0 },
  131. [AV_PIX_FMT_RGBA64LE] = { 1, 0 },
  132. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  138. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  139. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  150. [AV_PIX_FMT_Y400A] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  179. [AV_PIX_FMT_GBRP] = { 1, 1 },
  180. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  181. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  182. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  189. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  190. };
  191. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  192. {
  193. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  194. format_entries[pix_fmt].is_supported_in : 0;
  195. }
  196. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  197. {
  198. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  199. format_entries[pix_fmt].is_supported_out : 0;
  200. }
  201. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  202. #if FF_API_SWS_FORMAT_NAME
  203. const char *sws_format_name(enum AVPixelFormat format)
  204. {
  205. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  206. if (desc)
  207. return desc->name;
  208. else
  209. return "Unknown format";
  210. }
  211. #endif
  212. static double getSplineCoeff(double a, double b, double c, double d,
  213. double dist)
  214. {
  215. if (dist <= 1.0)
  216. return ((d * dist + c) * dist + b) * dist + a;
  217. else
  218. return getSplineCoeff(0.0,
  219. b + 2.0 * c + 3.0 * d,
  220. c + 3.0 * d,
  221. -b - 3.0 * c - 6.0 * d,
  222. dist - 1.0);
  223. }
  224. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  225. int *outFilterSize, int xInc, int srcW, int dstW,
  226. int filterAlign, int one, int flags, int cpu_flags,
  227. SwsVector *srcFilter, SwsVector *dstFilter,
  228. double param[2])
  229. {
  230. int i;
  231. int filterSize;
  232. int filter2Size;
  233. int minFilterSize;
  234. int64_t *filter = NULL;
  235. int64_t *filter2 = NULL;
  236. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  237. int ret = -1;
  238. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  239. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  240. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  241. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  242. int i;
  243. filterSize = 1;
  244. FF_ALLOCZ_OR_GOTO(NULL, filter,
  245. dstW * sizeof(*filter) * filterSize, fail);
  246. for (i = 0; i < dstW; i++) {
  247. filter[i * filterSize] = fone;
  248. (*filterPos)[i] = i;
  249. }
  250. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  251. int i;
  252. int64_t xDstInSrc;
  253. filterSize = 1;
  254. FF_ALLOC_OR_GOTO(NULL, filter,
  255. dstW * sizeof(*filter) * filterSize, fail);
  256. xDstInSrc = xInc / 2 - 0x8000;
  257. for (i = 0; i < dstW; i++) {
  258. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  259. (*filterPos)[i] = xx;
  260. filter[i] = fone;
  261. xDstInSrc += xInc;
  262. }
  263. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  264. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  265. int i;
  266. int64_t xDstInSrc;
  267. filterSize = 2;
  268. FF_ALLOC_OR_GOTO(NULL, filter,
  269. dstW * sizeof(*filter) * filterSize, fail);
  270. xDstInSrc = xInc / 2 - 0x8000;
  271. for (i = 0; i < dstW; i++) {
  272. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  273. int j;
  274. (*filterPos)[i] = xx;
  275. // bilinear upscale / linear interpolate / area averaging
  276. for (j = 0; j < filterSize; j++) {
  277. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  278. if (coeff < 0)
  279. coeff = 0;
  280. filter[i * filterSize + j] = coeff;
  281. xx++;
  282. }
  283. xDstInSrc += xInc;
  284. }
  285. } else {
  286. int64_t xDstInSrc;
  287. int sizeFactor;
  288. if (flags & SWS_BICUBIC)
  289. sizeFactor = 4;
  290. else if (flags & SWS_X)
  291. sizeFactor = 8;
  292. else if (flags & SWS_AREA)
  293. sizeFactor = 1; // downscale only, for upscale it is bilinear
  294. else if (flags & SWS_GAUSS)
  295. sizeFactor = 8; // infinite ;)
  296. else if (flags & SWS_LANCZOS)
  297. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  298. else if (flags & SWS_SINC)
  299. sizeFactor = 20; // infinite ;)
  300. else if (flags & SWS_SPLINE)
  301. sizeFactor = 20; // infinite ;)
  302. else if (flags & SWS_BILINEAR)
  303. sizeFactor = 2;
  304. else {
  305. av_assert0(0);
  306. }
  307. if (xInc <= 1 << 16)
  308. filterSize = 1 + sizeFactor; // upscale
  309. else
  310. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  311. filterSize = FFMIN(filterSize, srcW - 2);
  312. filterSize = FFMAX(filterSize, 1);
  313. FF_ALLOC_OR_GOTO(NULL, filter,
  314. dstW * sizeof(*filter) * filterSize, fail);
  315. xDstInSrc = xInc - 0x10000;
  316. for (i = 0; i < dstW; i++) {
  317. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  318. int j;
  319. (*filterPos)[i] = xx;
  320. for (j = 0; j < filterSize; j++) {
  321. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  322. double floatd;
  323. int64_t coeff;
  324. if (xInc > 1 << 16)
  325. d = d * dstW / srcW;
  326. floatd = d * (1.0 / (1 << 30));
  327. if (flags & SWS_BICUBIC) {
  328. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  329. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  330. if (d >= 1LL << 31) {
  331. coeff = 0.0;
  332. } else {
  333. int64_t dd = (d * d) >> 30;
  334. int64_t ddd = (dd * d) >> 30;
  335. if (d < 1LL << 30)
  336. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  337. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  338. (6 * (1 << 24) - 2 * B) * (1 << 30);
  339. else
  340. coeff = (-B - 6 * C) * ddd +
  341. (6 * B + 30 * C) * dd +
  342. (-12 * B - 48 * C) * d +
  343. (8 * B + 24 * C) * (1 << 30);
  344. }
  345. coeff /= (1LL<<54)/fone;
  346. }
  347. #if 0
  348. else if (flags & SWS_X) {
  349. double p = param ? param * 0.01 : 0.3;
  350. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  351. coeff *= pow(2.0, -p * d * d);
  352. }
  353. #endif
  354. else if (flags & SWS_X) {
  355. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  356. double c;
  357. if (floatd < 1.0)
  358. c = cos(floatd * M_PI);
  359. else
  360. c = -1.0;
  361. if (c < 0.0)
  362. c = -pow(-c, A);
  363. else
  364. c = pow(c, A);
  365. coeff = (c * 0.5 + 0.5) * fone;
  366. } else if (flags & SWS_AREA) {
  367. int64_t d2 = d - (1 << 29);
  368. if (d2 * xInc < -(1LL << (29 + 16)))
  369. coeff = 1.0 * (1LL << (30 + 16));
  370. else if (d2 * xInc < (1LL << (29 + 16)))
  371. coeff = -d2 * xInc + (1LL << (29 + 16));
  372. else
  373. coeff = 0.0;
  374. coeff *= fone >> (30 + 16);
  375. } else if (flags & SWS_GAUSS) {
  376. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  377. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  378. } else if (flags & SWS_SINC) {
  379. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  380. } else if (flags & SWS_LANCZOS) {
