You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2470 lines
68KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert scale filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section ashowinfo
  147. Show a line containing various information for each input audio frame.
  148. The input audio is not modified.
  149. The shown line contains a sequence of key/value pairs of the form
  150. @var{key}:@var{value}.
  151. A description of each shown parameter follows:
  152. @table @option
  153. @item n
  154. sequential number of the input frame, starting from 0
  155. @item pts
  156. Presentation timestamp of the input frame, in time base units; the time base
  157. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  158. @item pts_time
  159. presentation timestamp of the input frame in seconds
  160. @item fmt
  161. sample format
  162. @item chlayout
  163. channel layout
  164. @item rate
  165. sample rate for the audio frame
  166. @item nb_samples
  167. number of samples (per channel) in the frame
  168. @item checksum
  169. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  170. the data is treated as if all the planes were concatenated.
  171. @item plane_checksums
  172. A list of Adler-32 checksums for each data plane.
  173. @end table
  174. @section asplit
  175. Split input audio into several identical outputs.
  176. The filter accepts a single parameter which specifies the number of outputs. If
  177. unspecified, it defaults to 2.
  178. For example
  179. @example
  180. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  181. @end example
  182. will create 5 copies of the input audio.
  183. @section asyncts
  184. Synchronize audio data with timestamps by squeezing/stretching it and/or
  185. dropping samples/adding silence when needed.
  186. The filter accepts the following named parameters:
  187. @table @option
  188. @item compensate
  189. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  190. by default. When disabled, time gaps are covered with silence.
  191. @item min_delta
  192. Minimum difference between timestamps and audio data (in seconds) to trigger
  193. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  194. this filter, try setting this parameter to 0.
  195. @item max_comp
  196. Maximum compensation in samples per second. Relevant only with compensate=1.
  197. Default value 500.
  198. @item first_pts
  199. Assume the first pts should be this value. The time base is 1 / sample rate.
  200. This allows for padding/trimming at the start of stream. By default, no
  201. assumption is made about the first frame's expected pts, so no padding or
  202. trimming is done. For example, this could be set to 0 to pad the beginning with
  203. silence if an audio stream starts after the video stream or to trim any samples
  204. with a negative pts due to encoder delay.
  205. @end table
  206. @section channelsplit
  207. Split each channel in input audio stream into a separate output stream.
  208. This filter accepts the following named parameters:
  209. @table @option
  210. @item channel_layout
  211. Channel layout of the input stream. Default is "stereo".
  212. @end table
  213. For example, assuming a stereo input MP3 file
  214. @example
  215. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  216. @end example
  217. will create an output Matroska file with two audio streams, one containing only
  218. the left channel and the other the right channel.
  219. To split a 5.1 WAV file into per-channel files
  220. @example
  221. avconv -i in.wav -filter_complex
  222. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  223. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  224. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  225. side_right.wav
  226. @end example
  227. @section channelmap
  228. Remap input channels to new locations.
  229. This filter accepts the following named parameters:
  230. @table @option
  231. @item channel_layout
  232. Channel layout of the output stream.
  233. @item map
  234. Map channels from input to output. The argument is a comma-separated list of
  235. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  236. @var{in_channel} form. @var{in_channel} can be either the name of the input
  237. channel (e.g. FL for front left) or its index in the input channel layout.
  238. @var{out_channel} is the name of the output channel or its index in the output
  239. channel layout. If @var{out_channel} is not given then it is implicitly an
  240. index, starting with zero and increasing by one for each mapping.
  241. @end table
  242. If no mapping is present, the filter will implicitly map input channels to
  243. output channels preserving index.
  244. For example, assuming a 5.1+downmix input MOV file
  245. @example
  246. avconv -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  247. @end example
  248. will create an output WAV file tagged as stereo from the downmix channels of
  249. the input.
  250. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  251. @example
  252. avconv -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  253. @end example
  254. @section join
  255. Join multiple input streams into one multi-channel stream.
  256. The filter accepts the following named parameters:
  257. @table @option
  258. @item inputs
  259. Number of input streams. Defaults to 2.
  260. @item channel_layout
  261. Desired output channel layout. Defaults to stereo.
  262. @item map
  263. Map channels from inputs to output. The argument is a comma-separated list of
  264. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  265. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  266. can be either the name of the input channel (e.g. FL for front left) or its
  267. index in the specified input stream. @var{out_channel} is the name of the output
  268. channel.
  269. @end table
  270. The filter will attempt to guess the mappings when those are not specified
  271. explicitly. It does so by first trying to find an unused matching input channel
  272. and if that fails it picks the first unused input channel.
  273. E.g. to join 3 inputs (with properly set channel layouts)
  274. @example
  275. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  276. @end example
  277. To build a 5.1 output from 6 single-channel streams:
  278. @example
  279. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  280. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  281. out
  282. @end example
  283. @section resample
  284. Convert the audio sample format, sample rate and channel layout. This filter is
  285. not meant to be used directly, it is inserted automatically by libavfilter
  286. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  287. conversion.
  288. @section volume
  289. Adjust the input audio volume.
  290. The filter accepts the following named parameters:
  291. @table @option
  292. @item volume
  293. Expresses how the audio volume will be increased or decreased.
  294. Output values are clipped to the maximum value.
  295. The output audio volume is given by the relation:
  296. @example
  297. @var{output_volume} = @var{volume} * @var{input_volume}
  298. @end example
  299. Default value for @var{volume} is 1.0.
  300. @item precision
  301. Mathematical precision.
  302. This determines which input sample formats will be allowed, which affects the
  303. precision of the volume scaling.
  304. @table @option
  305. @item fixed
  306. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  307. @item float
  308. 32-bit floating-point; limits input sample format to FLT. (default)
  309. @item double
  310. 64-bit floating-point; limits input sample format to DBL.
  311. @end table
  312. @end table
  313. @subsection Examples
  314. @itemize
  315. @item
  316. Halve the input audio volume:
  317. @example
  318. volume=volume=0.5
  319. volume=volume=1/2
  320. volume=volume=-6.0206dB
  321. @end example
  322. @item
  323. Increase input audio power by 6 decibels using fixed-point precision:
  324. @example
  325. volume=volume=6dB:precision=fixed
  326. @end example
  327. @end itemize
  328. @c man end AUDIO FILTERS
  329. @chapter Audio Sources
  330. @c man begin AUDIO SOURCES
  331. Below is a description of the currently available audio sources.
  332. @section anullsrc
  333. Null audio source, never return audio frames. It is mainly useful as a
  334. template and to be employed in analysis / debugging tools.
  335. It accepts as optional parameter a string of the form
  336. @var{sample_rate}:@var{channel_layout}.
  337. @var{sample_rate} specify the sample rate, and defaults to 44100.
  338. @var{channel_layout} specify the channel layout, and can be either an
  339. integer or a string representing a channel layout. The default value
  340. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  341. Check the channel_layout_map definition in
  342. @file{libavutil/channel_layout.c} for the mapping between strings and
  343. channel layout values.
  344. Follow some examples:
  345. @example
  346. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  347. anullsrc=48000:4
  348. # same as
  349. anullsrc=48000:mono
  350. @end example
  351. @section abuffer
  352. Buffer audio frames, and make them available to the filter chain.
  353. This source is not intended to be part of user-supplied graph descriptions but
  354. for insertion by calling programs through the interface defined in
  355. @file{libavfilter/buffersrc.h}.
  356. It accepts the following named parameters:
  357. @table @option
  358. @item time_base
  359. Timebase which will be used for timestamps of submitted frames. It must be
  360. either a floating-point number or in @var{numerator}/@var{denominator} form.
