You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3146 lines
119KB

  1. /*
  2. * HEVC video decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/md5.h"
  30. #include "libavutil/opt.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/stereo3d.h"
  33. #include "bswapdsp.h"
  34. #include "bytestream.h"
  35. #include "cabac_functions.h"
  36. #include "golomb_legacy.h"
  37. #include "hevc.h"
  38. #include "hevc_data.h"
  39. #include "hevcdec.h"
  40. #include "hwaccel.h"
  41. #include "profiles.h"
  42. const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 3 };
  43. const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 4, 4, 4 };
  44. const uint8_t ff_hevc_qpel_extra[4] = { 0, 7, 7, 7 };
  45. static const uint8_t scan_1x1[1] = { 0 };
  46. static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
  47. static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
  48. static const uint8_t horiz_scan4x4_x[16] = {
  49. 0, 1, 2, 3,
  50. 0, 1, 2, 3,
  51. 0, 1, 2, 3,
  52. 0, 1, 2, 3,
  53. };
  54. static const uint8_t horiz_scan4x4_y[16] = {
  55. 0, 0, 0, 0,
  56. 1, 1, 1, 1,
  57. 2, 2, 2, 2,
  58. 3, 3, 3, 3,
  59. };
  60. static const uint8_t horiz_scan8x8_inv[8][8] = {
  61. { 0, 1, 2, 3, 16, 17, 18, 19, },
  62. { 4, 5, 6, 7, 20, 21, 22, 23, },
  63. { 8, 9, 10, 11, 24, 25, 26, 27, },
  64. { 12, 13, 14, 15, 28, 29, 30, 31, },
  65. { 32, 33, 34, 35, 48, 49, 50, 51, },
  66. { 36, 37, 38, 39, 52, 53, 54, 55, },
  67. { 40, 41, 42, 43, 56, 57, 58, 59, },
  68. { 44, 45, 46, 47, 60, 61, 62, 63, },
  69. };
  70. static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
  71. static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
  72. static const uint8_t diag_scan2x2_inv[2][2] = {
  73. { 0, 2, },
  74. { 1, 3, },
  75. };
  76. static const uint8_t diag_scan4x4_inv[4][4] = {
  77. { 0, 2, 5, 9, },
  78. { 1, 4, 8, 12, },
  79. { 3, 7, 11, 14, },
  80. { 6, 10, 13, 15, },
  81. };
  82. static const uint8_t diag_scan8x8_inv[8][8] = {
  83. { 0, 2, 5, 9, 14, 20, 27, 35, },
  84. { 1, 4, 8, 13, 19, 26, 34, 42, },
  85. { 3, 7, 12, 18, 25, 33, 41, 48, },
  86. { 6, 11, 17, 24, 32, 40, 47, 53, },
  87. { 10, 16, 23, 31, 39, 46, 52, 57, },
  88. { 15, 22, 30, 38, 45, 51, 56, 60, },
  89. { 21, 29, 37, 44, 50, 55, 59, 62, },
  90. { 28, 36, 43, 49, 54, 58, 61, 63, },
  91. };
  92. /**
  93. * NOTE: Each function hls_foo correspond to the function foo in the
  94. * specification (HLS stands for High Level Syntax).
  95. */
  96. /**
  97. * Section 5.7
  98. */
  99. /* free everything allocated by pic_arrays_init() */
  100. static void pic_arrays_free(HEVCContext *s)
  101. {
  102. av_freep(&s->sao);
  103. av_freep(&s->deblock);
  104. av_freep(&s->skip_flag);
  105. av_freep(&s->tab_ct_depth);
  106. av_freep(&s->tab_ipm);
  107. av_freep(&s->cbf_luma);
  108. av_freep(&s->is_pcm);
  109. av_freep(&s->qp_y_tab);
  110. av_freep(&s->tab_slice_address);
  111. av_freep(&s->filter_slice_edges);
  112. av_freep(&s->horizontal_bs);
  113. av_freep(&s->vertical_bs);
  114. av_buffer_pool_uninit(&s->tab_mvf_pool);
  115. av_buffer_pool_uninit(&s->rpl_tab_pool);
  116. }
  117. /* allocate arrays that depend on frame dimensions */
  118. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  119. {
  120. int log2_min_cb_size = sps->log2_min_cb_size;
  121. int width = sps->width;
  122. int height = sps->height;
  123. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  124. ((height >> log2_min_cb_size) + 1);
  125. int ctb_count = sps->ctb_width * sps->ctb_height;
  126. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  127. s->bs_width = width >> 3;
  128. s->bs_height = height >> 3;
  129. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  130. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  131. if (!s->sao || !s->deblock)
  132. goto fail;
  133. s->skip_flag = av_malloc(pic_size_in_ctb);
  134. s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
  135. if (!s->skip_flag || !s->tab_ct_depth)
  136. goto fail;
  137. s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
  138. s->tab_ipm = av_mallocz(min_pu_size);
  139. s->is_pcm = av_malloc(min_pu_size);
  140. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  141. goto fail;
  142. s->filter_slice_edges = av_malloc(ctb_count);
  143. s->tab_slice_address = av_malloc(pic_size_in_ctb *
  144. sizeof(*s->tab_slice_address));
  145. s->qp_y_tab = av_malloc(pic_size_in_ctb *
  146. sizeof(*s->qp_y_tab));
  147. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  148. goto fail;
  149. s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  150. s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  151. if (!s->horizontal_bs || !s->vertical_bs)
  152. goto fail;
  153. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  154. av_buffer_alloc);
  155. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  156. av_buffer_allocz);
  157. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  158. goto fail;
  159. return 0;
  160. fail:
  161. pic_arrays_free(s);
  162. return AVERROR(ENOMEM);
  163. }
  164. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  165. {
  166. int i = 0;
  167. int j = 0;
  168. uint8_t luma_weight_l0_flag[16];
  169. uint8_t chroma_weight_l0_flag[16];
  170. uint8_t luma_weight_l1_flag[16];
  171. uint8_t chroma_weight_l1_flag[16];
  172. s->sh.luma_log2_weight_denom = av_clip(get_ue_golomb_long(gb), 0, 7);
  173. if (s->ps.sps->chroma_format_idc != 0) {
  174. int delta = get_se_golomb(gb);
  175. s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
  176. }
  177. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  178. luma_weight_l0_flag[i] = get_bits1(gb);
  179. if (!luma_weight_l0_flag[i]) {
  180. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  181. s->sh.luma_offset_l0[i] = 0;
  182. }
  183. }
  184. if (s->ps.sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
  185. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  186. chroma_weight_l0_flag[i] = get_bits1(gb);
  187. } else {
  188. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  189. chroma_weight_l0_flag[i] = 0;
  190. }
  191. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  192. if (luma_weight_l0_flag[i]) {
  193. int delta_luma_weight_l0 = get_se_golomb(gb);
  194. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  195. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  196. }
  197. if (chroma_weight_l0_flag[i]) {
  198. for (j = 0; j < 2; j++) {
  199. int delta_chroma_weight_l0 = get_se_golomb(gb);
  200. int delta_chroma_offset_l0 = get_se_golomb(gb);
  201. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  202. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  203. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  204. }
  205. } else {
  206. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  207. s->sh.chroma_offset_l0[i][0] = 0;
  208. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  209. s->sh.chroma_offset_l0[i][1] = 0;
  210. }
  211. }
  212. if (s->sh.slice_type == HEVC_SLICE_B) {
  213. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  214. luma_weight_l1_flag[i] = get_bits1(gb);
  215. if (!luma_weight_l1_flag[i]) {
  216. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  217. s->sh.luma_offset_l1[i] = 0;
  218. }
  219. }
  220. if (s->ps.sps->chroma_format_idc != 0) {
  221. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  222. chroma_weight_l1_flag[i] = get_bits1(gb);
  223. } else {
  224. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  225. chroma_weight_l1_flag[i] = 0;
  226. }
  227. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  228. if (luma_weight_l1_flag[i]) {
  229. int delta_luma_weight_l1 = get_se_golomb(gb);
  230. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  231. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  232. }
  233. if (chroma_weight_l1_flag[i]) {
  234. for (j = 0; j < 2; j++) {
  235. int delta_chroma_weight_l1 = get_se_golomb(gb);
  236. int delta_chroma_offset_l1 = get_se_golomb(gb);
  237. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  238. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  239. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  240. }
  241. } else {
  242. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  243. s->sh.chroma_offset_l1[i][0] = 0;
  244. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  245. s->sh.chroma_offset_l1[i][1] = 0;
  246. }
  247. }
  248. }
  249. }
  250. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  251. {
  252. const HEVCSPS *sps = s->ps.sps;
  253. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  254. int prev_delta_msb = 0;
  255. unsigned int nb_sps = 0, nb_sh;
  256. int i;
  257. rps->nb_refs = 0;
  258. if (!sps->long_term_ref_pics_present_flag)
  259. return 0;
  260. if (sps->num_long_term_ref_pics_sps > 0)
  261. nb_sps = get_ue_golomb_long(gb);
  262. nb_sh = get_ue_golomb_long(gb);
  263. if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
  264. return AVERROR_INVALIDDATA;
  265. rps->nb_refs = nb_sh + nb_sps;
  266. for (i = 0; i < rps->nb_refs; i++) {
  267. uint8_t delta_poc_msb_present;
  268. if (i < nb_sps) {
  269. uint8_t lt_idx_sps = 0;
  270. if (sps->num_long_term_ref_pics_sps > 1)
  271. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  272. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  273. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  274. } else {
  275. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  276. rps->used[i] = get_bits1(gb);
  277. }
  278. delta_poc_msb_present = get_bits1(gb);
  279. if (delta_poc_msb_present) {
  280. int delta = get_ue_golomb_long(gb);
  281. if (i && i != nb_sps)
  282. delta += prev_delta_msb;
  283. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  284. prev_delta_msb = delta;
  285. }
  286. }
  287. return 0;
  288. }
  289. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  290. const HEVCSPS *sps)
  291. {
  292. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  293. const HEVCWindow *ow = &sps->output_window;
  294. unsigned int num = 0, den = 0;
  295. avctx->pix_fmt = sps->pix_fmt;
  296. avctx->coded_width = sps->width;
  297. avctx->coded_height = sps->height;
  298. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  299. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  300. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  301. avctx->profile = sps->ptl.general_ptl.profile_idc;
  302. avctx->level = sps->ptl.general_ptl.level_idc;
  303. ff_set_sar(avctx, sps->vui.sar);
  304. if (sps->vui.video_signal_type_present_flag)
  305. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  306. : AVCOL_RANGE_MPEG;
  307. else
  308. avctx->color_range = AVCOL_RANGE_MPEG;
  309. if (sps->vui.colour_description_present_flag) {
  310. avctx->color_primaries = sps->vui.colour_primaries;
  311. avctx->color_trc = sps->vui.transfer_characteristic;
  312. avctx->colorspace = sps->vui.matrix_coeffs;
  313. } else {
  314. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  315. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  316. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  317. }
  318. if (vps->vps_timing_info_present_flag) {
  319. num = vps->vps_num_units_in_tick;
  320. den = vps->vps_time_scale;
  321. } else if (sps->vui.vui_timing_info_present_flag) {
  322. num = sps->vui.vui_num_units_in_tick;
  323. den = sps->vui.vui_time_scale;
  324. }
  325. if (num != 0 && den != 0)
  326. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  327. num, den, 1 << 30);
  328. }
  329. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  330. {
  331. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  332. CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL + \
  333. CONFIG_HEVC_CUVID_HWACCEL)
  334. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  335. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P ||
  336. sps->pix_fmt == AV_PIX_FMT_YUV420P10) {
  337. #if CONFIG_HEVC_D3D11VA_HWACCEL
  338. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  339. *fmt++ = AV_PIX_FMT_D3D11;
  340. #endif
  341. #if CONFIG_HEVC_DXVA2_HWACCEL
  342. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  343. #endif
  344. #if CONFIG_HEVC_VAAPI_HWACCEL
  345. *fmt++ = AV_PIX_FMT_VAAPI;
  346. #endif
  347. #if CONFIG_HEVC_CUVID_HWACCEL && HAVE_CUVIDDECODECREATEINFO_BITDEPTHMINUS8
  348. *fmt++ = AV_PIX_FMT_CUDA;
  349. #endif
  350. }
  351. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  352. #if CONFIG_HEVC_CUVID_HWACCEL && !HAVE_CUVIDDECODECREATEINFO_BITDEPTHMINUS8
  353. *fmt++ = AV_PIX_FMT_CUDA;
  354. #endif
  355. #if CONFIG_HEVC_VDPAU_HWACCEL
  356. *fmt++ = AV_PIX_FMT_VDPAU;
  357. #endif
  358. }
  359. *fmt++ = sps->pix_fmt;