  381. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  382. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  383. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  384. if (floatd > p)
  385. coeff = 0;
  386. } else if (flags & SWS_BILINEAR) {
  387. coeff = (1 << 30) - d;
  388. if (coeff < 0)
  389. coeff = 0;
  390. coeff *= fone >> 30;
  391. } else if (flags & SWS_SPLINE) {
  392. double p = -2.196152422706632;
  393. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  394. } else {
  395. av_assert0(0);
  396. }
  397. filter[i * filterSize + j] = coeff;
  398. xx++;
  399. }
  400. xDstInSrc += 2 * xInc;
  401. }
  402. }
  403. /* apply src & dst Filter to filter -> filter2
  404. * av_free(filter);
  405. */
  406. av_assert0(filterSize > 0);
  407. filter2Size = filterSize;
  408. if (srcFilter)
  409. filter2Size += srcFilter->length - 1;
  410. if (dstFilter)
  411. filter2Size += dstFilter->length - 1;
  412. av_assert0(filter2Size > 0);
  413. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  414. for (i = 0; i < dstW; i++) {
  415. int j, k;
  416. if (srcFilter) {
  417. for (k = 0; k < srcFilter->length; k++) {
  418. for (j = 0; j < filterSize; j++)
  419. filter2[i * filter2Size + k + j] +=
  420. srcFilter->coeff[k] * filter[i * filterSize + j];
  421. }
  422. } else {
  423. for (j = 0; j < filterSize; j++)
  424. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  425. }
  426. // FIXME dstFilter
  427. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  428. }
  429. av_freep(&filter);
  430. /* try to reduce the filter-size (step1 find size and shift left) */
  431. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  432. minFilterSize = 0;
  433. for (i = dstW - 1; i >= 0; i--) {
  434. int min = filter2Size;
  435. int j;
  436. int64_t cutOff = 0.0;
  437. /* get rid of near zero elements on the left by shifting left */
  438. for (j = 0; j < filter2Size; j++) {
  439. int k;
  440. cutOff += FFABS(filter2[i * filter2Size]);
  441. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  442. break;
  443. /* preserve monotonicity because the core can't handle the
  444. * filter otherwise */
  445. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  446. break;
  447. // move filter coefficients left
  448. for (k = 1; k < filter2Size; k++)
  449. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  450. filter2[i * filter2Size + k - 1] = 0;
  451. (*filterPos)[i]++;
  452. }
  453. cutOff = 0;
  454. /* count near zeros on the right */
  455. for (j = filter2Size - 1; j > 0; j--) {
  456. cutOff += FFABS(filter2[i * filter2Size + j]);
  457. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  458. break;
  459. min--;
  460. }
  461. if (min > minFilterSize)
  462. minFilterSize = min;
  463. }
  464. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  465. // we can handle the special case 4, so we don't want to go the full 8
  466. if (minFilterSize < 5)
  467. filterAlign = 4;
  468. /* We really don't want to waste our time doing useless computation, so
  469. * fall back on the scalar C code for very small filters.
  470. * Vectorizing is worth it only if you have a decent-sized vector. */
  471. if (minFilterSize < 3)
  472. filterAlign = 1;
  473. }
  474. if (INLINE_MMX(cpu_flags)) {
  475. // special case for unscaled vertical filtering
  476. if (minFilterSize == 1 && filterAlign == 2)
  477. filterAlign = 1;
  478. }
  479. av_assert0(minFilterSize > 0);
  480. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  481. av_assert0(filterSize > 0);
  482. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  483. if (filterSize >= MAX_FILTER_SIZE * 16 /
  484. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  485. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  486. goto fail;
  487. }
  488. *outFilterSize = filterSize;
  489. if (flags & SWS_PRINT_INFO)
  490. av_log(NULL, AV_LOG_VERBOSE,
  491. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  492. filter2Size, filterSize);
  493. /* try to reduce the filter-size (step2 reduce it) */
  494. for (i = 0; i < dstW; i++) {
  495. int j;
  496. for (j = 0; j < filterSize; j++) {
  497. if (j >= filter2Size)
  498. filter[i * filterSize + j] = 0;
  499. else
  500. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  501. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  502. filter[i * filterSize + j] = 0;
  503. }
  504. }
  505. // FIXME try to align filterPos if possible
  506. // fix borders
  507. for (i = 0; i < dstW; i++) {
  508. int j;
  509. if ((*filterPos)[i] < 0) {
  510. // move filter coefficients left to compensate for filterPos
  511. for (j = 1; j < filterSize; j++) {
  512. int left = FFMAX(j + (*filterPos)[i], 0);
  513. filter[i * filterSize + left] += filter[i * filterSize + j];
  514. filter[i * filterSize + j] = 0;
  515. }
  516. (*filterPos)[i]= 0;
  517. }
  518. if ((*filterPos)[i] + filterSize > srcW) {
  519. int shift = (*filterPos)[i] + filterSize - srcW;
  520. // move filter coefficients right to compensate for filterPos
  521. for (j = filterSize - 2; j >= 0; j--) {
  522. int right = FFMIN(j + shift, filterSize - 1);
  523. filter[i * filterSize + right] += filter[i * filterSize + j];
  524. filter[i * filterSize + j] = 0;
  525. }
  526. (*filterPos)[i]= srcW - filterSize;
  527. }
  528. }
  529. // Note the +1 is for the MMX scaler which reads over the end
  530. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  531. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  532. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  533. /* normalize & store in outFilter */
  534. for (i = 0; i < dstW; i++) {
  535. int j;
  536. int64_t error = 0;
  537. int64_t sum = 0;
  538. for (j = 0; j < filterSize; j++) {
  539. sum += filter[i * filterSize + j];
  540. }
  541. sum = (sum + one / 2) / one;
  542. for (j = 0; j < *outFilterSize; j++) {
  543. int64_t v = filter[i * filterSize + j] + error;
  544. int intV = ROUNDED_DIV(v, sum);
  545. (*outFilter)[i * (*outFilterSize) + j] = intV;
  546. error = v - intV * sum;
  547. }
  548. }
  549. (*filterPos)[dstW + 0] =
  550. (*filterPos)[dstW + 1] =
  551. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  552. * read over the end */
  553. for (i = 0; i < *outFilterSize; i++) {
  554. int k = (dstW - 1) * (*outFilterSize) + i;
  555. (*outFilter)[k + 1 * (*outFilterSize)] =
  556. (*outFilter)[k + 2 * (*outFilterSize)] =
  557. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  558. }
  559. ret = 0;
  560. fail:
  561. if(ret < 0)
  562. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  563. av_free(filter);
  564. av_free(filter2);
  565. return ret;
  566. }
  567. #if HAVE_MMXEXT_INLINE
  568. static int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  569. int16_t *filter, int32_t *filterPos,
  570. int numSplits)
  571. {
  572. uint8_t *fragmentA;
  573. x86_reg imm8OfPShufW1A;
  574. x86_reg imm8OfPShufW2A;
  575. x86_reg fragmentLengthA;
  576. uint8_t *fragmentB;
  577. x86_reg imm8OfPShufW1B;
  578. x86_reg imm8OfPShufW2B;
  579. x86_reg fragmentLengthB;
  580. int fragmentPos;
  581. int xpos, i;
  582. // create an optimized horizontal scaling routine