  361. @item sample_rate
  362. Audio sample rate.
  363. @item sample_fmt
  364. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  365. @item channel_layout
  366. Channel layout of the audio data, in the form that can be accepted by
  367. @code{av_get_channel_layout()}.
  368. @end table
  369. All the parameters need to be explicitly defined.
  370. @c man end AUDIO SOURCES
  371. @chapter Audio Sinks
  372. @c man begin AUDIO SINKS
  373. Below is a description of the currently available audio sinks.
  374. @section anullsink
  375. Null audio sink, do absolutely nothing with the input audio. It is
  376. mainly useful as a template and to be employed in analysis / debugging
  377. tools.
  378. @section abuffersink
  379. This sink is intended for programmatic use. Frames that arrive on this sink can
  380. be retrieved by the calling program using the interface defined in
  381. @file{libavfilter/buffersink.h}.
  382. This filter accepts no parameters.
  383. @c man end AUDIO SINKS
  384. @chapter Video Filters
  385. @c man begin VIDEO FILTERS
  386. When you configure your Libav build, you can disable any of the
  387. existing filters using --disable-filters.
  388. The configure output will show the video filters included in your
  389. build.
  390. Below is a description of the currently available video filters.
  391. @section blackframe
  392. Detect frames that are (almost) completely black. Can be useful to
  393. detect chapter transitions or commercials. Output lines consist of
  394. the frame number of the detected frame, the percentage of blackness,
  395. the position in the file if known or -1 and the timestamp in seconds.
  396. In order to display the output lines, you need to set the loglevel at
  397. least to the AV_LOG_INFO value.
  398. The filter accepts the following options:
  399. @table @option
  400. @item amount
  401. The percentage of the pixels that have to be below the threshold, defaults to
  402. 98.
  403. @item threshold
  404. Threshold below which a pixel value is considered black, defaults to 32.
  405. @end table
  406. @section boxblur
  407. Apply boxblur algorithm to the input video.
  408. This filter accepts the following options:
  409. @table @option
  410. @item luma_radius
  411. @item luma_power
  412. @item chroma_radius
  413. @item chroma_power
  414. @item alpha_radius
  415. @item alpha_power
  416. @end table
  417. Chroma and alpha parameters are optional, if not specified they default
  418. to the corresponding values set for @var{luma_radius} and
  419. @var{luma_power}.
  420. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  421. the radius in pixels of the box used for blurring the corresponding
  422. input plane. They are expressions, and can contain the following
  423. constants:
  424. @table @option
  425. @item w, h
  426. the input width and height in pixels
  427. @item cw, ch
  428. the input chroma image width and height in pixels
  429. @item hsub, vsub
  430. horizontal and vertical chroma subsample values. For example for the
  431. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  432. @end table
  433. The radius must be a non-negative number, and must not be greater than
  434. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  435. and of @code{min(cw,ch)/2} for the chroma planes.
  436. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  437. how many times the boxblur filter is applied to the corresponding
  438. plane.
  439. Some examples follow:
  440. @itemize
  441. @item
  442. Apply a boxblur filter with luma, chroma, and alpha radius
  443. set to 2:
  444. @example
  445. boxblur=luma_radius=2:luma_power=1
  446. @end example
  447. @item
  448. Set luma radius to 2, alpha and chroma radius to 0
  449. @example
  450. boxblur=2:1:0:0:0:0
  451. @end example
  452. @item
  453. Set luma and chroma radius to a fraction of the video dimension
  454. @example
  455. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  456. @end example
  457. @end itemize
  458. @section copy
  459. Copy the input source unchanged to the output. Mainly useful for
  460. testing purposes.
  461. @section crop
  462. Crop the input video to given dimensions.
  463. This filter accepts the following options:
  464. @table @option
  465. @item out_w
  466. Width of the output video.
  467. @item out_h
  468. Height of the output video.
  469. @item x
  470. Horizontal position, in the input video, of the left edge of the output video.
  471. @item y
  472. Vertical position, in the input video, of the top edge of the output video.
  473. @end table
  474. The parameters are expressions containing the following constants:
  475. @table @option
  476. @item E, PI, PHI
  477. the corresponding mathematical approximated values for e
  478. (euler number), pi (greek PI), PHI (golden ratio)
  479. @item x, y
  480. the computed values for @var{x} and @var{y}. They are evaluated for
  481. each new frame.
  482. @item in_w, in_h
  483. the input width and height
  484. @item iw, ih
  485. same as @var{in_w} and @var{in_h}
  486. @item out_w, out_h
  487. the output (cropped) width and height
  488. @item ow, oh
  489. same as @var{out_w} and @var{out_h}
  490. @item n
  491. the number of input frame, starting from 0
  492. @item t
  493. timestamp expressed in seconds, NAN if the input timestamp is unknown
  494. @end table
  495. The @var{out_w} and @var{out_h} parameters specify the expressions for
  496. the width and height of the output (cropped) video. They are
  497. evaluated just at the configuration of the filter.
  498. The default value of @var{out_w} is "in_w", and the default value of
  499. @var{out_h} is "in_h".
  500. The expression for @var{out_w} may depend on the value of @var{out_h},
  501. and the expression for @var{out_h} may depend on @var{out_w}, but they
  502. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  503. evaluated after @var{out_w} and @var{out_h}.
  504. The @var{x} and @var{y} parameters specify the expressions for the
  505. position of the top-left corner of the output (non-cropped) area. They
  506. are evaluated for each frame. If the evaluated value is not valid, it
  507. is approximated to the nearest valid value.
  508. The default value of @var{x} is "(in_w-out_w)/2", and the default
  509. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  510. the center of the input image.
  511. The expression for @var{x} may depend on @var{y}, and the expression
  512. for @var{y} may depend on @var{x}.
  513. Follow some examples:
  514. @example
  515. # crop the central input area with size 100x100
  516. crop=out_w=100:out_h=100
  517. # crop the central input area with size 2/3 of the input video
  518. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  519. # crop the input video central square
  520. crop=out_w=in_h
  521. # delimit the rectangle with the top-left corner placed at position
  522. # 100:100 and the right-bottom corner corresponding to the right-bottom
  523. # corner of the input image.
  524. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  525. # crop 10 pixels from the left and right borders, and 20 pixels from
  526. # the top and bottom borders
  527. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  528. # keep only the bottom right quarter of the input image
  529. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  530. # crop height for getting Greek harmony
  531. "crop=out_w=in_w:out_h=1/PHI*in_w"
  532. # trembling effect
  533. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  534. # erratic camera effect depending on timestamp
  535. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  536. # set x depending on the value of y
  537. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  538. @end example
  539. @section cropdetect
  540. Auto-detect crop size.
  541. Calculate necessary cropping parameters and prints the recommended
  542. parameters through the logging system. The detected dimensions
  543. correspond to the non-black area of the input video.
  544. This filter accepts the following options:
  545. @table @option
  546. @item limit
  547. Threshold, which can be optionally specified from nothing (0) to
  548. everything (255), defaults to 24.
  549. @item round
  550. Value which the width/height should be divisible by, defaults to
  551. 16. The offset is automatically adjusted to center the video. Use 2 to
  552. get only even dimensions (needed for 4:2:2 video). 16 is best when
  553. encoding to most video codecs.
  554. @item reset
  555. Counter that determines after how many frames cropdetect will reset
  556. the previously detected largest video area and start over to detect
  557. the current optimal crop area. Defaults to 0.
  558. This can be useful when channel logos distort the video area. 0
  559. indicates never reset and return the largest area encountered during
  560. playback.
  561. @end table
  562. @section delogo
  563. Suppress a TV station logo by a simple interpolation of the surrounding
  564. pixels. Just set a rectangle covering the logo and watch it disappear
  565. (and sometimes something even uglier appear - your mileage may vary).