  360. *fmt = AV_PIX_FMT_NONE;
  361. return ff_get_format(s->avctx, pix_fmts);
  362. }
  363. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  364. enum AVPixelFormat pix_fmt)
  365. {
  366. int ret;
  367. pic_arrays_free(s);
  368. s->ps.sps = NULL;
  369. s->ps.vps = NULL;
  370. if (!sps)
  371. return 0;
  372. ret = pic_arrays_init(s, sps);
  373. if (ret < 0)
  374. goto fail;
  375. export_stream_params(s->avctx, &s->ps, sps);
  376. s->avctx->pix_fmt = pix_fmt;
  377. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  378. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  379. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  380. if (sps->sao_enabled && !s->avctx->hwaccel) {
  381. av_frame_unref(s->tmp_frame);
  382. ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
  383. if (ret < 0)
  384. goto fail;
  385. s->frame = s->tmp_frame;
  386. }
  387. s->ps.sps = sps;
  388. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  389. return 0;
  390. fail:
  391. pic_arrays_free(s);
  392. s->ps.sps = NULL;
  393. return ret;
  394. }
  395. static int hls_slice_header(HEVCContext *s)
  396. {
  397. GetBitContext *gb = &s->HEVClc.gb;
  398. SliceHeader *sh = &s->sh;
  399. int i, ret;
  400. // Coded parameters
  401. sh->first_slice_in_pic_flag = get_bits1(gb);
  402. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  403. s->seq_decode = (s->seq_decode + 1) & 0xff;
  404. s->max_ra = INT_MAX;
  405. if (IS_IDR(s))
  406. ff_hevc_clear_refs(s);
  407. }
  408. if (IS_IRAP(s))
  409. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  410. sh->pps_id = get_ue_golomb_long(gb);
  411. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  412. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  413. return AVERROR_INVALIDDATA;
  414. }
  415. if (!sh->first_slice_in_pic_flag &&
  416. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  417. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  418. return AVERROR_INVALIDDATA;
  419. }
  420. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  421. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  422. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  423. enum AVPixelFormat pix_fmt;
  424. ff_hevc_clear_refs(s);
  425. ret = set_sps(s, sps, sps->pix_fmt);
  426. if (ret < 0)
  427. return ret;
  428. pix_fmt = get_format(s, sps);
  429. if (pix_fmt < 0)
  430. return pix_fmt;
  431. s->avctx->pix_fmt = pix_fmt;
  432. s->seq_decode = (s->seq_decode + 1) & 0xff;
  433. s->max_ra = INT_MAX;
  434. }
  435. sh->dependent_slice_segment_flag = 0;
  436. if (!sh->first_slice_in_pic_flag) {
  437. int slice_address_length;
  438. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  439. sh->dependent_slice_segment_flag = get_bits1(gb);
  440. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  441. s->ps.sps->ctb_height);
  442. sh->slice_segment_addr = slice_address_length ? get_bits(gb, slice_address_length) : 0;
  443. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  444. av_log(s->avctx, AV_LOG_ERROR,
  445. "Invalid slice segment address: %u.\n",
  446. sh->slice_segment_addr);
  447. return AVERROR_INVALIDDATA;
  448. }
  449. if (!sh->dependent_slice_segment_flag) {
  450. sh->slice_addr = sh->slice_segment_addr;
  451. s->slice_idx++;
  452. }
  453. } else {
  454. sh->slice_segment_addr = sh->slice_addr = 0;
  455. s->slice_idx = 0;
  456. s->slice_initialized = 0;
  457. }
  458. if (!sh->dependent_slice_segment_flag) {
  459. s->slice_initialized = 0;
  460. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  461. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  462. sh->slice_type = get_ue_golomb_long(gb);
  463. if (!(sh->slice_type == HEVC_SLICE_I ||
  464. sh->slice_type == HEVC_SLICE_P ||
  465. sh->slice_type == HEVC_SLICE_B)) {
  466. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  467. sh->slice_type);
  468. return AVERROR_INVALIDDATA;
  469. }
  470. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  471. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  472. return AVERROR_INVALIDDATA;
  473. }
  474. // when flag is not present, picture is inferred to be output
  475. sh->pic_output_flag = 1;
  476. if (s->ps.pps->output_flag_present_flag)
  477. sh->pic_output_flag = get_bits1(gb);
  478. if (s->ps.sps->separate_colour_plane_flag)
  479. sh->colour_plane_id = get_bits(gb, 2);
  480. if (!IS_IDR(s)) {
  481. int poc, pos;
  482. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  483. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  484. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  485. av_log(s->avctx, AV_LOG_WARNING,
  486. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  487. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  488. return AVERROR_INVALIDDATA;
  489. poc = s->poc;
  490. }
  491. s->poc = poc;
  492. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  493. pos = get_bits_left(gb);
  494. if (!sh->short_term_ref_pic_set_sps_flag) {
  495. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  496. if (ret < 0)
  497. return ret;
  498. sh->short_term_rps = &sh->slice_rps;
  499. } else {
  500. int numbits, rps_idx;
  501. if (!s->ps.sps->nb_st_rps) {
  502. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  503. return AVERROR_INVALIDDATA;
  504. }
  505. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  506. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  507. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  508. }
  509. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  510. pos = get_bits_left(gb);
  511. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  512. if (ret < 0) {
  513. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  514. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  515. return AVERROR_INVALIDDATA;
  516. }
  517. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  518. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  519. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  520. else
  521. sh->slice_temporal_mvp_enabled_flag = 0;
  522. } else {
  523. s->sh.short_term_rps = NULL;
  524. s->poc = 0;
  525. }
  526. /* 8.3.1 */
  527. if (s->temporal_id == 0 &&
  528. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  529. s->nal_unit_type != HEVC_NAL_TSA_N &&
  530. s->nal_unit_type != HEVC_NAL_STSA_N &&
  531. s->nal_unit_type != HEVC_NAL_RADL_N &&
  532. s->nal_unit_type != HEVC_NAL_RADL_R &&
  533. s->nal_unit_type != HEVC_NAL_RASL_N &&
  534. s->nal_unit_type != HEVC_NAL_RASL_R)
  535. s->pocTid0 = s->poc;
  536. if (s->ps.sps->sao_enabled) {
  537. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  538. sh->slice_sample_adaptive_offset_flag[1] =
  539. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  540. } else {
  541. sh->slice_sample_adaptive_offset_flag[0] = 0;
  542. sh->slice_sample_adaptive_offset_flag[1] = 0;
  543. sh->slice_sample_adaptive_offset_flag[2] = 0;
  544. }
  545. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  546. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  547. int nb_refs;
  548. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  549. if (sh->slice_type == HEVC_SLICE_B)
  550. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  551. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  552. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  553. if (sh->slice_type == HEVC_SLICE_B)
  554. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  555. }
  556. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  557. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  558. sh->nb_refs[L0], sh->nb_refs[L1]);
  559. return AVERROR_INVALIDDATA;
  560. }
  561. sh->rpl_modification_flag[0] = 0;
  562. sh->rpl_modification_flag[1] = 0;
  563. nb_refs = ff_hevc_frame_nb_refs(s);
  564. if (!nb_refs) {
  565. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  566. return AVERROR_INVALIDDATA;
  567. }
  568. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  569. sh->rpl_modification_flag[0] = get_bits1(gb);
  570. if (sh->rpl_modification_flag[0]) {
  571. for (i = 0; i < sh->nb_refs[L0]; i++)
  572. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  573. }
  574. if (sh->slice_type == HEVC_SLICE_B) {
  575. sh->rpl_modification_flag[1] = get_bits1(gb);
  576. if (sh->rpl_modification_flag[1] == 1)
  577. for (i = 0; i < sh->nb_refs[L1]; i++)
  578. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  579. }
  580. }
  581. if (sh->slice_type == HEVC_SLICE_B)
  582. sh->mvd_l1_zero_flag = get_bits1(gb);
  583. if (s->ps.pps->cabac_init_present_flag)
  584. sh->cabac_init_flag = get_bits1(gb);
  585. else
  586. sh->cabac_init_flag = 0;
  587. sh->collocated_ref_idx = 0;
  588. if (sh->slice_temporal_mvp_enabled_flag) {
  589. sh->collocated_list = L0;
  590. if (sh->slice_type == HEVC_SLICE_B)
  591. sh->collocated_list = !get_bits1(gb);
  592. if (sh->nb_refs[sh->collocated_list] > 1) {
  593. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  594. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  595. av_log(s->avctx, AV_LOG_ERROR,
  596. "Invalid collocated_ref_idx: %d.\n",
  597. sh->collocated_ref_idx);
  598. return AVERROR_INVALIDDATA;
  599. }
  600. }
  601. }
  602. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  603. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  604. pred_weight_table(s, gb);
  605. }
  606. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  607. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  608. av_log(s->avctx, AV_LOG_ERROR,
  609. "Invalid number of merging MVP candidates: %d.\n",
  610. sh->max_num_merge_cand);
  611. return AVERROR_INVALIDDATA;
  612. }
  613. }
  614. sh->slice_qp_delta = get_se_golomb(gb);
  615. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  616. sh->slice_cb_qp_offset = get_se_golomb(gb);
  617. sh->slice_cr_qp_offset = get_se_golomb(gb);
  618. } else {
  619. sh->slice_cb_qp_offset = 0;
  620. sh->slice_cr_qp_offset = 0;
  621. }
  622. if (s->ps.pps->deblocking_filter_control_present_flag) {
  623. int deblocking_filter_override_flag = 0;
  624. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  625. deblocking_filter_override_flag = get_bits1(gb);
  626. if (deblocking_filter_override_flag) {
  627. sh->disable_deblocking_filter_flag = get_bits1(gb);
  628. if (!sh->disable_deblocking_filter_flag) {
  629. sh->beta_offset = get_se_golomb(gb) * 2;
  630. sh->tc_offset = get_se_golomb(gb) * 2;
  631. }
  632. } else {
  633. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  634. sh->beta_offset = s->ps.pps->beta_offset;
  635. sh->tc_offset = s->ps.pps->tc_offset;
  636. }
  637. } else {
  638. sh->disable_deblocking_filter_flag = 0;
  639. sh->beta_offset = 0;
  640. sh->tc_offset = 0;
  641. }
  642. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  643. (sh->slice_sample_adaptive_offset_flag[0] ||
  644. sh->slice_sample_adaptive_offset_flag[1] ||
  645. !sh->disable_deblocking_filter_flag)) {
  646. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  647. } else {
  648. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  649. }
  650. } else if (!s->slice_initialized) {
  651. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  652. return AVERROR_INVALIDDATA;
  653. }
  654. sh->num_entry_point_offsets = 0;
  655. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  656. sh->num_entry_point_offsets = get_ue_golomb_long(gb);
  657. if (sh->num_entry_point_offsets > 0) {
  658. int offset_len = get_ue_golomb_long(gb) + 1;
  659. for (i = 0; i < sh->num_entry_point_offsets; i++)
  660. skip_bits(gb, offset_len);
  661. }
  662. }
  663. if (s->ps.pps->slice_header_extension_present_flag) {
  664. unsigned int length = get_ue_golomb_long(gb);
  665. for (i = 0; i < length; i++)
  666. skip_bits(gb, 8); // slice_header_extension_data_byte
  667. }
  668. // Inferred parameters
  669. sh->slice_qp = 26 + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  670. if (sh->slice_qp > 51 ||
  671. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  672. av_log(s->avctx, AV_LOG_ERROR,
  673. "The slice_qp %d is outside the valid range "
  674. "[%d, 51].\n",
  675. sh->slice_qp,
  676. -s->ps.sps->qp_bd_offset);
  677. return AVERROR_INVALIDDATA;
  678. }
  679. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  680. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  681. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  682. return AVERROR_INVALIDDATA;
  683. }
  684. s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
  685. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  686. s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->ps.sps->qp_bd_offset,
  687. 52 + s->ps.sps->qp_bd_offset) - s->ps.sps->qp_bd_offset;
  688. s->slice_initialized = 1;
  689. return 0;