  583. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  584. * pshufw instructions. For every four output pixels, if four input pixels
  585. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  586. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  587. */
  588. // code fragment
  589. __asm__ volatile (
  590. "jmp 9f \n\t"
  591. // Begin
  592. "0: \n\t"
  593. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  594. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  595. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  596. "punpcklbw %%mm7, %%mm1 \n\t"
  597. "punpcklbw %%mm7, %%mm0 \n\t"
  598. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  599. "1: \n\t"
  600. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  601. "2: \n\t"
  602. "psubw %%mm1, %%mm0 \n\t"
  603. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  604. "pmullw %%mm3, %%mm0 \n\t"
  605. "psllw $7, %%mm1 \n\t"
  606. "paddw %%mm1, %%mm0 \n\t"
  607. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  608. "add $8, %%"REG_a" \n\t"
  609. // End
  610. "9: \n\t"
  611. // "int $3 \n\t"
  612. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  613. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  614. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  615. "dec %1 \n\t"
  616. "dec %2 \n\t"
  617. "sub %0, %1 \n\t"
  618. "sub %0, %2 \n\t"
  619. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  620. "sub %0, %3 \n\t"
  621. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  622. "=r" (fragmentLengthA)
  623. );
  624. __asm__ volatile (
  625. "jmp 9f \n\t"
  626. // Begin
  627. "0: \n\t"
  628. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  629. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  630. "punpcklbw %%mm7, %%mm0 \n\t"
  631. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  632. "1: \n\t"
  633. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  634. "2: \n\t"
  635. "psubw %%mm1, %%mm0 \n\t"
  636. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  637. "pmullw %%mm3, %%mm0 \n\t"
  638. "psllw $7, %%mm1 \n\t"
  639. "paddw %%mm1, %%mm0 \n\t"
  640. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  641. "add $8, %%"REG_a" \n\t"
  642. // End
  643. "9: \n\t"
  644. // "int $3 \n\t"
  645. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  646. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  647. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  648. "dec %1 \n\t"
  649. "dec %2 \n\t"
  650. "sub %0, %1 \n\t"
  651. "sub %0, %2 \n\t"
  652. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  653. "sub %0, %3 \n\t"
  654. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  655. "=r" (fragmentLengthB)
  656. );
  657. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  658. fragmentPos = 0;
  659. for (i = 0; i < dstW / numSplits; i++) {
  660. int xx = xpos >> 16;
  661. if ((i & 3) == 0) {
  662. int a = 0;
  663. int b = ((xpos + xInc) >> 16) - xx;
  664. int c = ((xpos + xInc * 2) >> 16) - xx;
  665. int d = ((xpos + xInc * 3) >> 16) - xx;
  666. int inc = (d + 1 < 4);
  667. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  668. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  669. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  670. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  671. int maxShift = 3 - (d + inc);
  672. int shift = 0;
  673. if (filterCode) {
  674. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  675. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  676. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  677. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  678. filterPos[i / 2] = xx;
  679. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  680. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  681. ((b + inc) << 2) |
  682. ((c + inc) << 4) |
  683. ((d + inc) << 6);
  684. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  685. (c << 4) |
  686. (d << 6);
  687. if (i + 4 - inc >= dstW)
  688. shift = maxShift; // avoid overread
  689. else if ((filterPos[i / 2] & 3) <= maxShift)
  690. shift = filterPos[i / 2] & 3; // align
  691. if (shift && i >= shift) {
  692. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  693. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  694. filterPos[i / 2] -= shift;
  695. }
  696. }
  697. fragmentPos += fragmentLength;
  698. if (filterCode)
  699. filterCode[fragmentPos] = RET;
  700. }
  701. xpos += xInc;
  702. }
  703. if (filterCode)
  704. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  705. return fragmentPos + 1;
  706. }
  707. #endif /* HAVE_MMXEXT_INLINE */
  708. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  709. {
  710. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  711. *h = desc->log2_chroma_w;
  712. *v = desc->log2_chroma_h;
  713. }
  714. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  715. int srcRange, const int table[4], int dstRange,
  716. int brightness, int contrast, int saturation)
  717. {
  718. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  719. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  720. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  721. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  722. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  723. dstRange = 0;
  724. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  725. srcRange = 0;
  726. c->brightness = brightness;
  727. c->contrast = contrast;
  728. c->saturation = saturation;
  729. c->srcRange = srcRange;
  730. c->dstRange = dstRange;
  731. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  732. return -1;
  733. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  734. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  735. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  736. contrast, saturation);
  737. // FIXME factorize
  738. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  739. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  740. contrast, saturation);
  741. return 0;
  742. }
  743. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  744. int *srcRange, int **table, int *dstRange,
  745. int *brightness, int *contrast, int *saturation)
  746. {
  747. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat))
  748. return -1;
  749. *inv_table = c->srcColorspaceTable;
  750. *table = c->dstColorspaceTable;
  751. *srcRange = c->srcRange;
  752. *dstRange = c->dstRange;
  753. *brightness = c->brightness;
  754. *contrast = c->contrast;
  755. *saturation = c->saturation;
  756. return 0;
  757. }
  758. static int handle_jpeg(enum AVPixelFormat *format)
  759. {
  760. switch (*format) {
  761. case AV_PIX_FMT_YUVJ420P:
  762. *format = AV_PIX_FMT_YUV420P;
  763. return 1;
  764. case AV_PIX_FMT_YUVJ422P:
  765. *format = AV_PIX_FMT_YUV422P;
  766. return 1;
  767. case AV_PIX_FMT_YUVJ444P:
  768. *format = AV_PIX_FMT_YUV444P;
  769. return 1;
  770. case AV_PIX_FMT_YUVJ440P:
  771. *format = AV_PIX_FMT_YUV440P;
  772. return 1;
  773. default:
  774. return 0;
  775. }
  776. }