  566. This filter accepts the following options:
  567. @table @option
  568. @item x, y
  569. Specify the top left corner coordinates of the logo. They must be
  570. specified.
  571. @item w, h
  572. Specify the width and height of the logo to clear. They must be
  573. specified.
  574. @item band, t
  575. Specify the thickness of the fuzzy edge of the rectangle (added to
  576. @var{w} and @var{h}). The default value is 4.
  577. @item show
  578. When set to 1, a green rectangle is drawn on the screen to simplify
  579. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  580. @var{band} is set to 4. The default value is 0.
  581. @end table
  582. Some examples follow.
  583. @itemize
  584. @item
  585. Set a rectangle covering the area with top left corner coordinates 0,0
  586. and size 100x77, setting a band of size 10:
  587. @example
  588. delogo=x=0:y=0:w=100:h=77:band=10
  589. @end example
  590. @end itemize
  591. @section drawbox
  592. Draw a colored box on the input image.
  593. This filter accepts the following options:
  594. @table @option
  595. @item x, y
  596. Specify the top left corner coordinates of the box. Default to 0.
  597. @item width, height
  598. Specify the width and height of the box, if 0 they are interpreted as
  599. the input width and height. Default to 0.
  600. @item color
  601. Specify the color of the box to write, it can be the name of a color
  602. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  603. @end table
  604. Follow some examples:
  605. @example
  606. # draw a black box around the edge of the input image
  607. drawbox
  608. # draw a box with color red and an opacity of 50%
  609. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  610. @end example
  611. @section drawtext
  612. Draw text string or text from specified file on top of video using the
  613. libfreetype library.
  614. To enable compilation of this filter you need to configure Libav with
  615. @code{--enable-libfreetype}.
  616. The filter also recognizes strftime() sequences in the provided text
  617. and expands them accordingly. Check the documentation of strftime().
  618. The description of the accepted parameters follows.
  619. @table @option
  620. @item fontfile
  621. The font file to be used for drawing text. Path must be included.
  622. This parameter is mandatory.
  623. @item text
  624. The text string to be drawn. The text must be a sequence of UTF-8
  625. encoded characters.
  626. This parameter is mandatory if no file is specified with the parameter
  627. @var{textfile}.
  628. @item textfile
  629. A text file containing text to be drawn. The text must be a sequence
  630. of UTF-8 encoded characters.
  631. This parameter is mandatory if no text string is specified with the
  632. parameter @var{text}.
  633. If both text and textfile are specified, an error is thrown.
  634. @item x, y
  635. The offsets where text will be drawn within the video frame.
  636. Relative to the top/left border of the output image.
  637. They accept expressions similar to the @ref{overlay} filter:
  638. @table @option
  639. @item x, y
  640. the computed values for @var{x} and @var{y}. They are evaluated for
  641. each new frame.
  642. @item main_w, main_h
  643. main input width and height
  644. @item W, H
  645. same as @var{main_w} and @var{main_h}
  646. @item text_w, text_h
  647. rendered text width and height
  648. @item w, h
  649. same as @var{text_w} and @var{text_h}
  650. @item n
  651. the number of frames processed, starting from 0
  652. @item t
  653. timestamp expressed in seconds, NAN if the input timestamp is unknown
  654. @end table
  655. The default value of @var{x} and @var{y} is 0.
  656. @item fontsize
  657. The font size to be used for drawing text.
  658. The default value of @var{fontsize} is 16.
  659. @item fontcolor
  660. The color to be used for drawing fonts.
  661. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  662. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  663. The default value of @var{fontcolor} is "black".
  664. @item boxcolor
  665. The color to be used for drawing box around text.
  666. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  667. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  668. The default value of @var{boxcolor} is "white".
  669. @item box
  670. Used to draw a box around text using background color.
  671. Value should be either 1 (enable) or 0 (disable).
  672. The default value of @var{box} is 0.
  673. @item shadowx, shadowy
  674. The x and y offsets for the text shadow position with respect to the
  675. position of the text. They can be either positive or negative
  676. values. Default value for both is "0".
  677. @item shadowcolor
  678. The color to be used for drawing a shadow behind the drawn text. It
  679. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  680. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  681. The default value of @var{shadowcolor} is "black".
  682. @item ft_load_flags
  683. Flags to be used for loading the fonts.
  684. The flags map the corresponding flags supported by libfreetype, and are
  685. a combination of the following values:
  686. @table @var
  687. @item default
  688. @item no_scale
  689. @item no_hinting
  690. @item render
  691. @item no_bitmap
  692. @item vertical_layout
  693. @item force_autohint
  694. @item crop_bitmap
  695. @item pedantic
  696. @item ignore_global_advance_width
  697. @item no_recurse
  698. @item ignore_transform
  699. @item monochrome
  700. @item linear_design
  701. @item no_autohint
  702. @item end table
  703. @end table
  704. Default value is "render".
  705. For more information consult the documentation for the FT_LOAD_*
  706. libfreetype flags.
  707. @item tabsize
  708. The size in number of spaces to use for rendering the tab.
  709. Default value is 4.
  710. @item fix_bounds
  711. If true, check and fix text coords to avoid clipping.
  712. @end table
  713. For example the command:
  714. @example
  715. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  716. @end example
  717. will draw "Test Text" with font FreeSerif, using the default values
  718. for the optional parameters.
  719. The command:
  720. @example
  721. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  722. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  723. @end example
  724. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  725. and y=50 (counting from the top-left corner of the screen), text is
  726. yellow with a red box around it. Both the text and the box have an
  727. opacity of 20%.
  728. Note that the double quotes are not necessary if spaces are not used
  729. within the parameter list.
  730. For more information about libfreetype, check:
  731. @url{http://www.freetype.org/}.
  732. @section fade
  733. Apply fade-in/out effect to input video.
  734. This filter accepts the following options:
  735. @table @option
  736. @item type
  737. The effect type -- can be either "in" for fade-in, or "out" for a fade-out
  738. effect.
  739. @item start_frame
  740. The number of the start frame for starting to apply the fade effect.
  741. @item nb_frames
  742. The number of frames for which the fade effect has to last. At the end of the
  743. fade-in effect the output video will have the same intensity as the input video,
  744. at the end of the fade-out transition the output video will be completely black.
  745. @end table
  746. A few usage examples follow, usable too as test scenarios.
  747. @example
  748. # fade in first 30 frames of video
  749. fade=type=in:nb_frames=30
  750. # fade out last 45 frames of a 200-frame video
  751. fade=type=out:start_frame=155:nb_frames=45
  752. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  753. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  754. # make first 5 frames black, then fade in from frame 5-24
  755. fade=type=in:start_frame=5:nb_frames=20
  756. @end example
  757. @section fieldorder
  758. Transform the field order of the input video.
  759. This filter accepts the following options:
  760. @table @option
  761. @item order
  762. Output field order. Valid values are @var{tff} for top field first or @var{bff}
  763. for bottom field first.
  764. @end table
  765. Default value is "tff".
  766. Transformation is achieved by shifting the picture content up or down
  767. by one line, and filling the remaining line with appropriate picture content.
  768. This method is consistent with most broadcast field order converters.
  769. If the input video is not flagged as being interlaced, or it is already
  770. flagged as being of the required output field order then this filter does
  771. not alter the incoming video.
  772. This filter is very useful when converting to or from PAL DV material,
  773. which is bottom field first.
  774. For example:
  775. @example
  776. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  777. @end example
  778. @section fifo
  779. Buffer input images and send them when they are requested.
  780. This filter is mainly useful when auto-inserted by the libavfilter
  781. framework.
  782. The filter does not take parameters.
  783. @section format
  784. Convert the input video to one of the specified pixel formats.
  785. Libavfilter will try to pick one that is supported for the input to
  786. the next filter.