  690. }
  691. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  692. #define SET_SAO(elem, value) \
  693. do { \
  694. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  695. sao->elem = value; \
  696. else if (sao_merge_left_flag) \
  697. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  698. else if (sao_merge_up_flag) \
  699. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  700. else \
  701. sao->elem = 0; \
  702. } while (0)
  703. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  704. {
  705. HEVCLocalContext *lc = &s->HEVClc;
  706. int sao_merge_left_flag = 0;
  707. int sao_merge_up_flag = 0;
  708. int shift = s->ps.sps->bit_depth - FFMIN(s->ps.sps->bit_depth, 10);
  709. SAOParams *sao = &CTB(s->sao, rx, ry);
  710. int c_idx, i;
  711. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  712. s->sh.slice_sample_adaptive_offset_flag[1]) {
  713. if (rx > 0) {
  714. if (lc->ctb_left_flag)
  715. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  716. }
  717. if (ry > 0 && !sao_merge_left_flag) {
  718. if (lc->ctb_up_flag)
  719. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  720. }
  721. }
  722. for (c_idx = 0; c_idx < 3; c_idx++) {
  723. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  724. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  725. continue;
  726. }
  727. if (c_idx == 2) {
  728. sao->type_idx[2] = sao->type_idx[1];
  729. sao->eo_class[2] = sao->eo_class[1];
  730. } else {
  731. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  732. }
  733. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  734. continue;
  735. for (i = 0; i < 4; i++)
  736. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  737. if (sao->type_idx[c_idx] == SAO_BAND) {
  738. for (i = 0; i < 4; i++) {
  739. if (sao->offset_abs[c_idx][i]) {
  740. SET_SAO(offset_sign[c_idx][i],
  741. ff_hevc_sao_offset_sign_decode(s));
  742. } else {
  743. sao->offset_sign[c_idx][i] = 0;
  744. }
  745. }
  746. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  747. } else if (c_idx != 2) {
  748. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  749. }
  750. // Inferred parameters
  751. sao->offset_val[c_idx][0] = 0;
  752. for (i = 0; i < 4; i++) {
  753. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
  754. if (sao->type_idx[c_idx] == SAO_EDGE) {
  755. if (i > 1)
  756. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  757. } else if (sao->offset_sign[c_idx][i]) {
  758. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  759. }
  760. }
  761. }
  762. }
  763. #undef SET_SAO
  764. #undef CTB
  765. static void hls_residual_coding(HEVCContext *s, int x0, int y0,
  766. int log2_trafo_size, enum ScanType scan_idx,
  767. int c_idx)
  768. {
  769. #define GET_COORD(offset, n) \
  770. do { \
  771. x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \
  772. y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \
  773. } while (0)
  774. HEVCLocalContext *lc = &s->HEVClc;
  775. int transform_skip_flag = 0;
  776. int last_significant_coeff_x, last_significant_coeff_y;
  777. int last_scan_pos;
  778. int n_end;
  779. int num_coeff = 0;
  780. int greater1_ctx = 1;
  781. int num_last_subset;
  782. int x_cg_last_sig, y_cg_last_sig;
  783. const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
  784. ptrdiff_t stride = s->frame->linesize[c_idx];
  785. int hshift = s->ps.sps->hshift[c_idx];
  786. int vshift = s->ps.sps->vshift[c_idx];
  787. uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride +
  788. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  789. LOCAL_ALIGNED_32(int16_t, coeffs, [MAX_TB_SIZE * MAX_TB_SIZE]);
  790. LOCAL_ALIGNED_8(uint8_t, significant_coeff_group_flag, [8], [8]);
  791. int trafo_size = 1 << log2_trafo_size;
  792. int i, qp, shift, add, scale, scale_m;
  793. static const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
  794. const uint8_t *scale_matrix;
  795. uint8_t dc_scale;
  796. memset(coeffs, 0, sizeof(int16_t) * MAX_TB_SIZE * MAX_TB_SIZE);
  797. memset(significant_coeff_group_flag, 0, sizeof(uint8_t) * 8 * 8);
  798. // Derive QP for dequant
  799. if (!lc->cu.cu_transquant_bypass_flag) {
  800. static const int qp_c[] = {
  801. 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
  802. };
  803. static const uint8_t rem6[51 + 2 * 6 + 1] = {
  804. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  805. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  806. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  807. };
  808. static const uint8_t div6[51 + 2 * 6 + 1] = {
  809. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
  810. 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
  811. 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
  812. };
  813. int qp_y = lc->qp_y;
  814. if (c_idx == 0) {
  815. qp = qp_y + s->ps.sps->qp_bd_offset;
  816. } else {
  817. int qp_i, offset;
  818. if (c_idx == 1)
  819. offset = s->ps.pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
  820. else
  821. offset = s->ps.pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
  822. qp_i = av_clip(qp_y + offset, -s->ps.sps->qp_bd_offset, 57);
  823. if (qp_i < 30)
  824. qp = qp_i;
  825. else if (qp_i > 43)
  826. qp = qp_i - 6;
  827. else
  828. qp = qp_c[qp_i - 30];
  829. qp += s->ps.sps->qp_bd_offset;
  830. }
  831. shift = s->ps.sps->bit_depth + log2_trafo_size - 5;
  832. add = 1 << (shift - 1);
  833. scale = level_scale[rem6[qp]] << (div6[qp]);
  834. scale_m = 16; // default when no custom scaling lists.
  835. dc_scale = 16;
  836. if (s->ps.sps->scaling_list_enable_flag) {
  837. const ScalingList *sl = s->ps.pps->scaling_list_data_present_flag ?
  838. &s->ps.pps->scaling_list : &s->ps.sps->scaling_list;
  839. int matrix_id = lc->cu.pred_mode != MODE_INTRA;
  840. if (log2_trafo_size != 5)
  841. matrix_id = 3 * matrix_id + c_idx;
  842. scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
  843. if (log2_trafo_size >= 4)
  844. dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
  845. }
  846. }
  847. if (s->ps.pps->transform_skip_enabled_flag &&
  848. !lc->cu.cu_transquant_bypass_flag &&
  849. log2_trafo_size == 2) {
  850. transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
  851. }
  852. last_significant_coeff_x =
  853. ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
  854. last_significant_coeff_y =
  855. ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
  856. if (last_significant_coeff_x > 3) {
  857. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
  858. last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
  859. (2 + (last_significant_coeff_x & 1)) +
  860. suffix;
  861. }
  862. if (last_significant_coeff_y > 3) {
  863. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
  864. last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
  865. (2 + (last_significant_coeff_y & 1)) +
  866. suffix;
  867. }
  868. if (scan_idx == SCAN_VERT)
  869. FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
  870. x_cg_last_sig = last_significant_coeff_x >> 2;
  871. y_cg_last_sig = last_significant_coeff_y >> 2;
  872. switch (scan_idx) {
  873. case SCAN_DIAG: {
  874. int last_x_c = last_significant_coeff_x & 3;
  875. int last_y_c = last_significant_coeff_y & 3;
  876. scan_x_off = ff_hevc_diag_scan4x4_x;
  877. scan_y_off = ff_hevc_diag_scan4x4_y;
  878. num_coeff = diag_scan4x4_inv[last_y_c][last_x_c];
  879. if (trafo_size == 4) {
  880. scan_x_cg = scan_1x1;
  881. scan_y_cg = scan_1x1;
  882. } else if (trafo_size == 8) {
  883. num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  884. scan_x_cg = diag_scan2x2_x;
  885. scan_y_cg = diag_scan2x2_y;
  886. } else if (trafo_size == 16) {
  887. num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  888. scan_x_cg = ff_hevc_diag_scan4x4_x;
  889. scan_y_cg = ff_hevc_diag_scan4x4_y;
  890. } else { // trafo_size == 32
  891. num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  892. scan_x_cg = ff_hevc_diag_scan8x8_x;
  893. scan_y_cg = ff_hevc_diag_scan8x8_y;
  894. }
  895. break;
  896. }
  897. case SCAN_HORIZ:
  898. scan_x_cg = horiz_scan2x2_x;
  899. scan_y_cg = horiz_scan2x2_y;
  900. scan_x_off = horiz_scan4x4_x;
  901. scan_y_off = horiz_scan4x4_y;
  902. num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
  903. break;
  904. default: //SCAN_VERT
  905. scan_x_cg = horiz_scan2x2_y;
  906. scan_y_cg = horiz_scan2x2_x;
  907. scan_x_off = horiz_scan4x4_y;
  908. scan_y_off = horiz_scan4x4_x;
  909. num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
  910. break;
  911. }
  912. num_coeff++;
  913. num_last_subset = (num_coeff - 1) >> 4;
  914. for (i = num_last_subset; i >= 0; i--) {
  915. int n, m;
  916. int x_cg, y_cg, x_c, y_c;
  917. int implicit_non_zero_coeff = 0;
  918. int64_t trans_coeff_level;
  919. int prev_sig = 0;
  920. int offset = i << 4;
  921. uint8_t significant_coeff_flag_idx[16];
  922. uint8_t nb_significant_coeff_flag = 0;
  923. x_cg = scan_x_cg[i];
  924. y_cg = scan_y_cg[i];
  925. if (i < num_last_subset && i > 0) {
  926. int ctx_cg = 0;
  927. if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
  928. ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
  929. if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
  930. ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
  931. significant_coeff_group_flag[x_cg][y_cg] =
  932. ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
  933. implicit_non_zero_coeff = 1;
  934. } else {
  935. significant_coeff_group_flag[x_cg][y_cg] =
  936. ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
  937. (x_cg == 0 && y_cg == 0));
  938. }
  939. last_scan_pos = num_coeff - offset - 1;
  940. if (i == num_last_subset) {
  941. n_end = last_scan_pos - 1;
  942. significant_coeff_flag_idx[0] = last_scan_pos;
  943. nb_significant_coeff_flag = 1;
  944. } else {
  945. n_end = 15;
  946. }
  947. if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
  948. prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
  949. if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
  950. prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
  951. for (n = n_end; n >= 0; n--) {
  952. GET_COORD(offset, n);
  953. if (significant_coeff_group_flag[x_cg][y_cg] &&
  954. (n > 0 || implicit_non_zero_coeff == 0)) {
  955. if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
  956. log2_trafo_size,
  957. scan_idx,
  958. prev_sig) == 1) {
  959. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  960. nb_significant_coeff_flag++;
  961. implicit_non_zero_coeff = 0;
  962. }
  963. } else {
  964. int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
  965. if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
  966. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  967. nb_significant_coeff_flag++;
  968. }
  969. }
  970. }
  971. n_end = nb_significant_coeff_flag;
  972. if (n_end) {
  973. int first_nz_pos_in_cg = 16;
  974. int last_nz_pos_in_cg = -1;
  975. int c_rice_param = 0;
  976. int first_greater1_coeff_idx = -1;
  977. uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
  978. uint16_t coeff_sign_flag;
  979. int sum_abs = 0;
  980. int sign_hidden = 0;
  981. // initialize first elem of coeff_bas_level_greater1_flag
  982. int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
  983. if (!(i == num_last_subset) && greater1_ctx == 0)
  984. ctx_set++;
  985. greater1_ctx = 1;
  986. last_nz_pos_in_cg = significant_coeff_flag_idx[0];
  987. for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
  988. int n_idx = significant_coeff_flag_idx[m];
  989. int inc = (ctx_set << 2) + greater1_ctx;
  990. coeff_abs_level_greater1_flag[n_idx] =
  991. ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
  992. if (coeff_abs_level_greater1_flag[n_idx]) {
  993. greater1_ctx = 0;
  994. } else if (greater1_ctx > 0 && greater1_ctx < 3) {
  995. greater1_ctx++;
  996. }
  997. if (coeff_abs_level_greater1_flag[n_idx] &&
  998. first_greater1_coeff_idx == -1)
  999. first_greater1_coeff_idx = n_idx;
  1000. }
  1001. first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
  1002. sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
  1003. !lc->cu.cu_transquant_bypass_flag;
  1004. if (first_greater1_coeff_idx != -1) {
  1005. coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
  1006. }
  1007. if (!s->ps.pps->sign_data_hiding_flag || !sign_hidden) {
  1008. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
  1009. } else {
  1010. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
  1011. }
  1012. for (m = 0; m < n_end; m++) {
  1013. n = significant_coeff_flag_idx[m];
  1014. GET_COORD(offset, n);
  1015. trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
  1016. if (trans_coeff_level == ((m < 8) ?