  777. static int handle_0alpha(enum AVPixelFormat *format)
  778. {
  779. switch (*format) {
  780. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  781. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  782. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  783. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  784. default: return 0;
  785. }
  786. }
  787. SwsContext *sws_alloc_context(void)
  788. {
  789. SwsContext *c = av_mallocz(sizeof(SwsContext));
  790. if (c) {
  791. c->av_class = &sws_context_class;
  792. av_opt_set_defaults(c);
  793. }
  794. return c;
  795. }
  796. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  797. SwsFilter *dstFilter)
  798. {
  799. int i, j;
  800. int usesVFilter, usesHFilter;
  801. int unscaled;
  802. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  803. int srcW = c->srcW;
  804. int srcH = c->srcH;
  805. int dstW = c->dstW;
  806. int dstH = c->dstH;
  807. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  808. int flags, cpu_flags;
  809. enum AVPixelFormat srcFormat = c->srcFormat;
  810. enum AVPixelFormat dstFormat = c->dstFormat;
  811. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  812. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  813. cpu_flags = av_get_cpu_flags();
  814. flags = c->flags;
  815. emms_c();
  816. if (!rgb15to16)
  817. sws_rgb2rgb_init();
  818. unscaled = (srcW == dstW && srcH == dstH);
  819. handle_jpeg(&srcFormat);
  820. handle_jpeg(&dstFormat);
  821. handle_0alpha(&srcFormat);
  822. handle_0alpha(&dstFormat);
  823. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat){
  824. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  825. c->srcFormat= srcFormat;
  826. c->dstFormat= dstFormat;
  827. }
  828. if (!sws_isSupportedInput(srcFormat)) {
  829. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  830. av_get_pix_fmt_name(srcFormat));
  831. return AVERROR(EINVAL);
  832. }
  833. if (!sws_isSupportedOutput(dstFormat)) {
  834. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  835. av_get_pix_fmt_name(dstFormat));
  836. return AVERROR(EINVAL);
  837. }
  838. i = flags & (SWS_POINT |
  839. SWS_AREA |
  840. SWS_BILINEAR |
  841. SWS_FAST_BILINEAR |
  842. SWS_BICUBIC |
  843. SWS_X |
  844. SWS_GAUSS |
  845. SWS_LANCZOS |
  846. SWS_SINC |
  847. SWS_SPLINE |
  848. SWS_BICUBLIN);
  849. if (!i || (i & (i - 1))) {
  850. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  851. return AVERROR(EINVAL);
  852. }
  853. /* sanity check */
  854. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  855. /* FIXME check if these are enough and try to lower them after
  856. * fixing the relevant parts of the code */
  857. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  858. srcW, srcH, dstW, dstH);
  859. return AVERROR(EINVAL);
  860. }
  861. if (!dstFilter)
  862. dstFilter = &dummyFilter;
  863. if (!srcFilter)
  864. srcFilter = &dummyFilter;
  865. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  866. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  867. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  868. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  869. c->vRounder = 4 * 0x0001000100010001ULL;
  870. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  871. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  872. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  873. (dstFilter->chrV && dstFilter->chrV->length > 1);
  874. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  875. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  876. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  877. (dstFilter->chrH && dstFilter->chrH->length > 1);
  878. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  879. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  880. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  881. if (dstW&1) {
  882. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  883. flags |= SWS_FULL_CHR_H_INT;
  884. c->flags = flags;
  885. }
  886. }
  887. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  888. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  889. dstFormat == AV_PIX_FMT_BGR8 ||
  890. dstFormat == AV_PIX_FMT_RGB8) {
  891. if (flags & SWS_ERROR_DIFFUSION && !(flags & SWS_FULL_CHR_H_INT)) {
  892. av_log(c, AV_LOG_DEBUG,
  893. "Error diffusion dither is only supported in full chroma interpolation for destination format '%s'\n",
  894. av_get_pix_fmt_name(dstFormat));
  895. flags |= SWS_FULL_CHR_H_INT;
  896. c->flags = flags;
  897. }
  898. if (!(flags & SWS_ERROR_DIFFUSION) && (flags & SWS_FULL_CHR_H_INT)) {
  899. av_log(c, AV_LOG_DEBUG,
  900. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  901. av_get_pix_fmt_name(dstFormat));
  902. flags |= SWS_ERROR_DIFFUSION;
  903. c->flags = flags;
  904. }
  905. }
  906. if (isPlanarRGB(dstFormat)) {
  907. if (!(flags & SWS_FULL_CHR_H_INT)) {
  908. av_log(c, AV_LOG_DEBUG,
  909. "%s output is not supported with half chroma resolution, switching to full\n",
  910. av_get_pix_fmt_name(dstFormat));
  911. flags |= SWS_FULL_CHR_H_INT;
  912. c->flags = flags;
  913. }
  914. }
  915. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  916. * chroma interpolation */
  917. if (flags & SWS_FULL_CHR_H_INT &&
  918. isAnyRGB(dstFormat) &&
  919. !isPlanarRGB(dstFormat) &&
  920. dstFormat != AV_PIX_FMT_RGBA &&
  921. dstFormat != AV_PIX_FMT_ARGB &&
  922. dstFormat != AV_PIX_FMT_BGRA &&
  923. dstFormat != AV_PIX_FMT_ABGR &&
  924. dstFormat != AV_PIX_FMT_RGB24 &&
  925. dstFormat != AV_PIX_FMT_BGR24 &&
  926. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  927. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  928. dstFormat != AV_PIX_FMT_BGR8 &&
  929. dstFormat != AV_PIX_FMT_RGB8
  930. ) {
  931. av_log(c, AV_LOG_WARNING,
  932. "full chroma interpolation for destination format '%s' not yet implemented\n",
  933. av_get_pix_fmt_name(dstFormat));
  934. flags &= ~SWS_FULL_CHR_H_INT;
  935. c->flags = flags;
  936. }
  937. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  938. c->chrDstHSubSample = 1;
  939. // drop some chroma lines if the user wants it
  940. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  941. SWS_SRC_V_CHR_DROP_SHIFT;
  942. c->chrSrcVSubSample += c->vChrDrop;
  943. /* drop every other pixel for chroma calculation unless user
  944. * wants full chroma */
  945. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  946. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  947. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  948. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  949. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  950. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  951. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  952. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  953. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  954. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  955. (flags & SWS_FAST_BILINEAR)))
  956. c->chrSrcHSubSample = 1;
  957. // Note the -((-x)>>y) is so that we always round toward +inf.