  787. This filter accepts the following parameters:
  788. @table @option
  789. @item pix_fmts
  790. A '|'-separated list of pixel format names, for example
  791. "pix_fmts=yuv420p|monow|rgb24".
  792. @end table
  793. Some examples follow:
  794. @example
  795. # convert the input video to the format "yuv420p"
  796. format=pix_fmts=yuv420p
  797. # convert the input video to any of the formats in the list
  798. format=pix_fmts=yuv420p|yuv444p|yuv410p
  799. @end example
  800. @section fps
  801. Convert the video to specified constant framerate by duplicating or dropping
  802. frames as necessary.
  803. This filter accepts the following named parameters:
  804. @table @option
  805. @item fps
  806. Desired output framerate.
  807. @end table
  808. @anchor{frei0r}
  809. @section frei0r
  810. Apply a frei0r effect to the input video.
  811. To enable compilation of this filter you need to install the frei0r
  812. header and configure Libav with --enable-frei0r.
  813. The filter supports the syntax:
  814. @example
  815. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  816. @end example
  817. @var{filter_name} is the name to the frei0r effect to load. If the
  818. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  819. is searched in each one of the directories specified by the colon
  820. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  821. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  822. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  823. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  824. for the frei0r effect.
  825. A frei0r effect parameter can be a boolean (whose values are specified
  826. with "y" and "n"), a double, a color (specified by the syntax
  827. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  828. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  829. description), a position (specified by the syntax @var{X}/@var{Y},
  830. @var{X} and @var{Y} being float numbers) and a string.
  831. The number and kind of parameters depend on the loaded effect. If an
  832. effect parameter is not specified the default value is set.
  833. Some examples follow:
  834. @example
  835. # apply the distort0r effect, set the first two double parameters
  836. frei0r=distort0r:0.5:0.01
  837. # apply the colordistance effect, takes a color as first parameter
  838. frei0r=colordistance:0.2/0.3/0.4
  839. frei0r=colordistance:violet
  840. frei0r=colordistance:0x112233
  841. # apply the perspective effect, specify the top left and top right
  842. # image positions
  843. frei0r=perspective:0.2/0.2:0.8/0.2
  844. @end example
  845. For more information see:
  846. @url{http://piksel.org/frei0r}
  847. @section gradfun
  848. Fix the banding artifacts that are sometimes introduced into nearly flat
  849. regions by truncation to 8bit colordepth.
  850. Interpolate the gradients that should go where the bands are, and
  851. dither them.
  852. This filter is designed for playback only. Do not use it prior to
  853. lossy compression, because compression tends to lose the dither and
  854. bring back the bands.
  855. The filter takes two optional parameters, separated by ':':
  856. @var{strength}:@var{radius}
  857. @var{strength} is the maximum amount by which the filter will change
  858. any one pixel. Also the threshold for detecting nearly flat
  859. regions. Acceptable values range from .51 to 64, default value is
  860. 1.2, out-of-range values will be clipped to the valid range.
  861. @var{radius} is the neighborhood to fit the gradient to. A larger
  862. radius makes for smoother gradients, but also prevents the filter from
  863. modifying the pixels near detailed regions. Acceptable values are
  864. 8-32, default value is 16, out-of-range values will be clipped to the
  865. valid range.
  866. @example
  867. # default parameters
  868. gradfun=1.2:16
  869. # omitting radius
  870. gradfun=1.2
  871. @end example
  872. @section hflip
  873. Flip the input video horizontally.
  874. For example to horizontally flip the input video with @command{avconv}:
  875. @example
  876. avconv -i in.avi -vf "hflip" out.avi
  877. @end example
  878. @section hqdn3d
  879. High precision/quality 3d denoise filter. This filter aims to reduce
  880. image noise producing smooth images and making still images really
  881. still. It should enhance compressibility.
  882. It accepts the following optional parameters:
  883. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  884. @table @option
  885. @item luma_spatial
  886. a non-negative float number which specifies spatial luma strength,
  887. defaults to 4.0
  888. @item chroma_spatial
  889. a non-negative float number which specifies spatial chroma strength,
  890. defaults to 3.0*@var{luma_spatial}/4.0
  891. @item luma_tmp
  892. a float number which specifies luma temporal strength, defaults to
  893. 6.0*@var{luma_spatial}/4.0
  894. @item chroma_tmp
  895. a float number which specifies chroma temporal strength, defaults to
  896. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  897. @end table
  898. @section lut, lutrgb, lutyuv
  899. Compute a look-up table for binding each pixel component input value
  900. to an output value, and apply it to input video.
  901. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  902. to an RGB input video.
  903. These filters accept in input a ":"-separated list of options, which
  904. specify the expressions used for computing the lookup table for the
  905. corresponding pixel component values.
  906. The @var{lut} filter requires either YUV or RGB pixel formats in
  907. input, and accepts the options:
  908. @table @option
  909. @item @var{c0} (first pixel component)
  910. @item @var{c1} (second pixel component)
  911. @item @var{c2} (third pixel component)
  912. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  913. @end table
  914. The exact component associated to each option depends on the format in
  915. input.
  916. The @var{lutrgb} filter requires RGB pixel formats in input, and
  917. accepts the options:
  918. @table @option
  919. @item @var{r} (red component)
  920. @item @var{g} (green component)
  921. @item @var{b} (blue component)
  922. @item @var{a} (alpha component)
  923. @end table
  924. The @var{lutyuv} filter requires YUV pixel formats in input, and
  925. accepts the options:
  926. @table @option
  927. @item @var{y} (Y/luminance component)
  928. @item @var{u} (U/Cb component)
  929. @item @var{v} (V/Cr component)
  930. @item @var{a} (alpha component)
  931. @end table
  932. The expressions can contain the following constants and functions:
  933. @table @option
  934. @item E, PI, PHI
  935. the corresponding mathematical approximated values for e
  936. (euler number), pi (greek PI), PHI (golden ratio)
  937. @item w, h
  938. the input width and height
  939. @item val
  940. input value for the pixel component
  941. @item clipval
  942. the input value clipped in the @var{minval}-@var{maxval} range
  943. @item maxval
  944. maximum value for the pixel component
  945. @item minval
  946. minimum value for the pixel component
  947. @item negval
  948. the negated value for the pixel component value clipped in the
  949. @var{minval}-@var{maxval} range , it corresponds to the expression
  950. "maxval-clipval+minval"
  951. @item clip(val)
  952. the computed value in @var{val} clipped in the
  953. @var{minval}-@var{maxval} range
  954. @item gammaval(gamma)
  955. the computed gamma correction value of the pixel component value
  956. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  957. expression
  958. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  959. @end table
  960. All expressions default to "val".
  961. Some examples follow:
  962. @example
  963. # negate input video
  964. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  965. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  966. # the above is the same as
  967. lutrgb="r=negval:g=negval:b=negval"
  968. lutyuv="y=negval:u=negval:v=negval"
  969. # negate luminance
  970. lutyuv=negval
  971. # remove chroma components, turns the video into a graytone image
  972. lutyuv="u=128:v=128"
  973. # apply a luma burning effect
  974. lutyuv="y=2*val"
  975. # remove green and blue components
  976. lutrgb="g=0:b=0"
  977. # set a constant alpha channel value on input
  978. format=rgba,lutrgb=a="maxval-minval/2"
  979. # correct luminance gamma by a 0.5 factor
  980. lutyuv=y=gammaval(0.5)
  981. @end example
  982. @section negate
  983. Negate input video.
  984. This filter accepts an integer in input, if non-zero it negates the
  985. alpha component (if available). The default value in input is 0.
  986. @section noformat
  987. Force libavfilter not to use any of the specified pixel formats for the
  988. input to the next filter.