  1017. ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
  1018. trans_coeff_level += ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
  1019. if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
  1020. c_rice_param = FFMIN(c_rice_param + 1, 4);
  1021. }
  1022. if (s->ps.pps->sign_data_hiding_flag && sign_hidden) {
  1023. sum_abs += trans_coeff_level;
  1024. if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
  1025. trans_coeff_level = -trans_coeff_level;
  1026. }
  1027. if (coeff_sign_flag >> 15)
  1028. trans_coeff_level = -trans_coeff_level;
  1029. coeff_sign_flag <<= 1;
  1030. if (!lc->cu.cu_transquant_bypass_flag) {
  1031. if (s->ps.sps->scaling_list_enable_flag) {
  1032. if (y_c || x_c || log2_trafo_size < 4) {
  1033. int pos;
  1034. switch (log2_trafo_size) {
  1035. case 3: pos = (y_c << 3) + x_c; break;
  1036. case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
  1037. case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
  1038. default: pos = (y_c << 2) + x_c;
  1039. }
  1040. scale_m = scale_matrix[pos];
  1041. } else {
  1042. scale_m = dc_scale;
  1043. }
  1044. }
  1045. trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
  1046. if(trans_coeff_level < 0) {
  1047. if((~trans_coeff_level) & 0xFffffffffff8000)
  1048. trans_coeff_level = -32768;
  1049. } else {
  1050. if (trans_coeff_level & 0xffffffffffff8000)
  1051. trans_coeff_level = 32767;
  1052. }
  1053. }
  1054. coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
  1055. }
  1056. }
  1057. }
  1058. if (!lc->cu.cu_transquant_bypass_flag) {
  1059. if (transform_skip_flag)
  1060. s->hevcdsp.dequant(coeffs);
  1061. else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
  1062. log2_trafo_size == 2)
  1063. s->hevcdsp.transform_4x4_luma(coeffs);
  1064. else {
  1065. int max_xy = FFMAX(last_significant_coeff_x, last_significant_coeff_y);
  1066. if (max_xy == 0)
  1067. s->hevcdsp.idct_dc[log2_trafo_size - 2](coeffs);
  1068. else {
  1069. int col_limit = last_significant_coeff_x + last_significant_coeff_y + 4;
  1070. if (max_xy < 4)
  1071. col_limit = FFMIN(4, col_limit);
  1072. else if (max_xy < 8)
  1073. col_limit = FFMIN(8, col_limit);
  1074. else if (max_xy < 12)
  1075. col_limit = FFMIN(24, col_limit);
  1076. s->hevcdsp.idct[log2_trafo_size - 2](coeffs, col_limit);
  1077. }
  1078. }
  1079. }
  1080. s->hevcdsp.add_residual[log2_trafo_size - 2](dst, coeffs, stride);
  1081. }
  1082. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  1083. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1084. int log2_cb_size, int log2_trafo_size,
  1085. int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
  1086. {
  1087. HEVCLocalContext *lc = &s->HEVClc;
  1088. if (lc->cu.pred_mode == MODE_INTRA) {
  1089. int trafo_size = 1 << log2_trafo_size;
  1090. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1091. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  1092. if (log2_trafo_size > 2) {
  1093. trafo_size = trafo_size << (s->ps.sps->hshift[1] - 1);
  1094. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1095. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
  1096. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
  1097. } else if (blk_idx == 3) {
  1098. trafo_size = trafo_size << s->ps.sps->hshift[1];
  1099. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1100. trafo_size, trafo_size);
  1101. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1102. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1103. }
  1104. }
  1105. if (cbf_luma || cbf_cb || cbf_cr) {
  1106. int scan_idx = SCAN_DIAG;
  1107. int scan_idx_c = SCAN_DIAG;
  1108. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  1109. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  1110. if (lc->tu.cu_qp_delta != 0)
  1111. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  1112. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  1113. lc->tu.is_cu_qp_delta_coded = 1;
  1114. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  1115. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  1116. av_log(s->avctx, AV_LOG_ERROR,
  1117. "The cu_qp_delta %d is outside the valid range "
  1118. "[%d, %d].\n",
  1119. lc->tu.cu_qp_delta,
  1120. -(26 + s->ps.sps->qp_bd_offset / 2),
  1121. (25 + s->ps.sps->qp_bd_offset / 2));
  1122. return AVERROR_INVALIDDATA;
  1123. }
  1124. ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
  1125. }
  1126. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  1127. if (lc->tu.cur_intra_pred_mode >= 6 &&
  1128. lc->tu.cur_intra_pred_mode <= 14) {
  1129. scan_idx = SCAN_VERT;
  1130. } else if (lc->tu.cur_intra_pred_mode >= 22 &&
  1131. lc->tu.cur_intra_pred_mode <= 30) {
  1132. scan_idx = SCAN_HORIZ;
  1133. }
  1134. if (lc->pu.intra_pred_mode_c >= 6 &&
  1135. lc->pu.intra_pred_mode_c <= 14) {
  1136. scan_idx_c = SCAN_VERT;
  1137. } else if (lc->pu.intra_pred_mode_c >= 22 &&
  1138. lc->pu.intra_pred_mode_c <= 30) {
  1139. scan_idx_c = SCAN_HORIZ;
  1140. }
  1141. }
  1142. if (cbf_luma)
  1143. hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  1144. if (log2_trafo_size > 2) {
  1145. if (cbf_cb)
  1146. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
  1147. if (cbf_cr)
  1148. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
  1149. } else if (blk_idx == 3) {
  1150. if (cbf_cb)
  1151. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
  1152. if (cbf_cr)
  1153. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
  1154. }
  1155. }
  1156. return 0;
  1157. }
  1158. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1159. {
  1160. int cb_size = 1 << log2_cb_size;
  1161. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1162. int min_pu_width = s->ps.sps->min_pu_width;
  1163. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1164. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1165. int i, j;
  1166. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1167. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1168. s->is_pcm[i + j * min_pu_width] = 2;
  1169. }
  1170. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1171. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1172. int log2_cb_size, int log2_trafo_size,
  1173. int trafo_depth, int blk_idx,
  1174. int cbf_cb, int cbf_cr)
  1175. {
  1176. HEVCLocalContext *lc = &s->HEVClc;
  1177. uint8_t split_transform_flag;
  1178. int ret;
  1179. if (lc->cu.intra_split_flag) {
  1180. if (trafo_depth == 1)
  1181. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1182. } else {
  1183. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
  1184. }
  1185. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1186. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1187. trafo_depth < lc->cu.max_trafo_depth &&
  1188. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1189. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1190. } else {
  1191. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1192. lc->cu.pred_mode == MODE_INTER &&
  1193. lc->cu.part_mode != PART_2Nx2N &&
  1194. trafo_depth == 0;
  1195. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1196. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1197. inter_split;
  1198. }
  1199. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
  1200. cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1201. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1202. cbf_cb = 0;
  1203. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
  1204. cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1205. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1206. cbf_cr = 0;
  1207. if (split_transform_flag) {
  1208. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1209. const int x1 = x0 + trafo_size_split;
  1210. const int y1 = y0 + trafo_size_split;
  1211. #define SUBDIVIDE(x, y, idx) \
  1212. do { \
  1213. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1214. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1215. cbf_cb, cbf_cr); \
  1216. if (ret < 0) \
  1217. return ret; \
  1218. } while (0)
  1219. SUBDIVIDE(x0, y0, 0);
  1220. SUBDIVIDE(x1, y0, 1);
  1221. SUBDIVIDE(x0, y1, 2);
  1222. SUBDIVIDE(x1, y1, 3);
  1223. #undef SUBDIVIDE
  1224. } else {
  1225. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1226. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1227. int min_tu_width = s->ps.sps->min_tb_width;
  1228. int cbf_luma = 1;
  1229. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1230. cbf_cb || cbf_cr)
  1231. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1232. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1233. log2_cb_size, log2_trafo_size,
  1234. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1235. if (ret < 0)
  1236. return ret;
  1237. // TODO: store cbf_luma somewhere else
  1238. if (cbf_luma) {
  1239. int i, j;
  1240. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1241. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1242. int x_tu = (x0 + j) >> log2_min_tu_size;
  1243. int y_tu = (y0 + i) >> log2_min_tu_size;
  1244. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1245. }
  1246. }
  1247. if (!s->sh.disable_deblocking_filter_flag) {
  1248. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1249. if (s->ps.pps->transquant_bypass_enable_flag &&
  1250. lc->cu.cu_transquant_bypass_flag)
  1251. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1252. }
  1253. }
  1254. return 0;
  1255. }
  1256. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1257. {
  1258. //TODO: non-4:2:0 support
  1259. HEVCLocalContext *lc = &s->HEVClc;
  1260. GetBitContext gb;
  1261. int cb_size = 1 << log2_cb_size;
  1262. ptrdiff_t stride0 = s->frame->linesize[0];
  1263. ptrdiff_t stride1 = s->frame->linesize[1];
  1264. ptrdiff_t stride2 = s->frame->linesize[2];
  1265. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1266. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1267. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1268. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->ps.sps->pcm.bit_depth_chroma;
  1269. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1270. int ret;
  1271. if (!s->sh.disable_deblocking_filter_flag)
  1272. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1273. ret = init_get_bits(&gb, pcm, length);
  1274. if (ret < 0)
  1275. return ret;
  1276. s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1277. s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1278. s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1279. return 0;
  1280. }
  1281. static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1282. {
  1283. HEVCLocalContext *lc = &s->HEVClc;
  1284. int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1285. int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1286. if (x)
  1287. x += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1288. if (y)
  1289. y += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1290. switch (x) {
  1291. case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s); break;
  1292. case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
  1293. case 0: lc->pu.mvd.x = 0; break;
  1294. }
  1295. switch (y) {
  1296. case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s); break;
  1297. case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
  1298. case 0: lc->pu.mvd.y = 0; break;
  1299. }
  1300. }
  1301. /**
  1302. * 8.5.3.2.2.1 Luma sample interpolation process
  1303. *
  1304. * @param s HEVC decoding context
  1305. * @param dst target buffer for block data at block position
  1306. * @param dststride stride of the dst buffer
  1307. * @param ref reference picture buffer at origin (0, 0)
  1308. * @param mv motion vector (relative to block position) to get pixel data from
  1309. * @param x_off horizontal position of block from origin (0, 0)
  1310. * @param y_off vertical position of block from origin (0, 0)
  1311. * @param block_w width of block
  1312. * @param block_h height of block
  1313. */
  1314. static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
  1315. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1316. int block_w, int block_h, int pred_idx)
  1317. {
  1318. HEVCLocalContext *lc = &s->HEVClc;
  1319. uint8_t *src = ref->data[0];
  1320. ptrdiff_t srcstride = ref->linesize[0];
  1321. int pic_width = s->ps.sps->width;
  1322. int pic_height = s->ps.sps->height;
  1323. int mx = mv->x & 3;
  1324. int my = mv->y & 3;
  1325. int extra_left = ff_hevc_qpel_extra_before[mx];
  1326. int extra_top = ff_hevc_qpel_extra_before[my];
  1327. x_off += mv->x >> 2;
  1328. y_off += mv->y >> 2;
  1329. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1330. if (x_off < extra_left || y_off < extra_top ||
  1331. x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
  1332. y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
  1333. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1334. int offset = extra_top * srcstride + (extra_left << s->ps.sps->pixel_shift);
  1335. int buf_offset = extra_top *
  1336. edge_emu_stride + (extra_left << s->ps.sps->pixel_shift);
  1337. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1338. edge_emu_stride, srcstride,
  1339. block_w + ff_hevc_qpel_extra[mx],
  1340. block_h + ff_hevc_qpel_extra[my],
  1341. x_off - extra_left, y_off - extra_top,
  1342. pic_width, pic_height);
  1343. src = lc->edge_emu_buffer + buf_offset;
  1344. srcstride = edge_emu_stride;