  958. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  959. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  960. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  961. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  962. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  963. /* unscaled special cases */
  964. if (unscaled && !usesHFilter && !usesVFilter &&
  965. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  966. ff_get_unscaled_swscale(c);
  967. if (c->swScale) {
  968. if (flags & SWS_PRINT_INFO)
  969. av_log(c, AV_LOG_INFO,
  970. "using unscaled %s -> %s special converter\n",
  971. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  972. return 0;
  973. }
  974. }
  975. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  976. if (c->srcBpc < 8)
  977. c->srcBpc = 8;
  978. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  979. if (c->dstBpc < 8)
  980. c->dstBpc = 8;
  981. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  982. c->srcBpc = 16;
  983. if (c->dstBpc == 16)
  984. dst_stride <<= 1;
  985. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  986. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  987. (srcW & 15) == 0) ? 1 : 0;
  988. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  989. && (flags & SWS_FAST_BILINEAR)) {
  990. if (flags & SWS_PRINT_INFO)
  991. av_log(c, AV_LOG_INFO,
  992. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  993. }
  994. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  995. c->canMMXEXTBeUsed = 0;
  996. } else
  997. c->canMMXEXTBeUsed = 0;
  998. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  999. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1000. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1001. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1002. * correct scaling.
  1003. * n-2 is the last chrominance sample available.
  1004. * This is not perfect, but no one should notice the difference, the more
  1005. * correct variant would be like the vertical one, but that would require
  1006. * some special code for the first and last pixel */
  1007. if (flags & SWS_FAST_BILINEAR) {
  1008. if (c->canMMXEXTBeUsed) {
  1009. c->lumXInc += 20;
  1010. c->chrXInc += 20;
  1011. }
  1012. // we don't use the x86 asm scaler if MMX is available
  1013. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1014. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1015. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1016. }
  1017. }
  1018. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1019. /* precalculate horizontal scaler filter coefficients */
  1020. {
  1021. #if HAVE_MMXEXT_INLINE
  1022. // can't downscale !!!
  1023. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1024. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1025. NULL, NULL, 8);
  1026. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1027. NULL, NULL, NULL, 4);
  1028. #if USE_MMAP
  1029. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1030. PROT_READ | PROT_WRITE,
  1031. MAP_PRIVATE | MAP_ANONYMOUS,
  1032. -1, 0);
  1033. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1034. PROT_READ | PROT_WRITE,
  1035. MAP_PRIVATE | MAP_ANONYMOUS,
  1036. -1, 0);
  1037. #elif HAVE_VIRTUALALLOC
  1038. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1039. c->lumMmxextFilterCodeSize,
  1040. MEM_COMMIT,
  1041. PAGE_EXECUTE_READWRITE);
  1042. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1043. c->chrMmxextFilterCodeSize,
  1044. MEM_COMMIT,
  1045. PAGE_EXECUTE_READWRITE);
  1046. #else
  1047. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1048. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1049. #endif
  1050. #ifdef MAP_ANONYMOUS
  1051. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1052. #else
  1053. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1054. #endif
  1055. {
  1056. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1057. return AVERROR(ENOMEM);
  1058. }
  1059. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1060. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1061. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1062. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1063. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1064. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1065. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1066. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1067. #if USE_MMAP
  1068. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1069. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1070. #endif
  1071. } else
  1072. #endif /* HAVE_MMXEXT_INLINE */
  1073. {
  1074. const int filterAlign =
  1075. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1076. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1077. 1;
  1078. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1079. &c->hLumFilterSize, c->lumXInc,
  1080. srcW, dstW, filterAlign, 1 << 14,
  1081. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1082. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1083. c->param) < 0)
  1084. goto fail;
  1085. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1086. &c->hChrFilterSize, c->chrXInc,
  1087. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1088. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1089. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1090. c->param) < 0)
  1091. goto fail;
  1092. }
  1093. } // initialize horizontal stuff
  1094. /* precalculate vertical scaler filter coefficients */
  1095. {
  1096. const int filterAlign =
  1097. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1098. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1099. 1;
  1100. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1101. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1102. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1103. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1104. c->param) < 0)
  1105. goto fail;
  1106. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1107. c->chrYInc, c->chrSrcH, c->chrDstH,
  1108. filterAlign, (1 << 12),
  1109. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1110. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1111. c->param) < 0)
  1112. goto fail;