  989. This filter accepts the following parameters:
  990. @table @option
  991. @item pix_fmts
  992. A '|'-separated list of pixel format names, for example
  993. "pix_fmts=yuv420p|monow|rgb24".
  994. @end table
  995. Some examples follow:
  996. @example
  997. # force libavfilter to use a format different from "yuv420p" for the
  998. # input to the vflip filter
  999. noformat=pix_fmts=yuv420p,vflip
  1000. # convert the input video to any of the formats not contained in the list
  1001. noformat=yuv420p|yuv444p|yuv410p
  1002. @end example
  1003. @section null
  1004. Pass the video source unchanged to the output.
  1005. @section ocv
  1006. Apply video transform using libopencv.
  1007. To enable this filter install libopencv library and headers and
  1008. configure Libav with --enable-libopencv.
  1009. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1010. @var{filter_name} is the name of the libopencv filter to apply.
  1011. @var{filter_params} specifies the parameters to pass to the libopencv
  1012. filter. If not specified the default values are assumed.
  1013. Refer to the official libopencv documentation for more precise
  1014. information:
  1015. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1016. Follows the list of supported libopencv filters.
  1017. @anchor{dilate}
  1018. @subsection dilate
  1019. Dilate an image by using a specific structuring element.
  1020. This filter corresponds to the libopencv function @code{cvDilate}.
  1021. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1022. @var{struct_el} represents a structuring element, and has the syntax:
  1023. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1024. @var{cols} and @var{rows} represent the number of columns and rows of
  1025. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1026. point, and @var{shape} the shape for the structuring element, and
  1027. can be one of the values "rect", "cross", "ellipse", "custom".
  1028. If the value for @var{shape} is "custom", it must be followed by a
  1029. string of the form "=@var{filename}". The file with name
  1030. @var{filename} is assumed to represent a binary image, with each
  1031. printable character corresponding to a bright pixel. When a custom
  1032. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1033. or columns and rows of the read file are assumed instead.
  1034. The default value for @var{struct_el} is "3x3+0x0/rect".
  1035. @var{nb_iterations} specifies the number of times the transform is
  1036. applied to the image, and defaults to 1.
  1037. Follow some example:
  1038. @example
  1039. # use the default values
  1040. ocv=dilate
  1041. # dilate using a structuring element with a 5x5 cross, iterate two times
  1042. ocv=dilate=5x5+2x2/cross:2
  1043. # read the shape from the file diamond.shape, iterate two times
  1044. # the file diamond.shape may contain a pattern of characters like this:
  1045. # *
  1046. # ***
  1047. # *****
  1048. # ***
  1049. # *
  1050. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1051. ocv=0x0+2x2/custom=diamond.shape:2
  1052. @end example
  1053. @subsection erode
  1054. Erode an image by using a specific structuring element.
  1055. This filter corresponds to the libopencv function @code{cvErode}.
  1056. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1057. with the same syntax and semantics as the @ref{dilate} filter.
  1058. @subsection smooth
  1059. Smooth the input video.
  1060. The filter takes the following parameters:
  1061. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1062. @var{type} is the type of smooth filter to apply, and can be one of
  1063. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1064. "bilateral". The default value is "gaussian".
  1065. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1066. parameters whose meanings depend on smooth type. @var{param1} and
  1067. @var{param2} accept integer positive values or 0, @var{param3} and
  1068. @var{param4} accept float values.
  1069. The default value for @var{param1} is 3, the default value for the
  1070. other parameters is 0.
  1071. These parameters correspond to the parameters assigned to the
  1072. libopencv function @code{cvSmooth}.
  1073. @anchor{overlay}
  1074. @section overlay
  1075. Overlay one video on top of another.
  1076. It takes two inputs and one output, the first input is the "main"
  1077. video on which the second input is overlayed.
  1078. It accepts the parameters: @var{x}:@var{y}.
  1079. @var{x} is the x coordinate of the overlayed video on the main video,
  1080. @var{y} is the y coordinate. The parameters are expressions containing
  1081. the following parameters:
  1082. @table @option
  1083. @item main_w, main_h
  1084. main input width and height
  1085. @item W, H
  1086. same as @var{main_w} and @var{main_h}
  1087. @item overlay_w, overlay_h
  1088. overlay input width and height
  1089. @item w, h
  1090. same as @var{overlay_w} and @var{overlay_h}
  1091. @end table
  1092. Be aware that frames are taken from each input video in timestamp
  1093. order, hence, if their initial timestamps differ, it is a a good idea
  1094. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1095. have them begin in the same zero timestamp, as it does the example for
  1096. the @var{movie} filter.
  1097. Follow some examples:
  1098. @example
  1099. # draw the overlay at 10 pixels from the bottom right
  1100. # corner of the main video.
  1101. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1102. # insert a transparent PNG logo in the bottom left corner of the input
  1103. avconv -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1104. # insert 2 different transparent PNG logos (second logo on bottom
  1105. # right corner):
  1106. avconv -i input -i logo1 -i logo2 -filter_complex
  1107. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1108. # add a transparent color layer on top of the main video,
  1109. # WxH specifies the size of the main input to the overlay filter
  1110. color=red@.3:WxH [over]; [in][over] overlay [out]
  1111. @end example
  1112. You can chain together more overlays but the efficiency of such
  1113. approach is yet to be tested.
  1114. @section pad
  1115. Add paddings to the input image, and places the original input at the
  1116. given coordinates @var{x}, @var{y}.
  1117. It accepts the following parameters:
  1118. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1119. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1120. expressions containing the following constants:
  1121. @table @option
  1122. @item E, PI, PHI
  1123. the corresponding mathematical approximated values for e
  1124. (euler number), pi (greek PI), phi (golden ratio)
  1125. @item in_w, in_h
  1126. the input video width and height
  1127. @item iw, ih
  1128. same as @var{in_w} and @var{in_h}
  1129. @item out_w, out_h
  1130. the output width and height, that is the size of the padded area as
  1131. specified by the @var{width} and @var{height} expressions
  1132. @item ow, oh
  1133. same as @var{out_w} and @var{out_h}
  1134. @item x, y
  1135. x and y offsets as specified by the @var{x} and @var{y}
  1136. expressions, or NAN if not yet specified
  1137. @item a
  1138. input display aspect ratio, same as @var{iw} / @var{ih}
  1139. @item hsub, vsub
  1140. horizontal and vertical chroma subsample values. For example for the
  1141. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1142. @end table
  1143. Follows the description of the accepted parameters.
  1144. @table @option
  1145. @item width, height
  1146. Specify the size of the output image with the paddings added. If the
  1147. value for @var{width} or @var{height} is 0, the corresponding input size
  1148. is used for the output.
  1149. The @var{width} expression can reference the value set by the
  1150. @var{height} expression, and vice versa.
  1151. The default value of @var{width} and @var{height} is 0.
  1152. @item x, y
  1153. Specify the offsets where to place the input image in the padded area
  1154. with respect to the top/left border of the output image.
  1155. The @var{x} expression can reference the value set by the @var{y}
  1156. expression, and vice versa.
  1157. The default value of @var{x} and @var{y} is 0.
  1158. @item color
  1159. Specify the color of the padded area, it can be the name of a color
  1160. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1161. The default value of @var{color} is "black".
  1162. @end table
  1163. Some examples follow:
  1164. @example
  1165. # Add paddings with color "violet" to the input video. Output video
  1166. # size is 640x480, the top-left corner of the input video is placed at
  1167. # column 0, row 40.