  1345. }
  1346. s->hevcdsp.put_hevc_qpel[!!my][!!mx][pred_idx](dst, dststride, src, srcstride,
  1347. block_h, mx, my, lc->mc_buffer);
  1348. }
  1349. /**
  1350. * 8.5.3.2.2.2 Chroma sample interpolation process
  1351. *
  1352. * @param s HEVC decoding context
  1353. * @param dst1 target buffer for block data at block position (U plane)
  1354. * @param dst2 target buffer for block data at block position (V plane)
  1355. * @param dststride stride of the dst1 and dst2 buffers
  1356. * @param ref reference picture buffer at origin (0, 0)
  1357. * @param mv motion vector (relative to block position) to get pixel data from
  1358. * @param x_off horizontal position of block from origin (0, 0)
  1359. * @param y_off vertical position of block from origin (0, 0)
  1360. * @param block_w width of block
  1361. * @param block_h height of block
  1362. */
  1363. static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
  1364. ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
  1365. int x_off, int y_off, int block_w, int block_h, int pred_idx)
  1366. {
  1367. HEVCLocalContext *lc = &s->HEVClc;
  1368. uint8_t *src1 = ref->data[1];
  1369. uint8_t *src2 = ref->data[2];
  1370. ptrdiff_t src1stride = ref->linesize[1];
  1371. ptrdiff_t src2stride = ref->linesize[2];
  1372. int pic_width = s->ps.sps->width >> 1;
  1373. int pic_height = s->ps.sps->height >> 1;
  1374. int mx = mv->x & 7;
  1375. int my = mv->y & 7;
  1376. x_off += mv->x >> 3;
  1377. y_off += mv->y >> 3;
  1378. src1 += y_off * src1stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1379. src2 += y_off * src2stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1380. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1381. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1382. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1383. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1384. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1385. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1386. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1387. int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1388. int buf_offset2 = EPEL_EXTRA_BEFORE *
  1389. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1390. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1391. edge_emu_stride, src1stride,
  1392. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1393. x_off - EPEL_EXTRA_BEFORE,
  1394. y_off - EPEL_EXTRA_BEFORE,
  1395. pic_width, pic_height);
  1396. src1 = lc->edge_emu_buffer + buf_offset1;
  1397. src1stride = edge_emu_stride;
  1398. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1399. block_h, mx, my, lc->mc_buffer);
  1400. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
  1401. edge_emu_stride, src2stride,
  1402. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1403. x_off - EPEL_EXTRA_BEFORE,
  1404. y_off - EPEL_EXTRA_BEFORE,
  1405. pic_width, pic_height);
  1406. src2 = lc->edge_emu_buffer + buf_offset2;
  1407. src2stride = edge_emu_stride;
  1408. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1409. block_h, mx, my, lc->mc_buffer);
  1410. } else {
  1411. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1412. block_h, mx, my, lc->mc_buffer);
  1413. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1414. block_h, mx, my, lc->mc_buffer);
  1415. }
  1416. }
  1417. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1418. const Mv *mv, int y0, int height)
  1419. {
  1420. int y = (mv->y >> 2) + y0 + height + 9;
  1421. ff_thread_await_progress(&ref->tf, y, 0);
  1422. }
  1423. static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1424. int nPbH, int log2_cb_size, int part_idx,
  1425. int merge_idx, MvField *mv)
  1426. {
  1427. HEVCLocalContext *lc = &s->HEVClc;
  1428. enum InterPredIdc inter_pred_idc = PRED_L0;
  1429. int mvp_flag;
  1430. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1431. if (s->sh.slice_type == HEVC_SLICE_B)
  1432. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1433. if (inter_pred_idc != PRED_L1) {
  1434. if (s->sh.nb_refs[L0])
  1435. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1436. mv->pred_flag[0] = 1;
  1437. hls_mvd_coding(s, x0, y0, 0);
  1438. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1439. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1440. part_idx, merge_idx, mv, mvp_flag, 0);
  1441. mv->mv[0].x += lc->pu.mvd.x;
  1442. mv->mv[0].y += lc->pu.mvd.y;
  1443. }
  1444. if (inter_pred_idc != PRED_L0) {
  1445. if (s->sh.nb_refs[L1])
  1446. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1447. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1448. AV_ZERO32(&lc->pu.mvd);
  1449. } else {
  1450. hls_mvd_coding(s, x0, y0, 1);
  1451. }
  1452. mv->pred_flag[1] = 1;
  1453. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1454. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1455. part_idx, merge_idx, mv, mvp_flag, 1);
  1456. mv->mv[1].x += lc->pu.mvd.x;
  1457. mv->mv[1].y += lc->pu.mvd.y;
  1458. }
  1459. }
  1460. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1461. int nPbW, int nPbH,
  1462. int log2_cb_size, int partIdx)
  1463. {
  1464. static const int pred_indices[] = {
  1465. [4] = 0, [8] = 1, [12] = 2, [16] = 3, [24] = 4, [32] = 5, [48] = 6, [64] = 7,
  1466. };
  1467. const int pred_idx = pred_indices[nPbW];
  1468. #define POS(c_idx, x, y) \
  1469. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1470. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1471. HEVCLocalContext *lc = &s->HEVClc;
  1472. int merge_idx = 0;
  1473. struct MvField current_mv = {{{ 0 }}};
  1474. int min_pu_width = s->ps.sps->min_pu_width;
  1475. int weighted_pred = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1476. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1477. MvField *tab_mvf = s->ref->tab_mvf;
  1478. RefPicList *refPicList = s->ref->refPicList;
  1479. HEVCFrame *ref0, *ref1;
  1480. ptrdiff_t tmpstride = MAX_PB_SIZE * sizeof(int16_t);
  1481. uint8_t *dst0 = POS(0, x0, y0);
  1482. uint8_t *dst1 = POS(1, x0, y0);
  1483. uint8_t *dst2 = POS(2, x0, y0);
  1484. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1485. int min_cb_width = s->ps.sps->min_cb_width;
  1486. int x_cb = x0 >> log2_min_cb_size;
  1487. int y_cb = y0 >> log2_min_cb_size;
  1488. int x_pu, y_pu;
  1489. int i, j;
  1490. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1491. if (!skip_flag)
  1492. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1493. if (skip_flag || lc->pu.merge_flag) {
  1494. if (s->sh.max_num_merge_cand > 1)
  1495. merge_idx = ff_hevc_merge_idx_decode(s);
  1496. else
  1497. merge_idx = 0;
  1498. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1499. partIdx, merge_idx, &current_mv);
  1500. } else {
  1501. hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1502. partIdx, merge_idx, &current_mv);
  1503. }
  1504. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1505. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1506. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1507. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1508. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1509. if (current_mv.pred_flag[0]) {
  1510. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1511. if (!ref0)
  1512. return;
  1513. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1514. }
  1515. if (current_mv.pred_flag[1]) {
  1516. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1517. if (!ref1)
  1518. return;
  1519. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1520. }
  1521. if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
  1522. LOCAL_ALIGNED_16(int16_t, tmp, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1523. LOCAL_ALIGNED_16(int16_t, tmp2, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1524. luma_mc(s, tmp, tmpstride, ref0->frame,
  1525. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1526. if (weighted_pred) {
  1527. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1528. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1529. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1530. dst0, s->frame->linesize[0], tmp,
  1531. tmpstride, nPbH);
  1532. } else {
  1533. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1534. }
  1535. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1536. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1537. if (weighted_pred) {
  1538. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1539. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1540. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1541. dst1, s->frame->linesize[1], tmp, tmpstride,
  1542. nPbH / 2);
  1543. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1544. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1545. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1546. dst2, s->frame->linesize[2], tmp2, tmpstride,
  1547. nPbH / 2);
  1548. } else {
  1549. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1550. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1551. }
  1552. } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1553. LOCAL_ALIGNED_16(int16_t, tmp, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1554. LOCAL_ALIGNED_16(int16_t, tmp2, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1555. luma_mc(s, tmp, tmpstride, ref1->frame,
  1556. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1557. if (weighted_pred) {
  1558. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1559. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1560. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1561. dst0, s->frame->linesize[0], tmp, tmpstride,
  1562. nPbH);
  1563. } else {
  1564. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1565. }
  1566. chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
  1567. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1568. if (weighted_pred) {
  1569. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1570. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1571. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1572. dst1, s->frame->linesize[1], tmp, tmpstride, nPbH/2);
  1573. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1574. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1575. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1576. dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH/2);
  1577. } else {
  1578. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1579. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1580. }
  1581. } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1582. LOCAL_ALIGNED_16(int16_t, tmp, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1583. LOCAL_ALIGNED_16(int16_t, tmp2, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1584. LOCAL_ALIGNED_16(int16_t, tmp3, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1585. LOCAL_ALIGNED_16(int16_t, tmp4, [MAX_PB_SIZE * MAX_PB_SIZE]);
  1586. luma_mc(s, tmp, tmpstride, ref0->frame,
  1587. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1588. luma_mc(s, tmp2, tmpstride, ref1->frame,
  1589. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1590. if (weighted_pred) {
  1591. s->hevcdsp.weighted_pred_avg[pred_idx](s->sh.luma_log2_weight_denom,
  1592. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1593. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1594. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1595. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1596. dst0, s->frame->linesize[0],
  1597. tmp, tmp2, tmpstride, nPbH);
  1598. } else {
  1599. s->hevcdsp.put_unweighted_pred_avg[pred_idx](dst0, s->frame->linesize[0],
  1600. tmp, tmp2, tmpstride, nPbH);
  1601. }
  1602. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1603. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1604. chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
  1605. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1606. if (weighted_pred) {
  1607. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1608. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1609. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1610. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1611. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1612. dst1, s->frame->linesize[1], tmp, tmp3,
  1613. tmpstride, nPbH / 2);
  1614. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1615. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1616. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1617. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1618. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1619. dst2, s->frame->linesize[2], tmp2, tmp4,
  1620. tmpstride, nPbH / 2);
  1621. } else {
  1622. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbH/2);
  1623. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbH/2);
  1624. }
  1625. }
  1626. }
  1627. /**
  1628. * 8.4.1
  1629. */
  1630. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1631. int prev_intra_luma_pred_flag)
  1632. {
  1633. HEVCLocalContext *lc = &s->HEVClc;
  1634. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1635. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1636. int min_pu_width = s->ps.sps->min_pu_width;
  1637. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1638. int x0b = x0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1639. int y0b = y0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1640. int cand_up = (lc->ctb_up_flag || y0b) ?