  1113. #if HAVE_ALTIVEC
  1114. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1115. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1116. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1117. int j;
  1118. short *p = (short *)&c->vYCoeffsBank[i];
  1119. for (j = 0; j < 8; j++)
  1120. p[j] = c->vLumFilter[i];
  1121. }
  1122. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1123. int j;
  1124. short *p = (short *)&c->vCCoeffsBank[i];
  1125. for (j = 0; j < 8; j++)
  1126. p[j] = c->vChrFilter[i];
  1127. }
  1128. #endif
  1129. }
  1130. // calculate buffer sizes so that they won't run out while handling these damn slices
  1131. c->vLumBufSize = c->vLumFilterSize;
  1132. c->vChrBufSize = c->vChrFilterSize;
  1133. for (i = 0; i < dstH; i++) {
  1134. int chrI = (int64_t)i * c->chrDstH / dstH;
  1135. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1136. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1137. << c->chrSrcVSubSample));
  1138. nextSlice >>= c->chrSrcVSubSample;
  1139. nextSlice <<= c->chrSrcVSubSample;
  1140. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1141. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1142. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1143. (nextSlice >> c->chrSrcVSubSample))
  1144. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1145. c->vChrFilterPos[chrI];
  1146. }
  1147. for (i = 0; i < 4; i++)
  1148. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1149. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1150. * need to allocate several megabytes to handle all possible cases) */
  1151. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1152. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1153. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1154. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1155. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1156. /* Note we need at least one pixel more at the end because of the MMX code
  1157. * (just in case someone wants to replace the 4000/8000). */
  1158. /* align at 16 bytes for AltiVec */
  1159. for (i = 0; i < c->vLumBufSize; i++) {
  1160. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1161. dst_stride + 16, fail);
  1162. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1163. }
  1164. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1165. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1166. c->uv_offx2 = dst_stride + 16;
  1167. for (i = 0; i < c->vChrBufSize; i++) {
  1168. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1169. dst_stride * 2 + 32, fail);
  1170. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1171. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1172. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1173. }
  1174. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1175. for (i = 0; i < c->vLumBufSize; i++) {
  1176. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1177. dst_stride + 16, fail);
  1178. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1179. }
  1180. // try to avoid drawing green stuff between the right end and the stride end
  1181. for (i = 0; i < c->vChrBufSize; i++)
  1182. if(desc_dst->comp[0].depth_minus1 == 15){
  1183. av_assert0(c->dstBpc > 14);
  1184. for(j=0; j<dst_stride/2+1; j++)
  1185. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1186. } else
  1187. for(j=0; j<dst_stride+1; j++)
  1188. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1189. av_assert0(c->chrDstH <= dstH);
  1190. if (flags & SWS_PRINT_INFO) {
  1191. if (flags & SWS_FAST_BILINEAR)
  1192. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1193. else if (flags & SWS_BILINEAR)
  1194. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1195. else if (flags & SWS_BICUBIC)
  1196. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1197. else if (flags & SWS_X)
  1198. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1199. else if (flags & SWS_POINT)
  1200. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1201. else if (flags & SWS_AREA)
  1202. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1203. else if (flags & SWS_BICUBLIN)
  1204. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1205. else if (flags & SWS_GAUSS)
  1206. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1207. else if (flags & SWS_SINC)
  1208. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1209. else if (flags & SWS_LANCZOS)
  1210. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1211. else if (flags & SWS_SPLINE)
  1212. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1213. else
  1214. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1215. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1216. av_get_pix_fmt_name(srcFormat),
  1217. #ifdef DITHER1XBPP
  1218. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1219. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1220. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1221. "dithered " : "",
  1222. #else
  1223. "",
  1224. #endif
  1225. av_get_pix_fmt_name(dstFormat));
  1226. if (INLINE_MMXEXT(cpu_flags))
  1227. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1228. else if (INLINE_AMD3DNOW(cpu_flags))
  1229. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1230. else if (INLINE_MMX(cpu_flags))
  1231. av_log(c, AV_LOG_INFO, "using MMX\n");
  1232. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1233. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1234. else
  1235. av_log(c, AV_LOG_INFO, "using C\n");
  1236. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1237. av_log(c, AV_LOG_DEBUG,
  1238. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1239. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1240. av_log(c, AV_LOG_DEBUG,
  1241. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1242. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1243. c->chrXInc, c->chrYInc);
  1244. }
  1245. c->swScale = ff_getSwsFunc(c);
  1246. return 0;
  1247. fail: // FIXME replace things by appropriate error codes
  1248. return -1;
  1249. }
  1250. #if FF_API_SWS_GETCONTEXT
  1251. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1252. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1253. int flags, SwsFilter *srcFilter,
  1254. SwsFilter *dstFilter, const double *param)