  1168. pad=640:480:0:40:violet
  1169. # pad the input to get an output with dimensions increased bt 3/2,
  1170. # and put the input video at the center of the padded area
  1171. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1172. # pad the input to get a squared output with size equal to the maximum
  1173. # value between the input width and height, and put the input video at
  1174. # the center of the padded area
  1175. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1176. # pad the input to get a final w/h ratio of 16:9
  1177. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1178. # double output size and put the input video in the bottom-right
  1179. # corner of the output padded area
  1180. pad="2*iw:2*ih:ow-iw:oh-ih"
  1181. @end example
  1182. @section pixdesctest
  1183. Pixel format descriptor test filter, mainly useful for internal
  1184. testing. The output video should be equal to the input video.
  1185. For example:
  1186. @example
  1187. format=monow, pixdesctest
  1188. @end example
  1189. can be used to test the monowhite pixel format descriptor definition.
  1190. @section scale
  1191. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1192. The parameters @var{width} and @var{height} are expressions containing
  1193. the following constants:
  1194. @table @option
  1195. @item E, PI, PHI
  1196. the corresponding mathematical approximated values for e
  1197. (euler number), pi (greek PI), phi (golden ratio)
  1198. @item in_w, in_h
  1199. the input width and height
  1200. @item iw, ih
  1201. same as @var{in_w} and @var{in_h}
  1202. @item out_w, out_h
  1203. the output (cropped) width and height
  1204. @item ow, oh
  1205. same as @var{out_w} and @var{out_h}
  1206. @item dar, a
  1207. input display aspect ratio, same as @var{iw} / @var{ih}
  1208. @item sar
  1209. input sample aspect ratio
  1210. @item hsub, vsub
  1211. horizontal and vertical chroma subsample values. For example for the
  1212. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1213. @end table
  1214. If the input image format is different from the format requested by
  1215. the next filter, the scale filter will convert the input to the
  1216. requested format.
  1217. If the value for @var{width} or @var{height} is 0, the respective input
  1218. size is used for the output.
  1219. If the value for @var{width} or @var{height} is -1, the scale filter will
  1220. use, for the respective output size, a value that maintains the aspect
  1221. ratio of the input image.
  1222. The default value of @var{width} and @var{height} is 0.
  1223. Some examples follow:
  1224. @example
  1225. # scale the input video to a size of 200x100.
  1226. scale=200:100
  1227. # scale the input to 2x
  1228. scale=2*iw:2*ih
  1229. # the above is the same as
  1230. scale=2*in_w:2*in_h
  1231. # scale the input to half size
  1232. scale=iw/2:ih/2
  1233. # increase the width, and set the height to the same size
  1234. scale=3/2*iw:ow
  1235. # seek for Greek harmony
  1236. scale=iw:1/PHI*iw
  1237. scale=ih*PHI:ih
  1238. # increase the height, and set the width to 3/2 of the height
  1239. scale=3/2*oh:3/5*ih
  1240. # increase the size, but make the size a multiple of the chroma
  1241. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1242. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1243. scale='min(500\, iw*3/2):-1'
  1244. @end example
  1245. @section select
  1246. Select frames to pass in output.
  1247. It accepts in input an expression, which is evaluated for each input
  1248. frame. If the expression is evaluated to a non-zero value, the frame
  1249. is selected and passed to the output, otherwise it is discarded.
  1250. The expression can contain the following constants:
  1251. @table @option
  1252. @item PI
  1253. Greek PI
  1254. @item PHI
  1255. golden ratio
  1256. @item E
  1257. Euler number
  1258. @item n
  1259. the sequential number of the filtered frame, starting from 0
  1260. @item selected_n
  1261. the sequential number of the selected frame, starting from 0
  1262. @item prev_selected_n
  1263. the sequential number of the last selected frame, NAN if undefined
  1264. @item TB
  1265. timebase of the input timestamps
  1266. @item pts
  1267. the PTS (Presentation TimeStamp) of the filtered video frame,
  1268. expressed in @var{TB} units, NAN if undefined
  1269. @item t
  1270. the PTS (Presentation TimeStamp) of the filtered video frame,
  1271. expressed in seconds, NAN if undefined
  1272. @item prev_pts
  1273. the PTS of the previously filtered video frame, NAN if undefined
  1274. @item prev_selected_pts
  1275. the PTS of the last previously filtered video frame, NAN if undefined
  1276. @item prev_selected_t
  1277. the PTS of the last previously selected video frame, NAN if undefined
  1278. @item start_pts
  1279. the PTS of the first video frame in the video, NAN if undefined
  1280. @item start_t
  1281. the time of the first video frame in the video, NAN if undefined
  1282. @item pict_type
  1283. the type of the filtered frame, can assume one of the following
  1284. values:
  1285. @table @option
  1286. @item I
  1287. @item P
  1288. @item B
  1289. @item S
  1290. @item SI
  1291. @item SP
  1292. @item BI
  1293. @end table
  1294. @item interlace_type
  1295. the frame interlace type, can assume one of the following values:
  1296. @table @option
  1297. @item PROGRESSIVE
  1298. the frame is progressive (not interlaced)
  1299. @item TOPFIRST
  1300. the frame is top-field-first
  1301. @item BOTTOMFIRST
  1302. the frame is bottom-field-first
  1303. @end table
  1304. @item key
  1305. 1 if the filtered frame is a key-frame, 0 otherwise
  1306. @end table
  1307. The default value of the select expression is "1".
  1308. Some examples follow:
  1309. @example
  1310. # select all frames in input
  1311. select
  1312. # the above is the same as:
  1313. select=1
  1314. # skip all frames:
  1315. select=0
  1316. # select only I-frames
  1317. select='eq(pict_type\,I)'
  1318. # select one frame every 100
  1319. select='not(mod(n\,100))'
  1320. # select only frames contained in the 10-20 time interval
  1321. select='gte(t\,10)*lte(t\,20)'
  1322. # select only I frames contained in the 10-20 time interval
  1323. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1324. # select frames with a minimum distance of 10 seconds
  1325. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1326. @end example
  1327. @anchor{setdar}
  1328. @section setdar
  1329. Set the Display Aspect Ratio for the filter output video.
  1330. This is done by changing the specified Sample (aka Pixel) Aspect
  1331. Ratio, according to the following equation:
  1332. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1333. Keep in mind that this filter does not modify the pixel dimensions of
  1334. the video frame. Also the display aspect ratio set by this filter may
  1335. be changed by later filters in the filterchain, e.g. in case of
  1336. scaling or if another "setdar" or a "setsar" filter is applied.
  1337. This filter accepts the following options:
  1338. @table @option
  1339. @item dar
  1340. Output display aspect ratio, as a rational or a decimal number.
  1341. @end table
  1342. For example to change the display aspect ratio to 16:9, specify:
  1343. @example
  1344. setdar=dar=16/9
  1345. # the above is equivalent to
  1346. setdar=dar=1.77777
  1347. @end example
  1348. See also the @ref{setsar} filter documentation.
  1349. @section setpts
  1350. Change the PTS (presentation timestamp) of the input video frames.
  1351. Accept in input an expression evaluated through the eval API, which
  1352. can contain the following constants:
  1353. @table @option
  1354. @item PTS
  1355. the presentation timestamp in input
  1356. @item PI
  1357. Greek PI
  1358. @item PHI
  1359. golden ratio
  1360. @item E
  1361. Euler number
  1362. @item N
  1363. the count of the input frame, starting from 0.