  1641. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1642. int cand_left = (lc->ctb_left_flag || x0b) ?
  1643. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1644. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1645. MvField *tab_mvf = s->ref->tab_mvf;
  1646. int intra_pred_mode;
  1647. int candidate[3];
  1648. int i, j;
  1649. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1650. if ((y0 - 1) < y_ctb)
  1651. cand_up = INTRA_DC;
  1652. if (cand_left == cand_up) {
  1653. if (cand_left < 2) {
  1654. candidate[0] = INTRA_PLANAR;
  1655. candidate[1] = INTRA_DC;
  1656. candidate[2] = INTRA_ANGULAR_26;
  1657. } else {
  1658. candidate[0] = cand_left;
  1659. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1660. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1661. }
  1662. } else {
  1663. candidate[0] = cand_left;
  1664. candidate[1] = cand_up;
  1665. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1666. candidate[2] = INTRA_PLANAR;
  1667. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1668. candidate[2] = INTRA_DC;
  1669. } else {
  1670. candidate[2] = INTRA_ANGULAR_26;
  1671. }
  1672. }
  1673. if (prev_intra_luma_pred_flag) {
  1674. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1675. } else {
  1676. if (candidate[0] > candidate[1])
  1677. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1678. if (candidate[0] > candidate[2])
  1679. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1680. if (candidate[1] > candidate[2])
  1681. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1682. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1683. for (i = 0; i < 3; i++)
  1684. if (intra_pred_mode >= candidate[i])
  1685. intra_pred_mode++;
  1686. }
  1687. /* write the intra prediction units into the mv array */
  1688. if (!size_in_pus)
  1689. size_in_pus = 1;
  1690. for (i = 0; i < size_in_pus; i++) {
  1691. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1692. intra_pred_mode, size_in_pus);
  1693. for (j = 0; j < size_in_pus; j++) {
  1694. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1;
  1695. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
  1696. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
  1697. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0;
  1698. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0;
  1699. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0;
  1700. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0;
  1701. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0;
  1702. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0;
  1703. }
  1704. }
  1705. return intra_pred_mode;
  1706. }
  1707. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1708. int log2_cb_size, int ct_depth)
  1709. {
  1710. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1711. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1712. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1713. int y;
  1714. for (y = 0; y < length; y++)
  1715. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1716. ct_depth, length);
  1717. }
  1718. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1719. int log2_cb_size)
  1720. {
  1721. HEVCLocalContext *lc = &s->HEVClc;
  1722. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1723. uint8_t prev_intra_luma_pred_flag[4];
  1724. int split = lc->cu.part_mode == PART_NxN;
  1725. int pb_size = (1 << log2_cb_size) >> split;
  1726. int side = split + 1;
  1727. int chroma_mode;
  1728. int i, j;
  1729. for (i = 0; i < side; i++)
  1730. for (j = 0; j < side; j++)
  1731. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1732. for (i = 0; i < side; i++) {
  1733. for (j = 0; j < side; j++) {
  1734. if (prev_intra_luma_pred_flag[2 * i + j])
  1735. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1736. else
  1737. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1738. lc->pu.intra_pred_mode[2 * i + j] =
  1739. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1740. prev_intra_luma_pred_flag[2 * i + j]);
  1741. }
  1742. }
  1743. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1744. if (chroma_mode != 4) {
  1745. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1746. lc->pu.intra_pred_mode_c = 34;
  1747. else
  1748. lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
  1749. } else {
  1750. lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
  1751. }
  1752. }
  1753. static void intra_prediction_unit_default_value(HEVCContext *s,
  1754. int x0, int y0,
  1755. int log2_cb_size)
  1756. {
  1757. HEVCLocalContext *lc = &s->HEVClc;
  1758. int pb_size = 1 << log2_cb_size;
  1759. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1760. int min_pu_width = s->ps.sps->min_pu_width;
  1761. MvField *tab_mvf = s->ref->tab_mvf;
  1762. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1763. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1764. int j, k;
  1765. if (size_in_pus == 0)
  1766. size_in_pus = 1;
  1767. for (j = 0; j < size_in_pus; j++) {
  1768. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1769. for (k = 0; k < size_in_pus; k++)
  1770. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
  1771. }
  1772. }
  1773. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1774. {
  1775. int cb_size = 1 << log2_cb_size;
  1776. HEVCLocalContext *lc = &s->HEVClc;
  1777. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1778. int length = cb_size >> log2_min_cb_size;
  1779. int min_cb_width = s->ps.sps->min_cb_width;
  1780. int x_cb = x0 >> log2_min_cb_size;
  1781. int y_cb = y0 >> log2_min_cb_size;
  1782. int x, y, ret;
  1783. lc->cu.x = x0;
  1784. lc->cu.y = y0;
  1785. lc->cu.pred_mode = MODE_INTRA;
  1786. lc->cu.part_mode = PART_2Nx2N;
  1787. lc->cu.intra_split_flag = 0;
  1788. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1789. for (x = 0; x < 4; x++)
  1790. lc->pu.intra_pred_mode[x] = 1;
  1791. if (s->ps.pps->transquant_bypass_enable_flag) {
  1792. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1793. if (lc->cu.cu_transquant_bypass_flag)
  1794. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1795. } else
  1796. lc->cu.cu_transquant_bypass_flag = 0;
  1797. if (s->sh.slice_type != HEVC_SLICE_I) {
  1798. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1799. x = y_cb * min_cb_width + x_cb;
  1800. for (y = 0; y < length; y++) {
  1801. memset(&s->skip_flag[x], skip_flag, length);
  1802. x += min_cb_width;
  1803. }
  1804. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1805. }
  1806. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1807. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1808. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1809. if (!s->sh.disable_deblocking_filter_flag)
  1810. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1811. } else {
  1812. int pcm_flag = 0;
  1813. if (s->sh.slice_type != HEVC_SLICE_I)
  1814. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1815. if (lc->cu.pred_mode != MODE_INTRA ||
  1816. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1817. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1818. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1819. lc->cu.pred_mode == MODE_INTRA;
  1820. }
  1821. if (lc->cu.pred_mode == MODE_INTRA) {
  1822. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1823. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1824. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1825. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1826. }
  1827. if (pcm_flag) {
  1828. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1829. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1830. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1831. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1832. if (ret < 0)
  1833. return ret;
  1834. } else {
  1835. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1836. }
  1837. } else {
  1838. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1839. switch (lc->cu.part_mode) {
  1840. case PART_2Nx2N:
  1841. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1842. break;
  1843. case PART_2NxN:
  1844. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
  1845. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
  1846. break;
  1847. case PART_Nx2N:
  1848. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
  1849. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
  1850. break;
  1851. case PART_2NxnU:
  1852. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
  1853. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
  1854. break;
  1855. case PART_2NxnD:
  1856. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
  1857. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
  1858. break;
  1859. case PART_nLx2N:
  1860. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0);
  1861. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
  1862. break;
  1863. case PART_nRx2N:
  1864. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
  1865. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1);
  1866. break;
  1867. case PART_NxN:
  1868. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
  1869. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
  1870. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
  1871. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
  1872. break;
  1873. }
  1874. }
  1875. if (!pcm_flag) {
  1876. int rqt_root_cbf = 1;
  1877. if (lc->cu.pred_mode != MODE_INTRA &&
  1878. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1879. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1880. }
  1881. if (rqt_root_cbf) {
  1882. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1883. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1884. s->ps.sps->max_transform_hierarchy_depth_inter;
  1885. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1886. log2_cb_size,
  1887. log2_cb_size, 0, 0, 0, 0);
  1888. if (ret < 0)
  1889. return ret;
  1890. } else {
  1891. if (!s->sh.disable_deblocking_filter_flag)
  1892. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1893. }
  1894. }
  1895. }
  1896. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1897. ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
  1898. x = y_cb * min_cb_width + x_cb;
  1899. for (y = 0; y < length; y++) {
  1900. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1901. x += min_cb_width;
  1902. }
  1903. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
  1904. return 0;
  1905. }
  1906. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1907. int log2_cb_size, int cb_depth)
  1908. {
  1909. HEVCLocalContext *lc = &s->HEVClc;
  1910. const int cb_size = 1 << log2_cb_size;
  1911. int split_cu;
  1912. lc->ct.depth = cb_depth;
  1913. if (x0 + cb_size <= s->ps.sps->width &&
  1914. y0 + cb_size <= s->ps.sps->height &&
  1915. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1916. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1917. } else {
  1918. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1919. }
  1920. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1921. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1922. lc->tu.is_cu_qp_delta_coded = 0;
  1923. lc->tu.cu_qp_delta = 0;
  1924. }
  1925. if (split_cu) {
  1926. const int cb_size_split = cb_size >> 1;
  1927. const int x1 = x0 + cb_size_split;
  1928. const int y1 = y0 + cb_size_split;
  1929. log2_cb_size--;
  1930. cb_depth++;
  1931. #define SUBDIVIDE(x, y) \
  1932. do { \
  1933. if (x < s->ps.sps->width && y < s->ps.sps->height) { \
  1934. int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
  1935. if (ret < 0) \
  1936. return ret; \
  1937. } \
  1938. } while (0)
  1939. SUBDIVIDE(x0, y0);
  1940. SUBDIVIDE(x1, y0);
  1941. SUBDIVIDE(x0, y1);
  1942. SUBDIVIDE(x1, y1);
  1943. } else {
  1944. int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1945. if (ret < 0)
  1946. return ret;
  1947. }
  1948. return 0;
  1949. }
  1950. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1951. int ctb_addr_ts)
  1952. {
  1953. HEVCLocalContext *lc = &s->HEVClc;
  1954. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1955. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1956. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1957. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1958. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1959. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1960. lc->first_qp_group = 1;
  1961. lc->end_of_tiles_x = s->ps.sps->width;
  1962. } else if (s->ps.pps->tiles_enabled_flag) {
  1963. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  1964. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  1965. lc->start_of_tiles_x = x_ctb;
  1966. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  1967. lc->first_qp_group = 1;
  1968. }
  1969. } else {
  1970. lc->end_of_tiles_x = s->ps.sps->width;
  1971. }
  1972. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  1973. lc->boundary_flags = 0;
  1974. if (s->ps.pps->tiles_enabled_flag) {
  1975. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  1976. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  1977. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  1978. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1979. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  1980. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  1981. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  1982. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1983. } else {
  1984. if (!ctb_addr_in_slice)
  1985. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1986. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  1987. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1988. }