  1255. {
  1256. SwsContext *c;
  1257. if (!(c = sws_alloc_context()))
  1258. return NULL;
  1259. c->flags = flags;
  1260. c->srcW = srcW;
  1261. c->srcH = srcH;
  1262. c->dstW = dstW;
  1263. c->dstH = dstH;
  1264. c->srcRange = handle_jpeg(&srcFormat);
  1265. c->dstRange = handle_jpeg(&dstFormat);
  1266. c->src0Alpha = handle_0alpha(&srcFormat);
  1267. c->dst0Alpha = handle_0alpha(&dstFormat);
  1268. c->srcFormat = srcFormat;
  1269. c->dstFormat = dstFormat;
  1270. if (param) {
  1271. c->param[0] = param[0];
  1272. c->param[1] = param[1];
  1273. }
  1274. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1275. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1276. c->dstRange, 0, 1 << 16, 1 << 16);
  1277. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1278. sws_freeContext(c);
  1279. return NULL;
  1280. }
  1281. return c;
  1282. }
  1283. #endif
  1284. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1285. float lumaSharpen, float chromaSharpen,
  1286. float chromaHShift, float chromaVShift,
  1287. int verbose)
  1288. {
  1289. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1290. if (!filter)
  1291. return NULL;
  1292. if (lumaGBlur != 0.0) {
  1293. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1294. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1295. } else {
  1296. filter->lumH = sws_getIdentityVec();
  1297. filter->lumV = sws_getIdentityVec();
  1298. }
  1299. if (chromaGBlur != 0.0) {
  1300. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1301. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1302. } else {
  1303. filter->chrH = sws_getIdentityVec();
  1304. filter->chrV = sws_getIdentityVec();
  1305. }
  1306. if (chromaSharpen != 0.0) {
  1307. SwsVector *id = sws_getIdentityVec();
  1308. sws_scaleVec(filter->chrH, -chromaSharpen);
  1309. sws_scaleVec(filter->chrV, -chromaSharpen);
  1310. sws_addVec(filter->chrH, id);
  1311. sws_addVec(filter->chrV, id);
  1312. sws_freeVec(id);
  1313. }
  1314. if (lumaSharpen != 0.0) {
  1315. SwsVector *id = sws_getIdentityVec();
  1316. sws_scaleVec(filter->lumH, -lumaSharpen);
  1317. sws_scaleVec(filter->lumV, -lumaSharpen);
  1318. sws_addVec(filter->lumH, id);
  1319. sws_addVec(filter->lumV, id);
  1320. sws_freeVec(id);
  1321. }
  1322. if (chromaHShift != 0.0)
  1323. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1324. if (chromaVShift != 0.0)
  1325. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1326. sws_normalizeVec(filter->chrH, 1.0);
  1327. sws_normalizeVec(filter->chrV, 1.0);
  1328. sws_normalizeVec(filter->lumH, 1.0);
  1329. sws_normalizeVec(filter->lumV, 1.0);
  1330. if (verbose)
  1331. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1332. if (verbose)
  1333. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1334. return filter;
  1335. }
  1336. SwsVector *sws_allocVec(int length)
  1337. {
  1338. SwsVector *vec;
  1339. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1340. return NULL;
  1341. vec = av_malloc(sizeof(SwsVector));
  1342. if (!vec)
  1343. return NULL;
  1344. vec->length = length;
  1345. vec->coeff = av_malloc(sizeof(double) * length);
  1346. if (!vec->coeff)
  1347. av_freep(&vec);
  1348. return vec;
  1349. }
  1350. SwsVector *sws_getGaussianVec(double variance, double quality)
  1351. {
  1352. const int length = (int)(variance * quality + 0.5) | 1;
  1353. int i;
  1354. double middle = (length - 1) * 0.5;
  1355. SwsVector *vec;
  1356. if(variance < 0 || quality < 0)
  1357. return NULL;
  1358. vec = sws_allocVec(length);
  1359. if (!vec)
  1360. return NULL;
  1361. for (i = 0; i < length; i++) {
  1362. double dist = i - middle;
  1363. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1364. sqrt(2 * variance * M_PI);
  1365. }
  1366. sws_normalizeVec(vec, 1.0);
  1367. return vec;
  1368. }
  1369. SwsVector *sws_getConstVec(double c, int length)
  1370. {
  1371. int i;
  1372. SwsVector *vec = sws_allocVec(length);
  1373. if (!vec)
  1374. return NULL;
  1375. for (i = 0; i < length; i++)
  1376. vec->coeff[i] = c;
  1377. return vec;
  1378. }
  1379. SwsVector *sws_getIdentityVec(void)
  1380. {
  1381. return sws_getConstVec(1.0, 1);
  1382. }
  1383. static double sws_dcVec(SwsVector *a)
  1384. {
  1385. int i;
  1386. double sum = 0;
  1387. for (i = 0; i < a->length; i++)
  1388. sum += a->coeff[i];
  1389. return sum;
  1390. }
  1391. void sws_scaleVec(SwsVector *a, double scalar)
  1392. {
  1393. int i;
  1394. for (i = 0; i < a->length; i++)
  1395. a->coeff[i] *= scalar;
  1396. }
  1397. void sws_normalizeVec(SwsVector *a, double height)
  1398. {
  1399. sws_scaleVec(a, height / sws_dcVec(a));
  1400. }
  1401. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1402. {
  1403. int length = a->length + b->length - 1;
  1404. int i, j;
  1405. SwsVector *vec = sws_getConstVec(0.0, length);
  1406. if (!vec)
  1407. return NULL;
  1408. for (i = 0; i < a->length; i++) {
  1409. for (j = 0; j < b->length; j++) {
  1410. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1411. }
  1412. }
  1413. return vec;
  1414. }
  1415. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1416. {
  1417. int length = FFMAX(a->length, b->length);
  1418. int i;
  1419. SwsVector *vec = sws_getConstVec(0.0, length);
  1420. if (!vec)
  1421. return NULL;
  1422. for (i = 0; i < a->length; i++)
  1423. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1424. for (i = 0; i < b->length; i++)
  1425. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1426. return vec;
  1427. }
  1428. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1429. {
  1430. int length = FFMAX(a->length, b->length);
  1431. int i;
  1432. SwsVector *vec = sws_getConstVec(0.0, length);
  1433. if (!vec)
  1434. return NULL;
  1435. for (i = 0; i < a->length; i++)
  1436. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1437. for (i = 0; i < b->length; i++)
  1438. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1439. return vec;
  1440. }
  1441. /* shift left / or right if "shift" is negative */
  1442. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1443. {
  1444. int length = a->length + FFABS(shift) * 2;
  1445. int i;
  1446. SwsVector *vec = sws_getConstVec(0.0, length);
  1447. if (!vec)