  1364. @item STARTPTS
  1365. the PTS of the first video frame
  1366. @item INTERLACED
  1367. tell if the current frame is interlaced
  1368. @item PREV_INPTS
  1369. previous input PTS
  1370. @item PREV_OUTPTS
  1371. previous output PTS
  1372. @item RTCTIME
  1373. wallclock (RTC) time in microseconds
  1374. @item RTCSTART
  1375. wallclock (RTC) time at the start of the movie in microseconds
  1376. @end table
  1377. Some examples follow:
  1378. @example
  1379. # start counting PTS from zero
  1380. setpts=PTS-STARTPTS
  1381. # fast motion
  1382. setpts=0.5*PTS
  1383. # slow motion
  1384. setpts=2.0*PTS
  1385. # fixed rate 25 fps
  1386. setpts=N/(25*TB)
  1387. # fixed rate 25 fps with some jitter
  1388. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1389. # generate timestamps from a "live source" and rebase onto the current timebase
  1390. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1391. @end example
  1392. @anchor{setsar}
  1393. @section setsar
  1394. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1395. Note that as a consequence of the application of this filter, the
  1396. output display aspect ratio will change according to the following
  1397. equation:
  1398. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1399. Keep in mind that the sample aspect ratio set by this filter may be
  1400. changed by later filters in the filterchain, e.g. if another "setsar"
  1401. or a "setdar" filter is applied.
  1402. This filter accepts the following options:
  1403. @table @option
  1404. @item sar
  1405. Output sample aspect ratio, as a rational or decimal number.
  1406. @end table
  1407. For example to change the sample aspect ratio to 10:11, specify:
  1408. @example
  1409. setsar=sar=10/11
  1410. @end example
  1411. @section settb
  1412. Set the timebase to use for the output frames timestamps.
  1413. It is mainly useful for testing timebase configuration.
  1414. It accepts in input an arithmetic expression representing a rational.
  1415. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1416. default timebase), and "intb" (the input timebase).
  1417. The default value for the input is "intb".
  1418. Follow some examples.
  1419. @example
  1420. # set the timebase to 1/25
  1421. settb=1/25
  1422. # set the timebase to 1/10
  1423. settb=0.1
  1424. #set the timebase to 1001/1000
  1425. settb=1+0.001
  1426. #set the timebase to 2*intb
  1427. settb=2*intb
  1428. #set the default timebase value
  1429. settb=AVTB
  1430. @end example
  1431. @section showinfo
  1432. Show a line containing various information for each input video frame.
  1433. The input video is not modified.
  1434. The shown line contains a sequence of key/value pairs of the form
  1435. @var{key}:@var{value}.
  1436. A description of each shown parameter follows:
  1437. @table @option
  1438. @item n
  1439. sequential number of the input frame, starting from 0
  1440. @item pts
  1441. Presentation TimeStamp of the input frame, expressed as a number of
  1442. time base units. The time base unit depends on the filter input pad.
  1443. @item pts_time
  1444. Presentation TimeStamp of the input frame, expressed as a number of
  1445. seconds
  1446. @item pos
  1447. position of the frame in the input stream, -1 if this information in
  1448. unavailable and/or meaningless (for example in case of synthetic video)
  1449. @item fmt
  1450. pixel format name
  1451. @item sar
  1452. sample aspect ratio of the input frame, expressed in the form
  1453. @var{num}/@var{den}
  1454. @item s
  1455. size of the input frame, expressed in the form
  1456. @var{width}x@var{height}
  1457. @item i
  1458. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1459. for bottom field first)
  1460. @item iskey
  1461. 1 if the frame is a key frame, 0 otherwise
  1462. @item type
  1463. picture type of the input frame ("I" for an I-frame, "P" for a
  1464. P-frame, "B" for a B-frame, "?" for unknown type).
  1465. Check also the documentation of the @code{AVPictureType} enum and of
  1466. the @code{av_get_picture_type_char} function defined in
  1467. @file{libavutil/avutil.h}.
  1468. @item checksum
  1469. Adler-32 checksum of all the planes of the input frame
  1470. @item plane_checksum
  1471. Adler-32 checksum of each plane of the input frame, expressed in the form
  1472. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1473. @end table
  1474. @section split
  1475. Split input video into several identical outputs.
  1476. The filter accepts a single parameter which specifies the number of outputs. If
  1477. unspecified, it defaults to 2.
  1478. For example
  1479. @example
  1480. avconv -i INPUT -filter_complex split=5 OUTPUT
  1481. @end example
  1482. will create 5 copies of the input video.
  1483. @section transpose
  1484. Transpose rows with columns in the input video and optionally flip it.
  1485. It accepts a parameter representing an integer, which can assume the
  1486. values:
  1487. @table @samp
  1488. @item 0
  1489. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1490. @example
  1491. L.R L.l
  1492. . . -> . .
  1493. l.r R.r
  1494. @end example
  1495. @item 1
  1496. Rotate by 90 degrees clockwise, that is:
  1497. @example
  1498. L.R l.L
  1499. . . -> . .
  1500. l.r r.R
  1501. @end example
  1502. @item 2
  1503. Rotate by 90 degrees counterclockwise, that is:
  1504. @example
  1505. L.R R.r
  1506. . . -> . .
  1507. l.r L.l
  1508. @end example
  1509. @item 3
  1510. Rotate by 90 degrees clockwise and vertically flip, that is:
  1511. @example
  1512. L.R r.R
  1513. . . -> . .
  1514. l.r l.L
  1515. @end example
  1516. @end table
  1517. @section unsharp
  1518. Sharpen or blur the input video.
  1519. It accepts the following parameters:
  1520. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1521. Negative values for the amount will blur the input video, while positive
  1522. values will sharpen. All parameters are optional and default to the
  1523. equivalent of the string '5:5:1.0:5:5:0.0'.
  1524. @table @option
  1525. @item luma_msize_x
  1526. Set the luma matrix horizontal size. It can be an integer between 3
  1527. and 13, default value is 5.
  1528. @item luma_msize_y
  1529. Set the luma matrix vertical size. It can be an integer between 3
  1530. and 13, default value is 5.
  1531. @item luma_amount
  1532. Set the luma effect strength. It can be a float number between -2.0
  1533. and 5.0, default value is 1.0.
  1534. @item chroma_msize_x
  1535. Set the chroma matrix horizontal size. It can be an integer between 3
  1536. and 13, default value is 5.
  1537. @item chroma_msize_y
  1538. Set the chroma matrix vertical size. It can be an integer between 3
  1539. and 13, default value is 5.
  1540. @item luma_amount
  1541. Set the chroma effect strength. It can be a float number between -2.0
  1542. and 5.0, default value is 0.0.
  1543. @end table
  1544. @example
  1545. # Strong luma sharpen effect parameters
  1546. unsharp=7:7:2.5
  1547. # Strong blur of both luma and chroma parameters
  1548. unsharp=7:7:-2:7:7:-2
  1549. # Use the default values with @command{avconv}
  1550. ./avconv -i in.avi -vf "unsharp" out.mp4
  1551. @end example
  1552. @section vflip
  1553. Flip the input video vertically.
  1554. @example
  1555. ./avconv -i in.avi -vf "vflip" out.avi
  1556. @end example
  1557. @section yadif
  1558. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1559. filter").
  1560. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1561. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1562. following values:
  1563. @table @option
  1564. @item 0
  1565. output 1 frame for each frame
  1566. @item 1
  1567. output 1 frame for each field
  1568. @item 2
  1569. like 0 but skips spatial interlacing check
  1570. @item 3
  1571. like 1 but skips spatial interlacing check
  1572. @end table
  1573. Default value is 0.
  1574. @var{parity} specifies the picture field parity assumed for the input
  1575. interlaced video, accepts one of the following values:
  1576. @table @option
  1577. @item 0
  1578. assume top field first
  1579. @item 1
  1580. assume bottom field first
  1581. @item -1
  1582. enable automatic detection
  1583. @end table
  1584. Default value is -1.
  1585. If interlacing is unknown or decoder does not export this information,
  1586. top field first will be assumed.