  1989. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  1990. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  1991. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  1992. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  1993. }
  1994. static int hls_slice_data(HEVCContext *s)
  1995. {
  1996. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1997. int more_data = 1;
  1998. int x_ctb = 0;
  1999. int y_ctb = 0;
  2000. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2001. int ret;
  2002. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2003. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2004. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2005. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2006. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2007. ff_hevc_cabac_init(s, ctb_addr_ts);
  2008. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2009. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2010. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2011. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2012. ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2013. if (ret < 0)
  2014. return ret;
  2015. more_data = !ff_hevc_end_of_slice_flag_decode(s);
  2016. ctb_addr_ts++;
  2017. ff_hevc_save_states(s, ctb_addr_ts);
  2018. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2019. }
  2020. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2021. y_ctb + ctb_size >= s->ps.sps->height)
  2022. ff_hevc_hls_filter(s, x_ctb, y_ctb);
  2023. return ctb_addr_ts;
  2024. }
  2025. static void restore_tqb_pixels(HEVCContext *s)
  2026. {
  2027. int min_pu_size = 1 << s->ps.sps->log2_min_pu_size;
  2028. int x, y, c_idx;
  2029. for (c_idx = 0; c_idx < 3; c_idx++) {
  2030. ptrdiff_t stride = s->frame->linesize[c_idx];
  2031. int hshift = s->ps.sps->hshift[c_idx];
  2032. int vshift = s->ps.sps->vshift[c_idx];
  2033. for (y = 0; y < s->ps.sps->min_pu_height; y++) {
  2034. for (x = 0; x < s->ps.sps->min_pu_width; x++) {
  2035. if (s->is_pcm[y * s->ps.sps->min_pu_width + x]) {
  2036. int n;
  2037. int len = min_pu_size >> hshift;
  2038. uint8_t *src = &s->frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2039. uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2040. for (n = 0; n < (min_pu_size >> vshift); n++) {
  2041. memcpy(dst, src, len);
  2042. src += stride;
  2043. dst += stride;
  2044. }
  2045. }
  2046. }
  2047. }
  2048. }
  2049. }
  2050. static int set_side_data(HEVCContext *s)
  2051. {
  2052. AVFrame *out = s->ref->frame;
  2053. if (s->sei.frame_packing.present &&
  2054. s->sei.frame_packing.arrangement_type >= 3 &&
  2055. s->sei.frame_packing.arrangement_type <= 5 &&
  2056. s->sei.frame_packing.content_interpretation_type > 0 &&
  2057. s->sei.frame_packing.content_interpretation_type < 3) {
  2058. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2059. if (!stereo)
  2060. return AVERROR(ENOMEM);
  2061. switch (s->sei.frame_packing.arrangement_type) {
  2062. case 3:
  2063. if (s->sei.frame_packing.quincunx_subsampling)
  2064. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2065. else
  2066. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2067. break;
  2068. case 4:
  2069. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2070. break;
  2071. case 5:
  2072. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2073. break;
  2074. }
  2075. if (s->sei.frame_packing.content_interpretation_type == 2)
  2076. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2077. if (s->sei.frame_packing.arrangement_type == 5) {
  2078. if (s->sei.frame_packing.current_frame_is_frame0_flag)
  2079. stereo->view = AV_STEREO3D_VIEW_LEFT;
  2080. else
  2081. stereo->view = AV_STEREO3D_VIEW_RIGHT;
  2082. }
  2083. }
  2084. if (s->sei.display_orientation.present &&
  2085. (s->sei.display_orientation.anticlockwise_rotation ||
  2086. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2087. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2088. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2089. AV_FRAME_DATA_DISPLAYMATRIX,
  2090. sizeof(int32_t) * 9);
  2091. if (!rotation)
  2092. return AVERROR(ENOMEM);
  2093. av_display_rotation_set((int32_t *)rotation->data, angle);
  2094. av_display_matrix_flip((int32_t *)rotation->data,
  2095. s->sei.display_orientation.hflip,
  2096. s->sei.display_orientation.vflip);
  2097. }
  2098. if (s->sei.alternative_transfer.present &&
  2099. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  2100. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  2101. s->avctx->color_trc = out->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  2102. }
  2103. return 0;
  2104. }
  2105. static int hevc_frame_start(HEVCContext *s)
  2106. {
  2107. HEVCLocalContext *lc = &s->HEVClc;
  2108. int ret;
  2109. memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2110. memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2111. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2112. memset(s->is_pcm, 0, s->ps.sps->min_pu_width * s->ps.sps->min_pu_height);
  2113. lc->start_of_tiles_x = 0;
  2114. s->is_decoded = 0;
  2115. s->first_nal_type = s->nal_unit_type;
  2116. if (s->ps.pps->tiles_enabled_flag)
  2117. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2118. ret = ff_hevc_set_new_ref(s, s->ps.sps->sao_enabled ? &s->sao_frame : &s->frame,
  2119. s->poc);
  2120. if (ret < 0)
  2121. goto fail;
  2122. ret = ff_hevc_frame_rps(s);
  2123. if (ret < 0) {
  2124. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2125. goto fail;
  2126. }
  2127. s->ref->frame->key_frame = IS_IRAP(s);
  2128. ret = set_side_data(s);
  2129. if (ret < 0)
  2130. goto fail;
  2131. av_frame_unref(s->output_frame);
  2132. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2133. if (ret < 0)
  2134. goto fail;
  2135. ff_thread_finish_setup(s->avctx);
  2136. return 0;
  2137. fail:
  2138. if (s->ref)
  2139. ff_hevc_unref_frame(s, s->ref, ~0);
  2140. s->ref = NULL;
  2141. return ret;
  2142. }
  2143. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2144. {
  2145. HEVCLocalContext *lc = &s->HEVClc;
  2146. GetBitContext *gb = &lc->gb;
  2147. int ctb_addr_ts, ret;
  2148. *gb = nal->gb;
  2149. s->nal_unit_type = nal->type;
  2150. s->temporal_id = nal->temporal_id;
  2151. switch (s->nal_unit_type) {
  2152. case HEVC_NAL_VPS:
  2153. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2154. if (ret < 0)
  2155. goto fail;
  2156. break;
  2157. case HEVC_NAL_SPS:
  2158. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2159. s->apply_defdispwin);
  2160. if (ret < 0)
  2161. goto fail;
  2162. break;
  2163. case HEVC_NAL_PPS:
  2164. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2165. if (ret < 0)
  2166. goto fail;
  2167. break;
  2168. case HEVC_NAL_SEI_PREFIX:
  2169. case HEVC_NAL_SEI_SUFFIX:
  2170. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei,
  2171. s->nal_unit_type);
  2172. if (ret < 0)
  2173. goto fail;
  2174. break;
  2175. case HEVC_NAL_TRAIL_R:
  2176. case HEVC_NAL_TRAIL_N:
  2177. case HEVC_NAL_TSA_N:
  2178. case HEVC_NAL_TSA_R:
  2179. case HEVC_NAL_STSA_N:
  2180. case HEVC_NAL_STSA_R:
  2181. case HEVC_NAL_BLA_W_LP:
  2182. case HEVC_NAL_BLA_W_RADL:
  2183. case HEVC_NAL_BLA_N_LP:
  2184. case HEVC_NAL_IDR_W_RADL:
  2185. case HEVC_NAL_IDR_N_LP:
  2186. case HEVC_NAL_CRA_NUT:
  2187. case HEVC_NAL_RADL_N:
  2188. case HEVC_NAL_RADL_R:
  2189. case HEVC_NAL_RASL_N:
  2190. case HEVC_NAL_RASL_R:
  2191. ret = hls_slice_header(s);
  2192. if (ret < 0)
  2193. return ret;
  2194. if (s->max_ra == INT_MAX) {
  2195. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2196. s->max_ra = s->poc;
  2197. } else {
  2198. if (IS_IDR(s))
  2199. s->max_ra = INT_MIN;
  2200. }
  2201. }
  2202. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2203. s->poc <= s->max_ra) {
  2204. s->is_decoded = 0;
  2205. break;
  2206. } else {
  2207. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2208. s->max_ra = INT_MIN;
  2209. }
  2210. if (s->sh.first_slice_in_pic_flag) {
  2211. ret = hevc_frame_start(s);
  2212. if (ret < 0)
  2213. return ret;
  2214. } else if (!s->ref) {
  2215. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2216. goto fail;
  2217. }
  2218. if (s->nal_unit_type != s->first_nal_type) {
  2219. av_log(s->avctx, AV_LOG_ERROR,
  2220. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2221. s->first_nal_type, s->nal_unit_type);
  2222. return AVERROR_INVALIDDATA;
  2223. }
  2224. if (!s->sh.dependent_slice_segment_flag &&
  2225. s->sh.slice_type != HEVC_SLICE_I) {
  2226. ret = ff_hevc_slice_rpl(s);
  2227. if (ret < 0) {
  2228. av_log(s->avctx, AV_LOG_WARNING,
  2229. "Error constructing the reference lists for the current slice.\n");
  2230. goto fail;
  2231. }
  2232. }
  2233. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2234. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2235. if (ret < 0)
  2236. goto fail;
  2237. }
  2238. if (s->avctx->hwaccel) {
  2239. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2240. if (ret < 0)
  2241. goto fail;
  2242. } else {
  2243. ctb_addr_ts = hls_slice_data(s);
  2244. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2245. s->is_decoded = 1;
  2246. if ((s->ps.pps->transquant_bypass_enable_flag ||
  2247. (s->ps.sps->pcm.loop_filter_disable_flag && s->ps.sps->pcm_enabled_flag)) &&
  2248. s->ps.sps->sao_enabled)
  2249. restore_tqb_pixels(s);
  2250. }
  2251. if (ctb_addr_ts < 0) {
  2252. ret = ctb_addr_ts;
  2253. goto fail;
  2254. }
  2255. }
  2256. break;
  2257. case HEVC_NAL_EOS_NUT:
  2258. case HEVC_NAL_EOB_NUT:
  2259. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2260. s->max_ra = INT_MAX;
  2261. break;
  2262. case HEVC_NAL_AUD:
  2263. case HEVC_NAL_FD_NUT:
  2264. break;
  2265. default:
  2266. av_log(s->avctx, AV_LOG_INFO,
  2267. "Skipping NAL unit %d\n", s->nal_unit_type);
  2268. }
  2269. return 0;
  2270. fail:
  2271. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2272. return ret;
  2273. return 0;
  2274. }
  2275. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2276. {
  2277. int i, ret = 0;
  2278. s->ref = NULL;
  2279. s->eos = 0;
  2280. /* split the input packet into NAL units, so we know the upper bound on the
  2281. * number of slices in the frame */
  2282. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2283. s->nal_length_size, s->avctx->codec_id);
  2284. if (ret < 0) {
  2285. av_log(s->avctx, AV_LOG_ERROR,
  2286. "Error splitting the input into NAL units.\n");
  2287. return ret;
  2288. }
  2289. for (i = 0; i < s->pkt.nb_nals; i++) {
  2290. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2291. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT)
  2292. s->eos = 1;
  2293. }
  2294. /* decode the NAL units */
  2295. for (i = 0; i < s->pkt.nb_nals; i++) {
  2296. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2297. if (ret < 0) {
  2298. av_log(s->avctx, AV_LOG_WARNING,
  2299. "Error parsing NAL unit #%d.\n", i);
  2300. goto fail;
  2301. }
  2302. }
  2303. fail:
  2304. if (s->ref)
  2305. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2306. return ret;
  2307. }
  2308. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2309. {
  2310. int i;
  2311. for (i = 0; i < 16; i++)
  2312. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2313. }
  2314. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2315. {
  2316. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2317. int pixel_shift;
  2318. int i, j;
  2319. if (!desc)
  2320. return AVERROR(EINVAL);
  2321. pixel_shift = desc->comp[0].depth > 8;
  2322. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2323. s->poc);
  2324. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2325. * on BE arches */
  2326. #if HAVE_BIGENDIAN
  2327. if (pixel_shift && !s->checksum_buf) {
  2328. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2329. FFMAX3(frame->linesize[0], frame->linesize[1],
  2330. frame->linesize[2]));
  2331. if (!s->checksum_buf)
  2332. return AVERROR(ENOMEM);
  2333. }
  2334. #endif
  2335. for (i = 0; frame->data[i]; i++) {
  2336. int width = s->avctx->coded_width;
  2337. int height = s->avctx->coded_height;
  2338. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2339. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2340. uint8_t md5[16];
  2341. av_md5_init(s->md5_ctx);
  2342. for (j = 0; j < h; j++) {
  2343. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2344. #if HAVE_BIGENDIAN
  2345. if (pixel_shift) {
  2346. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2347. (const uint16_t *) src, w);
  2348. src = s->checksum_buf;
  2349. }
  2350. #endif
  2351. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2352. }
  2353. av_md5_final(s->md5_ctx, md5);
  2354. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2355. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2356. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2357. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2358. } else {
  2359. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2360. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2361. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2362. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2363. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2364. return AVERROR_INVALIDDATA;
  2365. }
  2366. }
  2367. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2368. return 0;
  2369. }
  2370. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2371. {
  2372. AVCodecContext *avctx = s->avctx;
  2373. GetByteContext gb;
  2374. int ret, i;
  2375. bytestream2_init(&gb, buf, length);
  2376. if (length > 3 && (buf[0] || buf[1] || buf[2] > 1)) {
  2377. /* It seems the extradata is encoded as hvcC format.