  1448. return NULL;
  1449. for (i = 0; i < a->length; i++) {
  1450. vec->coeff[i + (length - 1) / 2 -
  1451. (a->length - 1) / 2 - shift] = a->coeff[i];
  1452. }
  1453. return vec;
  1454. }
  1455. void sws_shiftVec(SwsVector *a, int shift)
  1456. {
  1457. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1458. av_free(a->coeff);
  1459. a->coeff = shifted->coeff;
  1460. a->length = shifted->length;
  1461. av_free(shifted);
  1462. }
  1463. void sws_addVec(SwsVector *a, SwsVector *b)
  1464. {
  1465. SwsVector *sum = sws_sumVec(a, b);
  1466. av_free(a->coeff);
  1467. a->coeff = sum->coeff;
  1468. a->length = sum->length;
  1469. av_free(sum);
  1470. }
  1471. void sws_subVec(SwsVector *a, SwsVector *b)
  1472. {
  1473. SwsVector *diff = sws_diffVec(a, b);
  1474. av_free(a->coeff);
  1475. a->coeff = diff->coeff;
  1476. a->length = diff->length;
  1477. av_free(diff);
  1478. }
  1479. void sws_convVec(SwsVector *a, SwsVector *b)
  1480. {
  1481. SwsVector *conv = sws_getConvVec(a, b);
  1482. av_free(a->coeff);
  1483. a->coeff = conv->coeff;
  1484. a->length = conv->length;
  1485. av_free(conv);
  1486. }
  1487. SwsVector *sws_cloneVec(SwsVector *a)
  1488. {
  1489. int i;
  1490. SwsVector *vec = sws_allocVec(a->length);
  1491. if (!vec)
  1492. return NULL;
  1493. for (i = 0; i < a->length; i++)
  1494. vec->coeff[i] = a->coeff[i];
  1495. return vec;
  1496. }
  1497. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1498. {
  1499. int i;
  1500. double max = 0;
  1501. double min = 0;
  1502. double range;
  1503. for (i = 0; i < a->length; i++)
  1504. if (a->coeff[i] > max)
  1505. max = a->coeff[i];
  1506. for (i = 0; i < a->length; i++)
  1507. if (a->coeff[i] < min)
  1508. min = a->coeff[i];
  1509. range = max - min;
  1510. for (i = 0; i < a->length; i++) {
  1511. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1512. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1513. for (; x > 0; x--)
  1514. av_log(log_ctx, log_level, " ");
  1515. av_log(log_ctx, log_level, "|\n");
  1516. }
  1517. }
  1518. void sws_freeVec(SwsVector *a)
  1519. {
  1520. if (!a)
  1521. return;
  1522. av_freep(&a->coeff);
  1523. a->length = 0;
  1524. av_free(a);
  1525. }
  1526. void sws_freeFilter(SwsFilter *filter)
  1527. {
  1528. if (!filter)
  1529. return;
  1530. if (filter->lumH)
  1531. sws_freeVec(filter->lumH);
  1532. if (filter->lumV)
  1533. sws_freeVec(filter->lumV);
  1534. if (filter->chrH)
  1535. sws_freeVec(filter->chrH);
  1536. if (filter->chrV)
  1537. sws_freeVec(filter->chrV);
  1538. av_free(filter);
  1539. }
  1540. void sws_freeContext(SwsContext *c)
  1541. {
  1542. int i;
  1543. if (!c)
  1544. return;
  1545. if (c->lumPixBuf) {
  1546. for (i = 0; i < c->vLumBufSize; i++)
  1547. av_freep(&c->lumPixBuf[i]);
  1548. av_freep(&c->lumPixBuf);
  1549. }
  1550. if (c->chrUPixBuf) {
  1551. for (i = 0; i < c->vChrBufSize; i++)
  1552. av_freep(&c->chrUPixBuf[i]);
  1553. av_freep(&c->chrUPixBuf);
  1554. av_freep(&c->chrVPixBuf);
  1555. }
  1556. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1557. for (i = 0; i < c->vLumBufSize; i++)
  1558. av_freep(&c->alpPixBuf[i]);
  1559. av_freep(&c->alpPixBuf);
  1560. }
  1561. for (i = 0; i < 4; i++)
  1562. av_freep(&c->dither_error[i]);
  1563. av_freep(&c->vLumFilter);
  1564. av_freep(&c->vChrFilter);
  1565. av_freep(&c->hLumFilter);
  1566. av_freep(&c->hChrFilter);
  1567. #if HAVE_ALTIVEC
  1568. av_freep(&c->vYCoeffsBank);
  1569. av_freep(&c->vCCoeffsBank);
  1570. #endif
  1571. av_freep(&c->vLumFilterPos);
  1572. av_freep(&c->vChrFilterPos);
  1573. av_freep(&c->hLumFilterPos);
  1574. av_freep(&c->hChrFilterPos);
  1575. #if HAVE_MMX_INLINE
  1576. #if USE_MMAP
  1577. if (c->lumMmxextFilterCode)
  1578. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1579. if (c->chrMmxextFilterCode)
  1580. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1581. #elif HAVE_VIRTUALALLOC
  1582. if (c->lumMmxextFilterCode)
  1583. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1584. if (c->chrMmxextFilterCode)
  1585. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1586. #else
  1587. av_free(c->lumMmxextFilterCode);
  1588. av_free(c->chrMmxextFilterCode);
  1589. #endif
  1590. c->lumMmxextFilterCode = NULL;
  1591. c->chrMmxextFilterCode = NULL;
  1592. #endif /* HAVE_MMX_INLINE */
  1593. av_freep(&c->yuvTable);
  1594. av_freep(&c->formatConvBuffer);
  1595. av_free(c);
  1596. }
  1597. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1598. int srcH, enum AVPixelFormat srcFormat,
  1599. int dstW, int dstH,
  1600. enum AVPixelFormat dstFormat, int flags,
  1601. SwsFilter *srcFilter,
  1602. SwsFilter *dstFilter,
  1603. const double *param)
  1604. {
  1605. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1606. SWS_PARAM_DEFAULT };
  1607. if (!param)
  1608. param = default_param;
  1609. if (context &&
  1610. (context->srcW != srcW ||
  1611. context->srcH != srcH ||
  1612. context->srcFormat != srcFormat ||
  1613. context->dstW != dstW ||
  1614. context->dstH != dstH ||
  1615. context->dstFormat != dstFormat ||
  1616. context->flags != flags ||
  1617. context->param[0] != param[0] ||
  1618. context->param[1] != param[1])) {
  1619. sws_freeContext(context);
  1620. context = NULL;
  1621. }
  1622. if (!context) {
  1623. if (!(context = sws_alloc_context()))
  1624. return NULL;
  1625. context->srcW = srcW;
  1626. context->srcH = srcH;
  1627. context->srcRange = handle_jpeg(&srcFormat);
  1628. context->src0Alpha = handle_0alpha(&srcFormat);
  1629. context->srcFormat = srcFormat;
  1630. context->dstW = dstW;
  1631. context->dstH = dstH;
  1632. context->dstRange = handle_jpeg(&dstFormat);
  1633. context->dst0Alpha = handle_0alpha(&dstFormat);
  1634. context->dstFormat = dstFormat;
  1635. context->flags = flags;
  1636. context->param[0] = param[0];
  1637. context->param[1] = param[1];
  1638. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1639. context->srcRange,
  1640. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1641. context->dstRange, 0, 1 << 16, 1 << 16);
  1642. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1643. sws_freeContext(context);
  1644. return NULL;
  1645. }
  1646. }
  1647. return context;
  1648. }