  1587. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1588. and only deinterlace frames marked as interlaced
  1589. @table @option
  1590. @item 0
  1591. deinterlace all frames
  1592. @item 1
  1593. only deinterlace frames marked as interlaced
  1594. @end table
  1595. Default value is 0.
  1596. @c man end VIDEO FILTERS
  1597. @chapter Video Sources
  1598. @c man begin VIDEO SOURCES
  1599. Below is a description of the currently available video sources.
  1600. @section buffer
  1601. Buffer video frames, and make them available to the filter chain.
  1602. This source is mainly intended for a programmatic use, in particular
  1603. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1604. This filter accepts the following parameters:
  1605. @table @option
  1606. @item width
  1607. Input video width.
  1608. @item height
  1609. Input video height.
  1610. @item pix_fmt
  1611. Name of the input video pixel format.
  1612. @item time_base
  1613. The time base used for input timestamps.
  1614. @item sar
  1615. Sample (pixel) aspect ratio of the input video.
  1616. @end table
  1617. For example:
  1618. @example
  1619. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  1620. @end example
  1621. will instruct the source to accept video frames with size 320x240 and
  1622. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1623. square pixels (1:1 sample aspect ratio).
  1624. @section color
  1625. Provide an uniformly colored input.
  1626. It accepts the following parameters:
  1627. @var{color}:@var{frame_size}:@var{frame_rate}
  1628. Follows the description of the accepted parameters.
  1629. @table @option
  1630. @item color
  1631. Specify the color of the source. It can be the name of a color (case
  1632. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1633. alpha specifier. The default value is "black".
  1634. @item frame_size
  1635. Specify the size of the sourced video, it may be a string of the form
  1636. @var{width}x@var{height}, or the name of a size abbreviation. The
  1637. default value is "320x240".
  1638. @item frame_rate
  1639. Specify the frame rate of the sourced video, as the number of frames
  1640. generated per second. It has to be a string in the format
  1641. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1642. number or a valid video frame rate abbreviation. The default value is
  1643. "25".
  1644. @end table
  1645. For example the following graph description will generate a red source
  1646. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1647. frames per second, which will be overlayed over the source connected
  1648. to the pad with identifier "in".
  1649. @example
  1650. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1651. @end example
  1652. @section movie
  1653. Read a video stream from a movie container.
  1654. Note that this source is a hack that bypasses the standard input path. It can be
  1655. useful in applications that do not support arbitrary filter graphs, but its use
  1656. is discouraged in those that do. Specifically in @command{avconv} this filter
  1657. should never be used, the @option{-filter_complex} option fully replaces it.
  1658. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1659. @var{movie_name} is the name of the resource to read (not necessarily
  1660. a file but also a device or a stream accessed through some protocol),
  1661. and @var{options} is an optional sequence of @var{key}=@var{value}
  1662. pairs, separated by ":".
  1663. The description of the accepted options follows.
  1664. @table @option
  1665. @item format_name, f
  1666. Specifies the format assumed for the movie to read, and can be either
  1667. the name of a container or an input device. If not specified the
  1668. format is guessed from @var{movie_name} or by probing.
  1669. @item seek_point, sp
  1670. Specifies the seek point in seconds, the frames will be output
  1671. starting from this seek point, the parameter is evaluated with
  1672. @code{av_strtod} so the numerical value may be suffixed by an IS
  1673. postfix. Default value is "0".
  1674. @item stream_index, si
  1675. Specifies the index of the video stream to read. If the value is -1,
  1676. the best suited video stream will be automatically selected. Default
  1677. value is "-1".
  1678. @end table
  1679. This filter allows to overlay a second video on top of main input of
  1680. a filtergraph as shown in this graph:
  1681. @example
  1682. input -----------> deltapts0 --> overlay --> output
  1683. ^
  1684. |
  1685. movie --> scale--> deltapts1 -------+
  1686. @end example
  1687. Some examples follow:
  1688. @example
  1689. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1690. # on top of the input labelled as "in".
  1691. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1692. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1693. # read from a video4linux2 device, and overlay it on top of the input
  1694. # labelled as "in"
  1695. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1696. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1697. @end example
  1698. @section nullsrc
  1699. Null video source, never return images. It is mainly useful as a
  1700. template and to be employed in analysis / debugging tools.
  1701. It accepts as optional parameter a string of the form
  1702. @var{width}:@var{height}:@var{timebase}.
  1703. @var{width} and @var{height} specify the size of the configured
  1704. source. The default values of @var{width} and @var{height} are
  1705. respectively 352 and 288 (corresponding to the CIF size format).
  1706. @var{timebase} specifies an arithmetic expression representing a
  1707. timebase. The expression can contain the constants "PI", "E", "PHI",
  1708. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1709. @section frei0r_src
  1710. Provide a frei0r source.
  1711. To enable compilation of this filter you need to install the frei0r
  1712. header and configure Libav with --enable-frei0r.
  1713. The source supports the syntax:
  1714. @example
  1715. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1716. @end example
  1717. @var{size} is the size of the video to generate, may be a string of the
  1718. form @var{width}x@var{height} or a frame size abbreviation.
  1719. @var{rate} is the rate of the video to generate, may be a string of
  1720. the form @var{num}/@var{den} or a frame rate abbreviation.
  1721. @var{src_name} is the name to the frei0r source to load. For more
  1722. information regarding frei0r and how to set the parameters read the
  1723. section @ref{frei0r} in the description of the video filters.
  1724. Some examples follow:
  1725. @example
  1726. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1727. # which is overlayed on the overlay filter main input
  1728. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1729. @end example
  1730. @section rgbtestsrc, testsrc
  1731. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1732. detecting RGB vs BGR issues. You should see a red, green and blue
  1733. stripe from top to bottom.
  1734. The @code{testsrc} source generates a test video pattern, showing a
  1735. color pattern, a scrolling gradient and a timestamp. This is mainly
  1736. intended for testing purposes.
  1737. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1738. separated by ":". The description of the accepted options follows.
  1739. @table @option
  1740. @item size, s
  1741. Specify the size of the sourced video, it may be a string of the form
  1742. @var{width}x@var{height}, or the name of a size abbreviation. The
  1743. default value is "320x240".
  1744. @item rate, r
  1745. Specify the frame rate of the sourced video, as the number of frames
  1746. generated per second. It has to be a string in the format
  1747. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1748. number or a valid video frame rate abbreviation. The default value is
  1749. "25".
  1750. @item sar
  1751. Set the sample aspect ratio of the sourced video.
  1752. @item duration
  1753. Set the video duration of the sourced video. The accepted syntax is:
  1754. @example
  1755. [-]HH[:MM[:SS[.m...]]]
  1756. [-]S+[.m...]
  1757. @end example
  1758. See also the function @code{av_parse_time()}.
  1759. If not specified, or the expressed duration is negative, the video is
  1760. supposed to be generated forever.
  1761. @end table
  1762. For example the following:
  1763. @example
  1764. testsrc=duration=5.3:size=qcif:rate=10
  1765. @end example
  1766. will generate a video with a duration of 5.3 seconds, with size
  1767. 176x144 and a framerate of 10 frames per second.
  1768. @c man end VIDEO SOURCES
  1769. @chapter Video Sinks
  1770. @c man begin VIDEO SINKS
  1771. Below is a description of the currently available video sinks.
  1772. @section buffersink
  1773. Buffer video frames, and make them available to the end of the filter
  1774. graph.
  1775. This sink is intended for a programmatic use through the interface defined in
  1776. @file{libavfilter/buffersink.h}.
  1777. @section nullsink
  1778. Null video sink, do absolutely nothing with the input video. It is
  1779. mainly useful as a template and to be employed in analysis / debugging
  1780. tools.
  1781. @c man end VIDEO SINKS