  2378. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2379. * is finalized. When finalized, configurationVersion will be 1 and we
  2380. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2381. int i, j, num_arrays, nal_len_size;
  2382. s->is_nalff = 1;
  2383. bytestream2_skip(&gb, 21);
  2384. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2385. num_arrays = bytestream2_get_byte(&gb);
  2386. /* nal units in the hvcC always have length coded with 2 bytes,
  2387. * so put a fake nal_length_size = 2 while parsing them */
  2388. s->nal_length_size = 2;
  2389. /* Decode nal units from hvcC. */
  2390. for (i = 0; i < num_arrays; i++) {
  2391. int type = bytestream2_get_byte(&gb) & 0x3f;
  2392. int cnt = bytestream2_get_be16(&gb);
  2393. for (j = 0; j < cnt; j++) {
  2394. // +2 for the nal size field
  2395. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2396. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2397. av_log(s->avctx, AV_LOG_ERROR,
  2398. "Invalid NAL unit size in extradata.\n");
  2399. return AVERROR_INVALIDDATA;
  2400. }
  2401. ret = decode_nal_units(s, gb.buffer, nalsize);
  2402. if (ret < 0) {
  2403. av_log(avctx, AV_LOG_ERROR,
  2404. "Decoding nal unit %d %d from hvcC failed\n",
  2405. type, i);
  2406. return ret;
  2407. }
  2408. bytestream2_skip(&gb, nalsize);
  2409. }
  2410. }
  2411. /* Now store right nal length size, that will be used to parse
  2412. * all other nals */
  2413. s->nal_length_size = nal_len_size;
  2414. } else {
  2415. s->is_nalff = 0;
  2416. ret = decode_nal_units(s, buf, length);
  2417. if (ret < 0)
  2418. return ret;
  2419. }
  2420. /* export stream parameters from the first SPS */
  2421. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2422. if (s->ps.sps_list[i]) {
  2423. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2424. export_stream_params(s->avctx, &s->ps, sps);
  2425. break;
  2426. }
  2427. }
  2428. return 0;
  2429. }
  2430. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2431. AVPacket *avpkt)
  2432. {
  2433. int ret;
  2434. int new_extradata_size;
  2435. uint8_t *new_extradata;
  2436. HEVCContext *s = avctx->priv_data;
  2437. if (!avpkt->size) {
  2438. ret = ff_hevc_output_frame(s, data, 1);
  2439. if (ret < 0)
  2440. return ret;
  2441. *got_output = ret;
  2442. return 0;
  2443. }
  2444. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2445. &new_extradata_size);
  2446. if (new_extradata && new_extradata_size > 0) {
  2447. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2448. if (ret < 0)
  2449. return ret;
  2450. }
  2451. s->ref = NULL;
  2452. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2453. if (ret < 0)
  2454. return ret;
  2455. if (avctx->hwaccel) {
  2456. if (s->ref && avctx->hwaccel->end_frame(avctx) < 0)
  2457. av_log(avctx, AV_LOG_ERROR,
  2458. "hardware accelerator failed to decode picture\n");
  2459. } else {
  2460. /* verify the SEI checksum */
  2461. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2462. s->sei.picture_hash.is_md5) {
  2463. ret = verify_md5(s, s->ref->frame);
  2464. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2465. ff_hevc_unref_frame(s, s->ref, ~0);
  2466. return ret;
  2467. }
  2468. }
  2469. }
  2470. s->sei.picture_hash.is_md5 = 0;
  2471. if (s->is_decoded) {
  2472. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2473. s->is_decoded = 0;
  2474. }
  2475. if (s->output_frame->buf[0]) {
  2476. av_frame_move_ref(data, s->output_frame);
  2477. *got_output = 1;
  2478. }
  2479. return avpkt->size;
  2480. }
  2481. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2482. {
  2483. int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2484. if (ret < 0)
  2485. return ret;
  2486. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2487. if (!dst->tab_mvf_buf)
  2488. goto fail;
  2489. dst->tab_mvf = src->tab_mvf;
  2490. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2491. if (!dst->rpl_tab_buf)
  2492. goto fail;
  2493. dst->rpl_tab = src->rpl_tab;
  2494. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2495. if (!dst->rpl_buf)
  2496. goto fail;
  2497. dst->poc = src->poc;
  2498. dst->ctb_count = src->ctb_count;
  2499. dst->flags = src->flags;
  2500. dst->sequence = src->sequence;
  2501. if (src->hwaccel_picture_private) {
  2502. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2503. if (!dst->hwaccel_priv_buf)
  2504. goto fail;
  2505. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2506. }
  2507. return 0;
  2508. fail:
  2509. ff_hevc_unref_frame(s, dst, ~0);
  2510. return AVERROR(ENOMEM);
  2511. }
  2512. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2513. {
  2514. HEVCContext *s = avctx->priv_data;
  2515. int i;
  2516. pic_arrays_free(s);
  2517. av_freep(&s->md5_ctx);
  2518. av_frame_free(&s->tmp_frame);
  2519. av_frame_free(&s->output_frame);
  2520. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2521. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2522. av_frame_free(&s->DPB[i].frame);
  2523. }
  2524. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2525. av_buffer_unref(&s->ps.vps_list[i]);
  2526. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2527. av_buffer_unref(&s->ps.sps_list[i]);
  2528. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2529. av_buffer_unref(&s->ps.pps_list[i]);
  2530. ff_h2645_packet_uninit(&s->pkt);
  2531. return 0;
  2532. }
  2533. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2534. {
  2535. HEVCContext *s = avctx->priv_data;
  2536. int i;
  2537. s->avctx = avctx;
  2538. s->tmp_frame = av_frame_alloc();
  2539. if (!s->tmp_frame)
  2540. goto fail;
  2541. s->output_frame = av_frame_alloc();
  2542. if (!s->output_frame)
  2543. goto fail;
  2544. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2545. s->DPB[i].frame = av_frame_alloc();
  2546. if (!s->DPB[i].frame)
  2547. goto fail;
  2548. s->DPB[i].tf.f = s->DPB[i].frame;
  2549. }
  2550. s->max_ra = INT_MAX;
  2551. s->md5_ctx = av_md5_alloc();
  2552. if (!s->md5_ctx)
  2553. goto fail;
  2554. ff_bswapdsp_init(&s->bdsp);
  2555. s->context_initialized = 1;
  2556. return 0;
  2557. fail:
  2558. hevc_decode_free(avctx);
  2559. return AVERROR(ENOMEM);
  2560. }
  2561. static int hevc_update_thread_context(AVCodecContext *dst,
  2562. const AVCodecContext *src)
  2563. {
  2564. HEVCContext *s = dst->priv_data;
  2565. HEVCContext *s0 = src->priv_data;
  2566. int i, ret;
  2567. if (!s->context_initialized) {
  2568. ret = hevc_init_context(dst);
  2569. if (ret < 0)
  2570. return ret;
  2571. }
  2572. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2573. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2574. if (s0->DPB[i].frame->buf[0]) {
  2575. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2576. if (ret < 0)
  2577. return ret;
  2578. }
  2579. }
  2580. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2581. av_buffer_unref(&s->ps.vps_list[i]);
  2582. if (s0->ps.vps_list[i]) {
  2583. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2584. if (!s->ps.vps_list[i])
  2585. return AVERROR(ENOMEM);
  2586. }
  2587. }
  2588. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2589. av_buffer_unref(&s->ps.sps_list[i]);
  2590. if (s0->ps.sps_list[i]) {
  2591. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2592. if (!s->ps.sps_list[i])
  2593. return AVERROR(ENOMEM);
  2594. }
  2595. }
  2596. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2597. av_buffer_unref(&s->ps.pps_list[i]);
  2598. if (s0->ps.pps_list[i]) {
  2599. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2600. if (!s->ps.pps_list[i])
  2601. return AVERROR(ENOMEM);
  2602. }
  2603. }
  2604. if (s->ps.sps != s0->ps.sps)
  2605. ret = set_sps(s, s0->ps.sps, src->pix_fmt);
  2606. s->seq_decode = s0->seq_decode;
  2607. s->seq_output = s0->seq_output;
  2608. s->pocTid0 = s0->pocTid0;
  2609. s->max_ra = s0->max_ra;
  2610. s->is_nalff = s0->is_nalff;
  2611. s->nal_length_size = s0->nal_length_size;
  2612. if (s0->eos) {
  2613. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2614. s->max_ra = INT_MAX;
  2615. }
  2616. return 0;
  2617. }
  2618. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2619. {
  2620. HEVCContext *s = avctx->priv_data;
  2621. int ret;
  2622. avctx->internal->allocate_progress = 1;
  2623. ret = hevc_init_context(avctx);
  2624. if (ret < 0)
  2625. return ret;
  2626. if (avctx->extradata_size > 0 && avctx->extradata) {
  2627. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2628. if (ret < 0) {
  2629. hevc_decode_free(avctx);
  2630. return ret;
  2631. }
  2632. }
  2633. return 0;
  2634. }
  2635. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2636. {
  2637. HEVCContext *s = avctx->priv_data;
  2638. int ret;
  2639. memset(s, 0, sizeof(*s));
  2640. ret = hevc_init_context(avctx);
  2641. if (ret < 0)
  2642. return ret;
  2643. return 0;
  2644. }
  2645. static void hevc_decode_flush(AVCodecContext *avctx)
  2646. {
  2647. HEVCContext *s = avctx->priv_data;
  2648. ff_hevc_flush_dpb(s);
  2649. s->max_ra = INT_MAX;
  2650. }
  2651. #define OFFSET(x) offsetof(HEVCContext, x)
  2652. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2653. static const AVOption options[] = {
  2654. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2655. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  2656. { NULL },
  2657. };
  2658. static const AVClass hevc_decoder_class = {
  2659. .class_name = "HEVC decoder",
  2660. .item_name = av_default_item_name,
  2661. .option = options,
  2662. .version = LIBAVUTIL_VERSION_INT,
  2663. };
  2664. AVCodec ff_hevc_decoder = {
  2665. .name = "hevc",
  2666. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2667. .type = AVMEDIA_TYPE_VIDEO,
  2668. .id = AV_CODEC_ID_HEVC,
  2669. .priv_data_size = sizeof(HEVCContext),
  2670. .priv_class = &hevc_decoder_class,
  2671. .init = hevc_decode_init,
  2672. .close = hevc_decode_free,
  2673. .decode = hevc_decode_frame,
  2674. .flush = hevc_decode_flush,
  2675. .update_thread_context = hevc_update_thread_context,
  2676. .init_thread_copy = hevc_init_thread_copy,
  2677. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2678. AV_CODEC_CAP_FRAME_THREADS,
  2679. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2680. .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_INIT_THREADSAFE,
  2681. .hw_configs = (const AVCodecHWConfigInternal*[]) {
  2682. #if CONFIG_HEVC_CUVID_HWACCEL
  2683. HWACCEL_CUVID(hevc),
  2684. #endif
  2685. #if CONFIG_HEVC_DXVA2_HWACCEL
  2686. HWACCEL_DXVA2(hevc),
  2687. #endif
  2688. #if CONFIG_HEVC_D3D11VA_HWACCEL
  2689. HWACCEL_D3D11VA(hevc),
  2690. #endif
  2691. #if CONFIG_HEVC_D3D11VA2_HWACCEL
  2692. HWACCEL_D3D11VA2(hevc),
  2693. #endif
  2694. #if CONFIG_HEVC_VAAPI_HWACCEL
  2695. HWACCEL_VAAPI(hevc),
  2696. #endif
  2697. #if CONFIG_HEVC_VDPAU_HWACCEL
  2698. HWACCEL_VDPAU(hevc),
  2699. #endif
  2700. NULL
  2701. },
  2702. };